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1 A “rugby sevens” team has to be chosen from 9 rugby players. The players have differing physiques and 
skills, which fit them for different positions, as shown in the table.

player A B C D E F G H I

1 – tight head prop 3 3 3

2 – hooker 3 3

3 – loose head prop 3 3 3

4 – scrum half 3 3 3

5 – fly half 3 3

6 – centre 3 3 3 3

7 – wing 3 3

 (i) Represent this information in a bipartite graph. [2]

 The team manager starts to pick a team by choosing A to be tight head prop, B to be loose head prop, C to be 
wing, G to be scrum half and H to be centre.

 (ii) Show this incomplete matching as a bipartite graph, and apply the matching algorithm to produce a 
complete matching. [7]

 The team manager holds training sessions during which he assesses each player on a scale from 1 to 5 for 
each potential position, with 5 being the top score and 1 the lowest score. These scores are shown below.

player A B C D E F G H I

1 – tight head prop 4 4 3

2 – hooker 3 2

3 – loose head prop 4 4 3

4 – scrum half 5 4 4

5 – fly half 5 4

6 – centre 5 4 3 5

7 – wing 5 4

 (iii) Formulate as a linear programming problem the problem of choosing the best team. [5]

 (iv) Run your LP and interpret the solution. [4]
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2 A mathematical model of an epidemic has the following features:

 A Individuals are either susceptible, infective or recovered.

 B A susceptible individual can be infected when in contact with an infective individual. The susceptible 
then becomes an infective.

 C Infectives can recover. Recovered individuals are no longer infective or susceptible.

 A simulation follows the following additional rules:

 D In any hour at most one susceptible individual can become infective, and at most one infective 
individual can recover.

 E The probability of an infection taking place during an hour is m × the number of susceptible individuals 
at the beginning of the hour × the number of infective individuals at the beginning of the hour, where m 
is a constant.

 F The probability of a recovery taking place during an hour is b × the number of infective individuals at 
the beginning of the hour, where b is a constant.

 Let the number of infective individuals at time t (hours) be f (t) and the number of susceptible individuals 
at time t (hours) be s(t). So, in the simulation, if a random number between 0 and 1 is less than m×f (t)×s(t), 
then there is a new infection in the hour beginning at time t hours.

 The number of recovered individuals is modelled in a similar way, but following the rule given in F.

 Ten people share a hut in a remote area, cut off by bad weather. Two are infective and the other eight are 
susceptible.

 (i) Build an Excel simulation model for the hour-by-hour progress of the epidemic, allowing the input of 
specific values for m and b. [8]

 (ii) Run your simulation with m = 0.04 and b = 0.2 until f (t) = 0, noting the time at which this happens and 
the value of s(t) at that time. [2]

 (iii) Repeat part (ii) 19 more times. Summarise and interpret your 20 results. [5]

 (iv) Compare and contrast what happens if a medicine is available which reduces m to 0.01 and increases b 
to 0.3. [2]

 (v) Describe how to improve the simulation so that it more closely approximates to reality. [1]
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3 Soil temperatures are measured at 10 cm beneath the surface at a number of locations at an agricultural 
research institute. It is suggested that the daily mean soil temperature across these sites can be modelled by a 
recurrence relation of the form Tn = aTn−1 + bTn−2 + c, where Tn is the mean soil temperature at the institute 
on day n.

 (i) Solve the recurrence relation in the case a = 0.8, b = 0.2 and c = 0, i.e. find an expression in terms of n 
which will give the value of Tn. Start with T1 = 7 and T2 = 8. [8]

 (ii) Construct a spreadsheet to show that your formula is correct for the first 20 terms. [3]

 (iii) Give the exact value to which the model temperature converges. [1]

 The “c” term allows for a daily increase in soil temperature if the weather is warm, and a daily decrease if 
the weather is cold.

 (iv) Use your spreadsheet from part (ii) with a = 0.8 and b = 0.2, to investigate what happens to the 
modelled soil temperature if c is constant at a value of 0.1 over a period of 20 days. Describe what 
happens to the temperature differences. [2]

 (v) Adapt your answer to part (i) to give a formula in terms of n which will give the value of Tn when 
c = 0.1 and when n is greater than 15, correct to the accuracy of your spreadsheet. [1]

 (vi) Find values of a, b, and c which lead to modelled values which are close to the following observed 
values: [3]

n 1 2 3 4 5 6 7 8 9 10

Tn 7 8 7.8 8.08 8.17 8.33 8.47 8.61 8.75 8.90

n 11 12 13 14 15 16 17 18 19 20

Tn 9.04 9.18 9.33 9.47 9.61 9.76 9.90 10.04 10.18 10.33
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4 A water supply network is shown in the diagram. The arcs represent pipes and the weights on the arcs 
represent pipe capacities. The pipe connecting C and F is undirected.
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 Pumps at A and D deliver water into the network. Pump A has capacity 40 and pump D has capacity 40.
 Water is extracted at B and E. B has a demand of 50 and E has a demand of 30.

 (i) Add a super source and a super sink with associated arcs to model this situation. [2]

 (ii) Find a set of feasible flows which give a total flow of 70 through the network, and prove that this is a 
maximal flow. Say which demand cannot be satisfied. [3]

 (iii) Construct a linear program to model flows through the network. [5]

 (iv) Run your program, interpret your results, and check that the maximal total flow is as per your answer 
to part (ii).  [3]

 (v) Change your program to model the effect of decreasing the demand at B to 30 and increasing the 
demand at E to 50, and report on the result. [2]

 New pumps are installed at A and D, each with capacity 50. Demands at B and E are now each 50.

 (vi) Give 3 separate modifications to individual pipes, any one of which will allow the demands to be met. 
In each case give a set of feasible flows which satisfy the demands. [3]

END OF QUESTION PAPER
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