SAMPLE ASSESSMENT MATERIAL
LEVEL 2 FUNCTIONAL SKILLS MATHEMATICS

08849 Calculator paper
Time allowed: 1 hour 20 minutes

You must use:
• a pen with black ink
• a HB pencil for graphs and diagrams
• a calculator
• geometric instruments

For each question, make sure that you:
• read the questions carefully before starting
• write your answers in this booklet in the space/box provided

Please write clearly with black ink.

Centre number: [] [] [] [] [] [] []
Candidate number: [] [] [] [] [] []

First name(s): __

Last name: __

Date of birth: [] [] [] [] [] [] []

INSTRUCTIONS
• Use black ink.
• Answer all the questions.
• Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
• Show your working out for each question. Marks are awarded for your correct working.
• Use the π button on your calculator or take π to be 3.14 unless the question says otherwise.

INFORMATION
• The total mark for this paper is 60.
• The marks for each question are shown in brackets [].
• This document consists of 20 pages.
Smartphone Security

1 Jane manages a mobile phone shop. She thinks her customers should use a password to protect their smartphone.
She carries out a survey of all her customers. Some results are shown in this table.

<table>
<thead>
<tr>
<th></th>
<th>Uses a password</th>
<th>Does not use a password</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged 20 and under</td>
<td>1547</td>
<td>981</td>
<td>2528</td>
</tr>
<tr>
<td>Aged over 20 years</td>
<td>663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>2210</td>
<td></td>
<td>4170</td>
</tr>
</tbody>
</table>

(a) Complete the table above. [2]

(b) A customer aged over 20 years is chosen at random.
What is the probability that this customer uses a password?
Give your answer as a percentage, correct to the nearest whole number.

...% [3]
Smartphone Screens

2 Jane wonders if the screen area and the cost of smartphones are connected. She draws this scatter diagram. It shows the screen area and cost of 15 popular smartphones.

What type of correlation is shown in the scatter diagram?

……..[1]

3 Screen displays are made up of small dots called pixels.

(a) A popular size of smartphone screen is 1080 pixels by 1920 pixels.

Simplify the ratio 1080 : 1920.

…………………………………….. : ……………………………[2]
(b) Which of these rectangles have side lengths in the ratio 1080 : 1920?

Show your working

[5]
Jane reads that some companies define \textit{screen size} as the length of the diagonal of the screen, in inches.

(a) The shaded rectangle is a scale drawing of a smartphone screen.

(i) Use the scale drawing to find the length of its diagonal in mm.

(ii) Find the \textit{screen size} in inches. Give your answer correct to 1 decimal place.

\begin{align*}
1 \text{ inch} & = 25.4 \text{ mm}. \\
\end{align*}
(b) Jane says that the **screen size** is directly proportional to the screen area. She collects this information.

<table>
<thead>
<tr>
<th>Screen size (inches)</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>7.0</th>
<th>8.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen area (square inches)</td>
<td>5.23</td>
<td>6.84</td>
<td>8.65</td>
<td>10.68</td>
<td>20.94</td>
<td>27.36</td>
<td>42.73</td>
</tr>
</tbody>
</table>

Is she correct? ……………………………………

Is she correct? ……………………………………

[3]
Choosing a Phone Deal

5 Kai wants the new GS2 smartphone. There are two options.

Option 1
24 month contract
Pay £28 per month and
a £25 one-off payment.

Option 2
Pay £10 per month for a SIM card and buy the GS2 for £375.

(a) Kai wants to know which is the cheaper option for 24 months.

Tick (✓) the cheaper option.

Show your working

Option 1
Option 2 [5]
(b) The GS2 smartphone in Option 2 is reduced from £375 to £335.

Calculate the percentage reduction in price.
Give your answer to the nearest whole number.

...%

[3]
Jane helps Kai to decide on the best SIM card deal. She needs to know how much he uses his current phone.

The table below shows the number of calls Kai makes and how long the calls are.

<table>
<thead>
<tr>
<th>Length of call (t minutes)</th>
<th>Number of calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < t \leq 10$</td>
<td>2</td>
</tr>
<tr>
<td>$10 < t \leq 20$</td>
<td>4</td>
</tr>
<tr>
<td>$20 < t \leq 30$</td>
<td>5</td>
</tr>
<tr>
<td>$30 < t \leq 40$</td>
<td>8</td>
</tr>
<tr>
<td>$40 < t \leq 50$</td>
<td>4</td>
</tr>
<tr>
<td>$50 < t \leq 60$</td>
<td>2</td>
</tr>
<tr>
<td>$60 < t \leq 70$</td>
<td>2</td>
</tr>
</tbody>
</table>

(a) Calculate an estimate of the mean length of calls Kai makes.

...minutes
(b) Kai needs to
• make about 100 calls a month
• send 300 texts a month
• use 5.5 GB of data a month.

The SIM card deals Kai can choose are shown in the table below.

Use this and your answer to part (a) to choose the cheapest SIM card deal for Kai.

<table>
<thead>
<tr>
<th>Deal</th>
<th>Data Limit (GB)</th>
<th>Call Limit (minutes)</th>
<th>Text Limit (number sent)</th>
<th>Monthly Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>£10.00</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1000</td>
<td>Unlimited</td>
<td>£16.50</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>600</td>
<td>Unlimited</td>
<td>£10.00</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>5000</td>
<td>Unlimited</td>
<td>£12.50</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>£20.00</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>800</td>
<td>Unlimited</td>
<td>£12.00</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>5000</td>
<td>5000</td>
<td>£15.00</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>5000</td>
<td>5000</td>
<td>£21.00</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>1000</td>
<td>Unlimited</td>
<td>£15.00</td>
</tr>
<tr>
<td>J</td>
<td>Unlimited</td>
<td>0</td>
<td>0</td>
<td>£25.00</td>
</tr>
</tbody>
</table>

[c] Kai reads that in a survey of 225 people, 198 owned smartphones.

What fraction of these people owned smartphones?

... [1]
Kai decides to buy a GS3X. He needs a loan of £400.

He will pay this back by the end of 3 months (90 days).
He investigates three loans.

Loan A
Three equal monthly repayments based on the table below.

<table>
<thead>
<tr>
<th>Loan amount (£)</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly repayment (£)</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

Loan B
At the end of 3 months (90 days), pay back £400 plus interest of 75p each day per £100 borrowed.

Loan C
At the end of 3 months, pay back £400 plus 10% per month compound interest.

Which is the **most expensive** loan?

Show your working

 Loan.......................... [8]

[Turn over]
Competition Ideas

8 Jane wants to get more customers into her shop by having competitions and prizes.

(a) One idea is to fill a large upturned cone with smartphones. Customers guess the value of smartphones in the cone. The nearest guess wins.

The cone will have a height of 0.5 m and radius of 1.5 m.

(i) Calculate the volume of the cone.

The volume of a cone is \(\frac{1}{3} \pi r^2 h \)

\[\text{Volume} = \frac{1}{3} \pi (1.5)^2 (0.5) \]

\[\text{Volume} = \frac{1}{3} \pi (2.25)(0.5) \]

\[\text{Volume} = \frac{1}{3} \pi (1.125) \]

\[\text{Volume} = \frac{1.125 \pi}{3} \]

\[\text{Volume} = 1.19 \text{ m}^3 \]

[2]
(ii) Jane wants to calculate an estimate of the value of the smartphones. She makes some assumptions about the smartphones.

- They are cuboid in shape measuring 15 cm by 7 cm by 1 cm
- They will completely fill the cone to the top with no empty space
- A smartphone is worth about £200.

Use your answer to part (a)(i) and Jane’s assumptions to calculate an estimate of the value of the smartphones in the cone. Give your answer to a sensible accuracy.

£
(b) Jane’s next competition is a speed texting contest.

(i) The world record texting speed is 1.47 words per second.
The winner in Jane’s contest texted 25 words in 35.54 seconds.

Jane says this is less than half the speed of the world record.

Is Jane correct?

Show how you decide

Is she correct?..
(ii) Jane wants to know
“How long it would take the world record speed texter to text this book.”

- The number of words on four pages of the book chosen at
 random are: 199 304 276 332
- The book has 318 pages.

Use the median number of words on a page and the information in part
(b)(i) to calculate an estimate to Jane’s question.

Give your answer to the nearest hour.
Give one reason why your answer might not be reliable.

[5]

End of Paper
OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2019
MARKING INSTRUCTIONS

PREPARATION FOR MARKING

Marking

1. Mark strictly to the mark scheme.

2. Marks awarded must relate directly to the marking criteria.

3. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or by email.

4. Work crossed out:
 a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
 b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.

5. Always check the pages (and additional lined pages if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add an annotation to confirm that the work has been seen.

Subject-Specific Marking Instructions

6. If the correct answer (detailed in the ‘Answer’ column) is clearly given then full marks should be awarded.

7. Figures or expressions that are being followed through will appear after the word their for clarity, e.g. 180 × (their ’37’ + 16), or 300 − \(\sqrt{\text{their } 5^2 + 7^2}\). Answers to part questions which are being followed through are indicated by e.g. 3 × their (a).

For questions with follow through available you must ensure that you refer back to the relevant previous answer.

8. The following abbreviations are commonly found in Functional Skills mark schemes and in script annotation. They should be followed when annotating scripts in order to clarify where and why credit has been given.
 - ft means follow through indicating when this has occurred.
 - bod means benefit of doubt situations indicating assessor judgement.
 - nfww means not from wrong working.
 - oe means or equivalent.
- **seen** means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- **soi** means **seen or implied**.

9. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction ‘mark final answer’.

10. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).

11. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says ‘mark final answer’.

 If the answer space is blank but the correct answer is seen in the body allow full marks.

 If the correct answer is seen in the working but a completely different answer is seen in the answer space, then the answer is incorrect. Use the guidance column to award any available marks for workings.

12. Ranges of answers given in the mark scheme are always inclusive.

13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.

14. Anything in the mark scheme which is in brackets (…) is not required for the mark to be earned, but if present it must be correct.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td></td>
<td>2</td>
<td>2 marks: all three cells correct OR 1 mark: only two cells correct</td>
<td>L2D26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uses a password</td>
<td>Does not use a password</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1547</td>
<td>981</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>953</td>
<td>979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2210</td>
<td>1960</td>
</tr>
<tr>
<td>(b)</td>
<td>40(%)</td>
<td>3</td>
<td>1 mark: their numerator or dividend from table (663) soi 1 mark: their denominator or divisor from table (1642) soi</td>
<td>L2D27</td>
</tr>
<tr>
<td>2</td>
<td>Positive [correlation]</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (a)</td>
<td>9:16</td>
<td>2</td>
<td>1 mark: any correct first stage simplification isw (e.g. 108:192) OR 1 mark: 16:9</td>
<td>L2N11</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
<td>Coverage</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| (b) | B and D supported by measurement and calculation (either a scale factor or by scaling) | 5 | Allow full follow through if candidates have clearly used ruler measurements (this should be apparent from units)
1 mark: evidence of 2 lengths from each of at least two rectangles (condone any attached units)
[A] 10 by 16 oe
[B] 9 by 16 oe
[C] 11 by 19 oe
[D] 18 by 32 oe
1 mark: attempt to simplify ratio of two sides in the same rectangle (not necessarily correct)
1 mark: [D] 1.8:3.2 = 9:16 or [B] 4.5: 8 = 9:16
________________ alternative method ______________________
(using a multiplier to test for similarity)
1 mark: 0.5625 (from 1080 ÷ 1920) or 1.77(77..) (from 1920 ÷ 1080) soi
1 mark: evidence of 2 measurements from each of at least two rectangles
[A] 10 by 16 oe
[B] 9 by 16 oe
[C] 11 by 19 oe
[D] 18 by 32 oe
1 mark: applying the multiplier to one rectangle and drawing the appropriate conclusion
1 mark: applying the multiplier to at least two other rectangles and drawing the appropriate conclusion
1 mark: identifying B and D, if it is shown that because of rounding no shapes are in the required ratio this mark may be awarded | L2N11 |
<p>| 4 (a) (i) | 72 (mm) | 2 | 1 mark: their 3.6 x 2 (or 20) correct | L2M18 |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)</td>
<td>2.8 (inches)</td>
<td>2</td>
<td>1 mark: their diagonal length (\div) 25.4</td>
<td>L2M14</td>
</tr>
<tr>
<td>(b)</td>
<td>Jane is wrong e.g. doubling diagonal length does not double the area (supported by an example) or via scale factor (supported by an example)</td>
<td>3</td>
<td>1 mark: selecting a pair e.g. 3.5 (inches) is 5.23 (square inches) 7 (inches) is 20.94 (square inches) 1 mark: 7 inches area should be double 3.5 inches oe alternative method ________________ (using a multiplier)</td>
<td>L2N11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>size/area</th>
<th>area</th>
<th>area/size</th>
<th>size/area</th>
<th>area/size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>5.23</td>
<td>1.49429</td>
<td>0.66922</td>
<td>0.66922</td>
</tr>
<tr>
<td>4</td>
<td>6.84</td>
<td>1.71</td>
<td>0.5848</td>
<td>0.5848</td>
</tr>
<tr>
<td>4.5</td>
<td>8.65</td>
<td>1.92222</td>
<td>0.52023</td>
<td>0.52023</td>
</tr>
<tr>
<td>5</td>
<td>10.68</td>
<td>2.136</td>
<td>0.46816</td>
<td>0.46816</td>
</tr>
<tr>
<td>7</td>
<td>20.94</td>
<td>2.99143</td>
<td>0.33429</td>
<td>0.33429</td>
</tr>
<tr>
<td>8</td>
<td>27.36</td>
<td>3.42</td>
<td>0.2924</td>
<td>0.2924</td>
</tr>
<tr>
<td>10</td>
<td>42.73</td>
<td>4.273</td>
<td>0.23403</td>
<td>0.23403</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>size</th>
<th>area</th>
<th>size</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>5.23</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>6.84</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>4.5</td>
<td>8.65</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>10.68</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>7</td>
<td>20.94</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>27.36</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>42.73</td>
<td>4.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>

1 mark: response based on their application (i.e. calculations) of either methods above
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| 5 (a) | Option 1: (£)697
Option 2: (£)615
Tick Option 2 | 5 | 1 mark: $24 \times 28 + 25$ soi
1 mark: (£)697
1 mark: $24 \times 10 + 375$ soi
1 mark: (£)615
1 mark: correct comparison based on *their* figures | L2N2 (2)
L2M13 (2)
L2N2 (1) |
| (b) | 11% | 3 | 1 mark: $375 - 335 = 40$ soi
1 mark: *their* $40 \div 375$ soi | L2N6 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| 6 (a) | Mean time for phone call is 33 or 34 or 33.6 ... or 33.1 ... (minutes) | 5 | 1 mark: mid-range used (condone either – see below)
1 mark: at least two correct *their* mid-range × frequency calculated *soi*
1 mark: correct total number of calls (27) *soi*
1 mark: *their* total ÷ *their* total number of calls | L2D24 |
| | ![Mid-range table] | | Condone both "mid-ranges" | |
| (b) | Cheapest SIM card deal fitting all 3 of *their* figures (call time, texts and data used) | 3 | 1 mark: *their* answer to part (a) × 100 (minutes)
1 mark: selection of deal fitting just two of *their* conditions | L2N1 (2) L2N2 (1) |
| (c) | \[
<p>| | [\frac{198}{225} = \frac{22}{25}] | 1 | | L2N8 |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| 7 | Loan A: interest (£)200 or total payback (£)600

 Loan B: interest (£)270 or total payback (£)670

 Loan C: interest (£)132.40 or total payback (£)532.40 | 8 | 1 mark: \(200 \times 3 = £600\)
1 mark: \(4 \times 75 (= 300)\) or \(4 \times 0.75 (= 3)\) soi
1 mark: correct answer (£)270 or (£)670 | L2M13 |
| 8 (a) (i) | 1.1775 to 1.178 ... (m³) | 2 | 1 mark: \(\frac{1}{3} \times \pi \times 1.5^2 \times 0.5\) soi
Accept an answer \(3\pi/8\)
(for range in value used for \(\pi\)) | L2M17 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| (ii) | Volume of smartphone = 0.000105 (m3)
Number of smartphones = 11214 to 11220
Value = £(2 242 800 to 2 243 800) rounded to 2, 3 or 4 s.f. | 5 | 1 mark: $15 \times 7 \times 1$ soi
1 mark: 0.000105 (m3)
1 mark: *their* 1.1775 to 1.178 ... ÷ *their* 0.000105
1 mark: 11214 to 11219
1 mark: *their* (11214 to 11219) × 200
= £(2 242 800 to 2 243 800)
= in above range rounded to 2, 3 or 4 s.f.
Allow appropriate sensible rounding at any point
Allow alternative approach using suitable units | L2N2 (3)
L2M14 (2) |
| b (i) | Winning speed was 0.703 (wps)
Double this is 1.406
Jane is correct. | 3 | 1 mark: $20.7 \div 25$ soi | L2M15 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| (ii) | 17 [hours] (with appropriate working) together with a valid reason as to why this figure may not be reliable | 5 | 1 mark: Median number of words per page
\[
(276 + 304)/2 = 290
\]
1 mark: their \((290) \times 318 \div 1.47\) (soi)
(correct = 62734.6...)
1 mark: their above answer \(\div 3600\) (hours)
(correct = 17.42 ...)
1 mark: their answer rounded to nearest hour
(correct = 17 hours)
1 mark: any valid reason for why this time may not be reliable such as the winner could not possibly text continuously for their 17 hours oe Jane might have chosen unrepresentative pages or 4 not a fair sample size oe

Allow sensible rounding at any point | L2N2 (3) L2M15 (1) L2D23 (1) |

Total marks 60