Candidate Marks Report

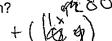
Series: 6 2018

This candidate's script has been assessed using On-Screen Marking. The marks are therefore not shown on the script itself, but are summarised in the table below.

Centre No :	Assessment Code:	H432
Candidate No :	Component Code :	01
Candidate Name :	•	
Total Marks :		

In the table below 'Total Mark' records the mark scored by this candidate. 'Max Mark' records the Maximum Mark available for the question.

SECTION A


You should spend a maximum of 20 minutes on this section.

Write your answer to each question in the box provided.

Answer all the questions.

5 eler A sample of boron contains the isotopes ¹⁰B and ¹¹B. The relative atomic mass of the boron sample is 10.8.

What is the percentage of ¹¹B atoms in the sample of boron?

8.0%

20% В

Ç 80%

D 92%

	,
Your answer	C

[1]

2 In the compound $[ICl_2]^+$ [SbC l_6]⁻, the oxidation number of chlorine is -1. What are the oxidation numbers of I and Sb in the compound?

<u> </u>		
:	I	Sb
Á	+1 .	+5
В	+1	+7
С	+3	+5
D	+3	+7

Your answer

[1]

- What is the number of hydrogen atoms in 0.125 mol of C₂H₅OH? 3
 - 7.525×10^{22} Α

 4.515×10^{23} В

- 3.7625×10^{23} C
- 3.612×10^{24}

Your answer OCR 2018

[1]

A student titrates a standard solution of barium hydroxide, Ba(OH)2, with nitric acid, HNO3.

 $25.00\,\mathrm{cm^3}$ of $0.0450\,\mathrm{mol\,dm^{-3}}$ Ba(OH)₂ are needed to neutralise $23.35\,\mathrm{cm^3}$ of HNO₃(aq).

What is the concentration, in moldm⁻³, of the nitric acid?

- 0.0241
- 1-125×10-3 Ba(OH),

0.0482 В

2-25 × 10 -3 mal

- 0.0900 C
- D 0.0964

0.0964

Your answer

Which statement best explains why nitrogen has a larger first ionisation energy than oxygen?

- N atoms have less repulsion between p-orbital electrons than O atoms. <
- N atoms have a smaller nuclear charge than O atoms. X В
- N atoms lose an electron from the 2s subshell, while O atoms lose an electron from the 2p subshell.
- N atoms have an odd number of electrons, while O atoms have an even number.

Your answer

[1]

[1]

In the Periodic Table, element X is in Group 2 and element Y is in Group 15 (5). 6

What is the likely formula of an ionic compound of X and Y?

 X_2Y_5

X3 40

- X_2Y_3
- X_3Y_2
- X_5Y_2

Your answer

[1]

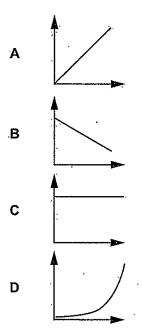
© OCR 2018

- It reacts with Ba(NO₃)₂(aq) to form a white precipitate. A.

Which statement about ammonium carbonate is **not** correct?

- В It effervesces with dilute nitric acid;
- C It release an alkaline gas with warm NaOH(aq).
- It has the formula NH_4CO_3 . \checkmark

X


Your answer

[1]

A reaction is first order with respect to a reactant ${\bf X}$. 8

Which rate-concentration graph for reactant X is the correct shape?

Your answer

[1]

The reversible reaction of sulfur dioxide and oxygen to form sulfur trioxide is shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

An equilibrium mixture contains 2.4 mol SO₂, 1.2 mol O₂ and 0.4 mol SO₃. The total pressure is 250 atm.

What is the partial pressure of SO₃?

Α 15 atm

В 25 atm × 250

- C 100 atm
- 200 atm

Your answer

[1]

A buffer solution is prepared by mixing 200 cm³ of 2.00 mol dm⁻³ propanoic acid CH₃CH₂COOH, with 600 cm³ of 1:00 moldm³ sodium propanoate, CH₃CH₂COONa.

 K_a for CH₃CH₂COOH = 1.32 × 10⁻⁵ mol dm⁻³

What is the pH of the buffer solution?

$$\frac{0.6}{0.8} = 0.75 A^{-1}$$

Turn over

The table below shows standard entropies, So.

Substance	CO(g)	H ₂ (g)	CH ₃ OH(I)
S ^e /J mol ⁻¹ :K ⁻¹	197.6	130.6	239.7

What is the entropy change, ΔS^{e} , in J mol⁻¹ K⁻¹, for the following reaction?

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

Your answer

[1]

The redox equilibria for a hydrogen-oxygen fuel cell in alkaline solution are shown below.

$$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$$

$$^{1}/_{2}O_{2}(g) + H_{2}O(I) + 2e^{-} \rightleftharpoons 2OH^{-}(aq)$$

$$E^{\Theta} = +0.40 \, \text{V}$$

What is the equation for the overall cell reaction?

A
$$H_2(g) + 4OH^-(aq) \rightarrow 3H_2O(l) + \frac{1}{2}O_2(g)$$

B
$$3H_2O(I) + \frac{1}{2}O_2 \rightarrow H_2(g) + 4OH^-(aq)$$

C
$$H_2O(I) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$$

D
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$

Your answer

Hz+20H-> 2Hz0+2e-1202+H20+26-> 20H-Hz+1202-> H20

13	Whi	ich e	nthalpy change(s) is/are endothermic?	•
	,	1	The bond enthalpy of the C-H bond	
		2	The second electron affinity of oxygen	
		3	The standard enthalpy change of formation of magnesium 🎉 🦪 🧵	
	Α	1, 2	and 3 Pag Darry	
	В		y 1 and 2	
	Ċ		y 2 and 3	
	D	Onl		
	You	ır ans	swer C	[1]
14	Wh	ich s	tatement(s) explain(s) why reaction rates increase as temperature increases?	
		1	The activation energy is less.	
		2	Collisions between molecules are more frequent.	
		3.	A greater proportion of molecules have energy greater than the activation energy.	/
	Α	1, 2	and 3	
	В	Onl	y 1 and 2	
	С	Onl	y 2 and 3.	
	D	Onl	y 1	
	You	ır ans	swer C	[1]

© OCR 2018

Turn over _

15 Which statement(s) is/are correct for the complex Pt(NH₃)₂Cl₂?

- 1 One of its stereoisomers is used as an anti-cancer drug.
- 2 It has bond angles of 109.5°.
- 3 It has optical isomers.
- A 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Önly 1

Your answer

[1]

© OCR 2018

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© OCR 2018

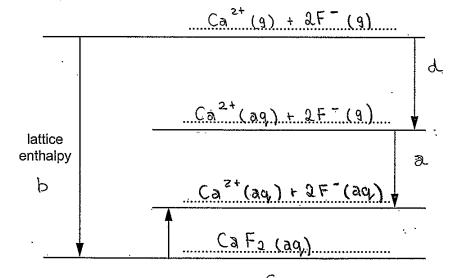
* 00005 47007500 1

Turn over

Answer all the questions.

- This question is about enthalpy changes.
 - (a) Table 16.1 shows enthalpy changes that can be used to determine the enthalpy change of hydration of fluoride ions, F:

Enthalpy change	Energy/kJ moi ⁻¹
Hydration of Ca ²⁺	-1609
Solution of CaF ₂	+13
Lattice enthalpy of CaF ₂	-2630


Table 16.1

Explain what is meant by the term enthalpy change of hydration.

the enthalpy change when gooden any beout are farmed from I mol of water reactes with gaeseaus) in nos to form agre ous iones

The enthalpy change of hydration of F7 can be determined using the enthalpy changes in Table 16.1 and the incomplete energy cycle below.

On the dotted lines, add the species present, including state symbols.

[4]

(iii) Calculate the enthalpy change of hydration of fluoride ions, F-.

$$a + d = b + c$$

-504

(iv) Predict how the enthalpy changes of hydration of F and Cl would differ.

Explain your answer,

enthalpy change of CL would be lower as	
CL Bo bond weather, kneath offsettle breaker and	
diaaolues esisier.	
	••••

(b) Fluorine reacts with steam as shown in the equation below.

$$2F_2(g) + 2H_2O(g) \rightarrow O_2(g) + 4HF(g)$$
 $\Delta H = -598 \text{ kJ mol}^{-1}$

Average bond enthalpies are shown in the table.

Bond	Average bond enthalpy/kJ mol ⁻¹
O-H	+464
0=0	+498
H≟F	+568

t is meant by the term average bond enthalpy.	(i)
t is meant by the term average bond enthalpy. You have the term average bond enthalpy.	evitibisen
	. 0(00
•	

(ii) Calculate the bond enthalpy of the F-F bond.

$$(2F-F+40-H)-(0=0+4H-F)$$

$$=(2F-F+1856)-(2770)$$

$$2F-F-914=-598$$

$$2F-F=316$$

$$F-F=158$$

13-

BLANK PAGE

2172 - 2770

PLEASE DO NOT WRITE ON THIS PAGE

17 This question is about reaction rates.

Aqueous iron(III) ions, Fe³⁺(ag), react with aqueous iodide ions,/I⁻(aq); as shown below.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

A student carries out three experiments to investigate how different concentrations of Fe^{3+} (aq) and I^{-} (aq) affect the initial rate of this reaction. The results are shown below.

Experiment	[Fe ³⁺ (aq)] /moldm ⁻³	[I⁻(aq)] /moldm ⁻³	Initial rate /moldm ⁻³ s ⁻¹
4	4.00 × 10 ⁻²	3.00 × 10 ⁻²	8.10 × 10 ⁻⁴
2	8.00 × 10 ⁻²	3.00 × 10 ⁻²	1.62 × 10 ⁻³
3	4.00 × 10 ⁻²	6.00 × 10 ⁻²	3.24 × 10 ⁻³

(a)* Determine the rate constant and a possible two-step mechanism for this reaction that are consistent with these results.

Fe3t is first order and I is second order

rate = K[Fe3+][I-]2 rate _____K

 $\frac{8 \cdot 1 \times 10^{-4}}{(4 \times 10^{-2})(3 \times 10^{-2})^2} = K = 22.5$

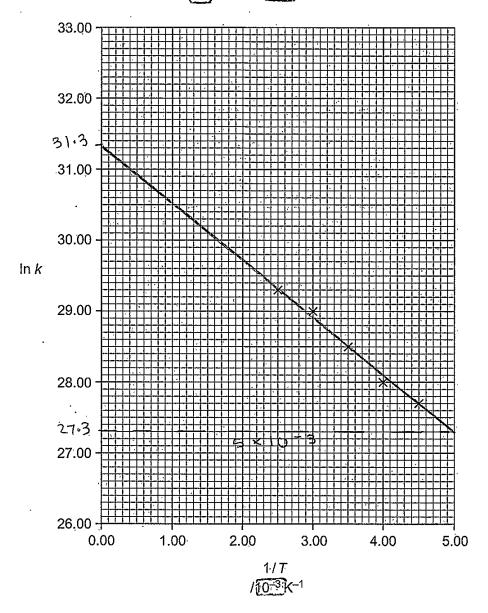
moldm 5 (moldm-3) (moldm-3)

rate constant a dor 2 mol-20 = 22.5 dm mol-20-

 $Fe^{3+} + 2I \rightarrow Fe^{2+} + 40I_2 + 40I_3$ $Fe^{3+} + 4I \rightarrow Fe^{2+} + 40I_3$ $Fe^{3+} + 4I + e^{-} \rightarrow Fe^{2+}$

Take determining step: $Fe^{3+} + 2T^- \rightarrow Fe^{2+} + T_2 + e^$ fact thep: $Fe^{3+} + e^- \rightarrow Fe^{2+}$

Additional answer space if required


•	75		
		······································	

 	 		•

© OCR 2018

Turn over

(b) A student carries out an investigation to find the activation energy, Ea, and the pre-exponential factor, A, of a reaction.

The student determines the rate constant, k, at different temperatures, T. The student then plots a graph of link against 1/T as shown below.

Draw a best-fit straight line and calculate the activation energy, in J mol⁻¹. Give your answer to three significant figures.

17

Show your working.

$$\frac{-4}{5 \times 10^{-3}} = 800 = -\frac{Ea}{R}$$

$$-800 \times -8.314 = Ea$$

(ii) Use the graph to calculate the value of the pre-exponential factor, A.

Show your working.

pre-exponential factor,
$$A = \frac{3.92 \times 10^{13}}{3.92 \times 10^{13}}$$
 [2]

Nitrogen monoxide, NO, and oxygen, O2, react to formenitrogen dioxide, NO2, in the reversible reaction shown in equilibrium 18.1.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

Equilibrium 18.1

(a) Write an expression for $K_{\rm c}$ for this equilibrium and state the units.

$$K_{c} = \left[NO_{2}\right]^{2}$$

$$\left[NO_{1}^{2}\right]^{2}$$

[2]

- (b) A chemist mixes together nitrogen and oxygen and pressurises the gases so that their total N2 +802 = 2N0 + NU2 gas volume is 4.0 dm3.
 - The mixture is allowed to reach equilibrium at constant temperature and volume.
 - The equilibrium mixture contains 0.40 mol NO and 0.80 mol O
 - Under these conditions, the numerical value of Kc is 45.

Calculate the amount, in mol, of NO₂ in the equilibrium mixture.

initial-mol equilland mor change balance .200 2NO + Oz = 2NO2

0-3×4

WHIn:

change

palance

amount of
$$NO_2 = 1$$
 mol [4]

$$M + 5 = \frac{[N0_2]^2}{(0.1)^2(0.2)} \quad 0.09 = [N0_2]^2$$

@ OCR 2018

(c) The values of K_p for equilibrium 18.1 at $298\,\mathrm{K}$ and $1000\,\mathrm{K}$ are shown below.

 $2\dot{N}\dot{O}(g) + O_2(g) \rightleftharpoons 2NO_2(g)$

Equilibrium 18.1

Temperature/K	K _p /atm ^{−1}
298	$K_{\rm p} = 2.19 \times 10^{12}$
1000	$K_{\rm p} = 2.03 \times 10^{-1}$

increase in temp shifts to endo Harmic · Kc decreos e-5

Predict, with a reason, whether the forward reaction is exothermic or endothermic.
forward reaction is exothermic as the when temp incress
equilibrium shifts to endothermic side which is [1] towards reactants on value of Kp decreases. The chemist increases the pressure of the equilibrium mixture at the same temperature.
State, and explain in terms of K_p how you would expect the equilibrium position to change.
value of Kp stays the same. Increase in pressure
which equilibrium to the right towards the products
as that's the side with fewer moles. ratio (readants) ratio (readants) the when you increase pressure kp that's the denominator
·
increases so to de to oppose that change and
hoop value of Kp the same, Increase pressure of
numerator (productes) and decrease denominator [3]

© OCR 2018 ·

- 19 This question is about acids and bases found in the home.
 - (a) Ethanoic acid, CH3COOH3 is the acid present in vinegar. Vinagar contains acid

A student carries out an experiment to determine the pK_avalue of CH₃COOH.

- The concentration of CH₃COOH in the vinegar is 0.870 moldm⁻³. 7
- The pH of the vinegar is 2.41?
- (i) Write the expression for the acid dissociation constant, $K_{\rm a}$, of CH $_3$ COOH.

[1]

(ii) Calculate the pK_a value of CH_3COOH .

Give your answer to two decimal places.

$$Ka = \frac{[H^{+}]^{2}}{HA} = \frac{(3.89 \times 10^{-3})^{2}}{0.87} = 1.74 \times 10^{-5}$$

$$= 10g(1.74 \times 10^{-5}) = pk$$

$$pK_a = 4.76$$
 [3]

(iii) Determine the percentage dissociation of ethanoic acid in the vinegar.

Give your answer to three significant figures.

percentage dissociation = O · 나 나 7 % [1]

(b) Many solid drain cleaners are based on sodium hydroxide, NaOH.

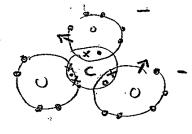
• A student dissolves 1.26g of a drain cleaner in water and makes up the solution to

• The student measures the pH of this solution as [3.48.]

KW = 1×10-14

Determine the percentage, by mass, of NaOH in/the drain cleaner.

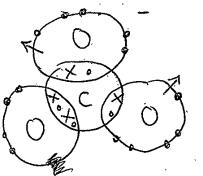
Give your answer to three significant figures.


$$0.302 \times 100 = 0.0302 \text{ mol NaOH}$$

$$1000 \times 40 \qquad \frac{1.208}{1.26} \times 100$$

(c) Sodium carbonate, Na₂CO₃ is a base used in washing soda.

Na₂CO₃ contains the carbonate ion CO₃²⁵, shown below.



Draw the 'dot-and-cross' diagram for the carbonate ion.

Show outer electrons only and use different symbols for electrons from C and O and any

'extra' electrons

-> = extra electron

[2]

Turn over

;

© OCR 2018

- This question is about the halogen group of elements and some of their compounds.
 - (a) The halogens show trends in their properties down the group.

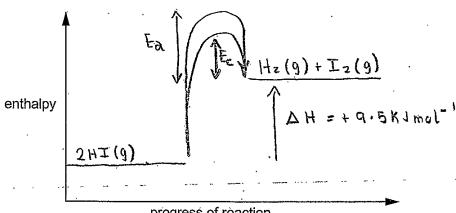
The boiling points of three halogens are shown below.

Halogen	Boiling point/°C
Chlorine	-35
Bromine	59
lodine	184

Explain why the halogens show this trend in boiling points.

Hs you go down the balagen group, boiling point inche asses as the number of elections increases as stronger landon forces. Stronger landon forces requires the of more energy to overcome / break

(b) Hydrogen iodide, HI, is decomposed by heat into its elements:


$$2H\dot{I}(g) \rightarrow H_2(g) + I_2(g)$$

$$\Delta H = +9.5 \,\mathrm{kJ \, mol^{-1}}$$

The decomposition is much faster in the presence of a platinum catalyst.

Complete the enthalpy profile diagram for this reaction using formulae for the reactants and products.

- Use E, to label the activation energy without a catalyst.
- Use $E_{\rm c}$ to label the activation energy with a catalyst.
- Use AH to label the enthalpy change of reaction.

progress of reaction

Ĉ	$(^{\circ})$	ЭC	23
	J.		2.0

(c) Compound A is an oxide of chlorine that is a liquid at room temperature and pressure and has a boiling point of 83°C.

When 0.4485g of A is heated to 100°C at 1.00 × 10⁵Pa; 76.0 cm³ of gas is produced.

Determine the molecular formula of compound A.

Show all your working.

$$PV = nRT$$
 $\frac{PV}{RT} = n$

$$\frac{PV}{RT} = n$$

$$(1 \times 10^{5}) \times (7.6 \times 10^{-5})$$

$$\frac{6200 - 0.4485}{2.45 \times 10^{-3}} = 183 = mR$$

ClaOz

molecular formula of $A = \dots C l 2 O \gamma$ [4]

(d) Compound **B** is an <u>lodate(V) salt</u> of a <u>Group 1 metal.</u> The lodate(V) ion has the formula IO₃.

+5 -6

A student carries out a titration to find the formula of compound B.

- Step 1: The student dissolves 1.55 glof B in water and makes up the solution to 250.0 cm³ in a volumetric flask.
- Step 2: The student pipettes 25.00 cm³ of the solution of B into a conical flask, followed by 10 cm³ of dilute sulfuric acid and an excess of KI(aq).

The iodate(V) ions are reduced to iodine, as shown below.

$$IO_3^-(aq) + 6H^+(aq) + 5I^-(aq) \rightarrow 3I_2(aq) + 3H_2O(I)$$

Step 3: The resulting mixture is titrated with 0.150 moldm³ Na₂S₂O₃(aq).

$$2 {\rm S_2O_3}^{2-}({\rm aq}) + {\rm I_2(aq)} \, \to \, {\rm S_4O_6}^{2-}({\rm aq}) + 2 {\rm I^-}({\rm aq})$$

The student repeats step 2 and step 3 until concordant titres are obtained.

Titration readings

Titration	Trial	1	2	3
Final burette reading/cm ³	24.00	47.40	23.75	47.05
Initial burette reading/cm ³	0.00	24.00	0.00	23.20
Titre/cm ³	24.00	23-40	23.75	23.85

Table 20.1

(i) Complete **Table 20.1** and calculate the mean titre that the student should use for analysing the results.

mean titre = $\frac{23.80}{\text{cm}^3}$ cm³ [2]

(ii) The uncertainty in each burette reading is ±0.05 cm³.

Calculate the percentage uncertainty in the titre obtained from titration 1.

Give your answer to two decimal places.

percentage uncertainty =O · 4 3 % [1]

(iii) Describe and explain how the student should determine the end point of this titration

12 in a beaker. Na 29203 In a burette. Open the tap of the briefle and allow Nazszoz to rom into Iz &. When end point in approaching . Let the adjust the tap till it 2 [2]

(iv) Determine the relative formula mass and formula of the Group 1 lodate(V). B.

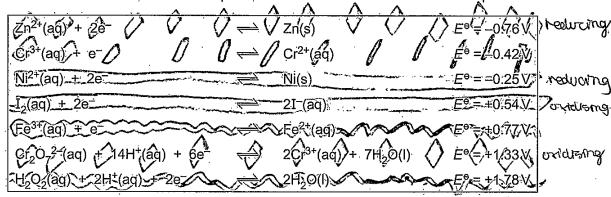
Show your working.

$$\frac{1.55}{5.95\times10^{-3}} = mR = 260.5$$

relative formula mass of B = ... 2.6.0 • 5.

formula of $B = Rb TO_3$ [5]

Turn över



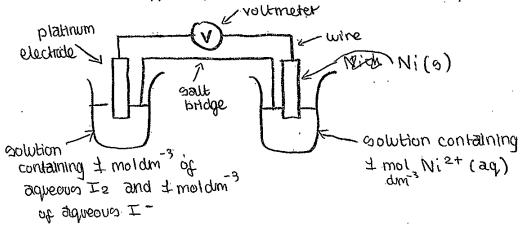
@ OCR 2018

21 This question is about some reactions of d block elements and their ions.

Table 21.1 shows standard electrode potentials which will be needed within this question.

Table 21.1

(a) Complete the electron configuration of


a Ni atom:
$$1s^2 2p^6 3p^2 3p^6 4p^2 3d^8$$

a Ni²⁺ ion: $1s^2 2p^6 3p^2 3p^6 3d^8$ [2]

(b) A standard cell is set up in the laboratory with the cell reaction shown below.

$$\overline{\text{Ni(s)}} + \overline{\text{I}_2(aq)} \rightarrow \text{Ni}^{2+}(aq) + 2I^-(aq)$$

(i) Draw a labelled diagram to show how this cell could be set up to measure its standard cell potential.

Include details of apparatus, solutions and the standard conditions required.

Standard conditions 298K, 100KPa

~-r/

(i	i)	Predict the	standard	cell	potential	of this	cell.

- (c) Use the information in Table 21.1 to help you answer both parts of this question.
 - (i) Write the overall equation for the oxidation of Fe^{2+} by acidified $H_2 O_2$.

(ii) Zinc reacts with acidified $Cr_2O_1^{-2}$ ions to form Cr^{2+1} ions in two stages.

Explain why this happens in terms of electrode potentials and equilibria.

Include overall equations for the reactions which occur.

5 tandard electrode potential for zinc (15)

All bases more negative that Cr2072 co equilibrium

is at shifted more to the left so zin is more Ululy to act as

les reducing agant - reduces Cr2072 as is itself is addised

3 zn + Cr2072 + 14 H + -> 3 zn2+ + 2 Cr3+ + 7 H 2 O

cell potential = 2.09

when excess of zn added it's oxidized further from Cr3+ to

Cr2+ as standard electrocle potential est for zinc is still

when excess of Zn added its ossessed further from Cr is when excess of Zn added its ossessed further from Cr is more negative so its a position of equilibrium for zinc less to the left and acts as a reducing agent position of Repullbrangon $2Cr^{3+}$, $Zn \rightarrow 2Cr^{2+}$ + Zn^{2+}

cul potential=0-34

3 3 146 7 2n - 72n2+ + 2e -Cr2072-+ 14 H+ + Ge -> 2 Cr3+ + 7 H20

7 ke2+ 4 -> 7 Fe3+ +2g/-

H202+2H++2/e- -> 2H20

2Cr3++2e=->2Cr2+

Zu 3 Zust + 3

Turn over ____

· (4)*	Three different reactions of copper compounds are described below:
(u)	Cosou 4 NH 3
	Reaction 1: Aqueous copper(II) sulfate reacts with excess aqueous ammonia in a ligand
	substitution reaction. A deep-blue solution is formed, containing an octahedral
	complex ion, C, which is a transisomer. $C \cup (H_2 \cup H_3) \cup (H_3 \cup H_3) $
	Cuo
	Reaction 2: Copper(I) oxide reacts with hot dilute sulfuric acid in a disproportionation
•	reaction. Alblue solution, D , and albrown solid, E are formed. CUO 1472504 - CUSO4 + H2O + CUO H2 CUO
	Reaction 3: (Copper(II) oxide reacts with warm dilute nitric-acid in a neutralisation reaction,
	to form a blue solution. Unreacted copper(II) oxide is filtered off, and the
C) LANG.	
OO FITTIOS	solution is left overnight in an evaporating basin. A hydrated salt, F, crystallises, with the percentage composition by mass: H _{2O} Cu, 26.29%; H, 2.48%; N, 11.59%; O, 59.63%. + CuO x CH ₂ O
ı	' H _{2O} Cu, 26.29%; H; 2.48%; N; 11.59%; O; 59.63%.
:	Identify C – F by formulae or structures, as appropriate.
	A annual of the
	Include equations, any changes in oxidation number, and working. [6]
	Include equations, any changes in oxidation number, and working. $C = H_3 N H_2 O D = C U S O 4 ? E = C U O$
*	C = H3N $I = COOO$
•	"CU"
	$H_3N^{-1} = C_0(NO_3)_2 \cdot 3H_2O$
	H_3N' + = $C_0(NO_3)_2 \cdot 3H_2O$
	H ₂ O
	26.29 2.48 11.50 50.03
	<u>26.29</u> <u>2.48</u> <u>11.59</u> <u>59.63</u>
	63-5 14 16
	= 0:414 / 2:48 0-828 3-727 0:414 0-414 0-414
	0.414 0.414 0.414
	4 . 6 . 2 . 9
	C 11 N A B AMPA IT 2 11
	Cu H ₆ N ₂ Oq Ow (MAZ) 03 H ₆
	Cu(NO3) 2 . 20 H2O

1	
•	Additional answer space if required.

© ÓCR 2018

 ••••••	 				 	٠
•••••						
·		•	\			
	٠					
••••••	•				·	

 	 	****************		• • • • • • • • • • • • • • • • • • • •	 	•

END OF QUESTION PAPER

* 0000547997590

ADDITIONAL ANSWER SPACE

must be clearly shown in the margin(s).				
	<u> </u>			
	<u> </u>			
,				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

	,			

	······································			
••••••••••••••••••••••••••••••••••••••				
	· ·			
	······································			
	·			
				
111111111111111111111111111111111111111				
	<u> </u>			

	·
	·

•	
	•
,	
	,

•••	·
•••••	

.,	
• • • • • • • • • • • • • • • • • • • •	
••••	

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,
,	

■© OCR 2018

,	
	·
. ; . 34	
	·
	,
***************	, , , , , , , , , , , , , , , , , , ,
	,
• • • • • • • • • • • • • • • • • • • •	
	,
	, ·

,	

*****************	***************************************

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party-content-in this assessment material. OCR will be happy to correctly acknowledge or clear any third-party-content-in this assessment material.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

■ © OCR 2018

* 0009547237532