GCE
Chemistry A

Unit H432/03: Unified chemistry

Advanced GCE

Mark Scheme for June 2018
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018
Annotations available in RM Assessor

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅</td>
<td>Correct response</td>
</tr>
<tr>
<td>✗</td>
<td>Incorrect response</td>
</tr>
<tr>
<td>▲</td>
<td>Omission mark</td>
</tr>
<tr>
<td>BOD</td>
<td>Benefit of doubt given</td>
</tr>
<tr>
<td>CON</td>
<td>Contradiction</td>
</tr>
<tr>
<td>RE</td>
<td>Rounding error</td>
</tr>
<tr>
<td>SF</td>
<td>Error in number of significant figures</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>11</td>
<td>Level 1</td>
</tr>
<tr>
<td>12</td>
<td>Level 2</td>
</tr>
<tr>
<td>13</td>
<td>Level 3</td>
</tr>
<tr>
<td>NBOD</td>
<td>Benefit of doubt not given</td>
</tr>
<tr>
<td>SEEN</td>
<td>Noted but no credit given</td>
</tr>
<tr>
<td>I</td>
<td>Ignore</td>
</tr>
<tr>
<td>BP</td>
<td>Blank page</td>
</tr>
</tbody>
</table>
Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT ALLOW</td>
<td>Answers which are not worthy of credit</td>
</tr>
<tr>
<td>IGNORE</td>
<td>Statements which are irrelevant</td>
</tr>
<tr>
<td>ALLOW</td>
<td>Answers that can be accepted</td>
</tr>
<tr>
<td>()</td>
<td>Words which are not essential to gain credit</td>
</tr>
<tr>
<td>BOLD</td>
<td>Emboldened words must be present in answer to score a mark</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>AW</td>
<td>Alternative wording</td>
</tr>
<tr>
<td>ORA</td>
<td>Or reverse argument</td>
</tr>
</tbody>
</table>
Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a) (i)</td>
<td>Hydrogen/H ✓</td>
<td>1</td>
<td>ALLOW H₂</td>
</tr>
<tr>
<td>1 (a) (ii)</td>
<td>Helium/He ✓</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 (a) (iii)</td>
<td>Magnesium/Mg ✓</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 (a) (iv)</td>
<td>Sulfur/S ✓</td>
<td>1</td>
<td>ALLOW sulphur; S₈</td>
</tr>
<tr>
<td>1 (a) (v)</td>
<td>Chlorine/C OR fluorine/F ✓</td>
<td>1</td>
<td>ALLOW Cl₂ OR F₂</td>
</tr>
<tr>
<td>1 (a) (vi)</td>
<td>Phosphorus/P ✓</td>
<td>1</td>
<td>ALLOW P₄</td>
</tr>
<tr>
<td>1 (a) (vii)</td>
<td>Carbon/C ✓</td>
<td>1</td>
<td>ALLOW silicon/Si</td>
</tr>
<tr>
<td>1 (a) (viii)</td>
<td>Oxygen/O ✓</td>
<td>1</td>
<td>ALLOW O₂</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| (b) | **NaCl/ OR MgCl₂**
Giant ionic OR ionic lattice ✓
Ions are mobile in liquid state ✓ | 2 marks | 5
IGNORE aqueous/dissolved ions are mobile
IGNORE ‘free ions’ AND ‘ions are free to carry current’
ALLOW ‘are molecules’
IGNORE
• permanent dipole(–dipole) forces
• IDID and LDF
• van der Waals
ALLOW attraction between ions for ionic bonds
ALLOW intermolecular forces for London forces
ALLOW overcome for break
ALLOW indirect comparison, i.e.
• Ionic bonds are strong AND London forces are weak
OR
• Ionic bonds need a large amount of energy to break AND London forces need little energy to break | |
| **SiCl₄ OR PCl₃ OR SC₃**
(Simple) molecular OR simple covalent (lattice) ✓
Induced dipole(–dipole) forces/interactions
OR London forces ✓ | 2 marks |
ALLOW
comparison of bond strengths
1 mark
• Ionic bonds are stronger than London forces
OR
• Ionic bonds need more energy to break than London forces ✓ | |
<p>| Comparison of bond strengths | 1 mark | | |
| Total | 13 | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 2 (a) | **Graph**
Graph of volume (y axis) against time (x axis)
AND Axes labelled with correct units
AND At least half graph paper in both directions
AND Linear scales ✓
Points
7 points from 200–1400 s plotted ✓
Point at 0,0 not required
Line
Curve drawn through origin (0,0) ✓
AND
Curve not drawn with straight lines between points.
Rate
Attempted tangent on graph drawn to curve at

\[t = 500 \pm 100 \text{ s} \ ✓ \]

Rate calculated in range 0.037–0.047 (cm³ s⁻¹) ✓
e.g. for graph in guidance: \[\frac{50 - 11}{920 - 0} = 0.042 \]

For tangents not drawn at 500 ± 100 s,
• ALLOW ECF ONLY for a tangent drawn to the candidate’s line.
• Then calculate the gradient from candidate’s tangent.

For inverse graphs of time against volume,
• Graph mark will not be scored.
• All other marks are available.
• **BUT** rate = 1/ gradient = 0.037–0.047 (cm³ s⁻¹)

ALLOW V OR Vol for volume
ALLOW t for time
For ‘s’, ALLOW sec, seconds, etc

CARE:
Use of x and y coordinates at \(t = 500 \text{ s} \) scores zero,
e.g. For volume = 33 cm³ and time = 500 s,
\[x \text{ and } y \text{ coordinates gives } \frac{33}{500} = 0.066 \]
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)</td>
<td>FIRST CHECK THE ANSWER ON ANSWER LINE
If answer = 0.092 (mol dm(^{-3})) award 3 marks
---</td>
<td>3</td>
<td>ALLOW ECF throughout
ALLOW 2 SF up to calculator value of 2.291666667 (\times 10^{-3})
ALLOW calculation using ideal gas equation provided that (p = \sim 10^5) Pa and (T) in range 293–298 K.
ALLOW use of 8.31 for (R) (gives same answer)
e.g. (n(O_2) = \frac{1 \times 10^5 \times 55 \times 10^{-6}}{8.314 \times 298} = 2.22 \times 10^{-3}) (mol) ✓
(n(H_2O_2) = 2.22 \times 10^{-3} \times 2 = 4.44 \times 10^{-3}) (mol) ✓
([H_2O_2] = \frac{4.44 \times 10^{-3} \times 1000}{50.0} = 0.089) (mol dm(^{-3})) ✓
(2 SF)
NOTE: 293 K gives 0.090 (mol dm(^{-3}))</td>
</tr>
<tr>
<td>(b)</td>
<td>(2\text{MnO}_4^- + 5\text{H}_2\text{O}_2 + 6\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O} + 5\text{O}_2)</td>
<td>2</td>
<td>ALLOW multiples
ALLOW ⇌ instead of (\rightarrow) sign
ALLOW 1 mark for final equation with correct balancing numbers AND ONE small slip in a formula OR charge
IGNORE annotations around equations, i.e. treat as rough working
ALLOW 1 mark for: (2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2) ((\text{H}_2\text{O}_2) is acting as both reducing and oxidising agent)
Correctly balanced equation for (\text{MnO}_4^-/\text{H}_2\text{O}_2) reaction but no cancelling of (\text{H}^+) and/or (e^-) ✓
Overall equation correct with all species cancelled ✓</td>
</tr>
</tbody>
</table>
Question 2c

(i) Equation

- **Equation**

 \[
 \text{[Co(H}_2\text{O)}_6]^{2+} + 4\text{Cl}^{-} \rightleftharpoons [\text{CoCl}_4]^{2-} + 6\text{H}_2\text{O}
 \]

 \[\text{OR} \quad \text{[Co(H}_2\text{O)}_6]^{2+} + 4\text{HCl} \rightleftharpoons [\text{CoCl}_4]^{2-} + 6\text{H}_2\text{O} + 4\text{H}^+ \checkmark \]

 Guidance

 ALLOW reverse equation:

 \[\text{[CoCl}_4]^{2-} + 6\text{H}_2\text{O} \rightleftharpoons [\text{Co(H}_2\text{O)}_6]^{2+} + 4\text{Cl}^{-}\]

 but take care for subsequent explanations

 IGNORE state symbols (even if wrong)

 For \([\text{CoCl}_4]^{2-}\), ALLOW \(\text{CoCl}_4^{2-}\), \((\text{CoCl}_4)^{2-}\)

 For other representations, contact TL

 Marks 1

(ii) Equilibrium shift

- **Equilibrium shift**

 - equilibrium (shifts) **to right** at high **temperature**/100°C

 OR equilibrium shifts to left at low temperature/0°C √

 CARE: Direction of shift depends on direction of equilibrium equation from 2c(i). Either look back or see the equation copied at bottom of 2c(ii) marking zone.

 Guidance

 Mark independently

 ALLOW suitable alternatives for ‘to right’ e.g. towards products OR in forward direction OR ‘favours the right’ ORA for ‘to left’

 Temperature required but

 ALLOW ‘in ice for low temperature

 OR ‘in boiling/hot water’ for high temperature

 IGNORE shift to blue side or pink side

 Marks 2

Total

13
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 3 (a) | Overall 3– charge shown (outside brackets) for at least **ONE** isomer ✓
3– must apply to the overall charge of structures
1 mark for each isomer ✓ ✓
- *Bonds must go to O ligand atoms on EACH structure*
- **ALLOW** unambiguous structures; ethanedioate ions can include C atoms
For other structures that might be creditworthy, contact TL | 3 | **ALLOW** –3 for 3–
IGNORE charges or dipoles on atoms within diagrams (even if wrong)
Square brackets **NOT** required

3D
Must contain 2 ‘out wedges’, 2 ‘in wedges’ and 2 lines in plane of paper OR 4 lines, 1 ‘out wedge’ and 1 ‘in wedge’:
For bond into paper, **ALLOW**:
ALLOW following geometry throughout:
NOT ALLOW structures showing a simplified loop for ethanedioate ligands
e.g. |
| (b) (i) | Colourless to yellow ✓ | 1 | **IGNORE** clear for colourless

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) (ii)</td>
<td>Mean titre 1 mark
$\frac{(23.15 + 23.25)}{2} = 23.2(0) \text{ cm}^3$ ✓</td>
<td>6</td>
<td>Common error:
Incorrect mean from all 3 titres = 23.30 cm3
Use ECF throughout
Intermediate values for working to at least 3 SF.
TAKE CARE as value written down may be truncated value stored in calculator. Depending on rounding, either can be credited.

COMMON ERRORS:
Mean of 23.30 (use of all 3 titres)
→ 0.634%: 5 marks
TAKE CARE for final answer of 0.63 seen.
• No final mark as only 2 SF
• 0.63 may have been rounded from 0.631 (from correct mean)
OR from 0.634 (using mean from all 3 titres)
Check back to mean titre.
No ÷2 to obtain $n((\text{COOH})_2)$
→ 1.26%: 5 marks from 23.20
→ 1.27%: 4 marks from 23.30</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 4(a)(i) | +2 | 1 | ALLOW 2+ OR +II
ALLOW Pt\(^{2+}\)
ALLOW Pt–Cl bond
Curly arrow from lone pair on NH\(_3\) to Pt ✓
Curly arrow from any Pt–Cl bond in the complex ✓ |
| 4(a)(ii) | | 2 | For [PtCl\(_3\)(NH\(_3\))]\(^{-}\):
• IGNORE dipoles
• IGNORE absence of – charge
• IGNORE – charge shown on atoms
ALLOW any 4 coordinate shape for [PtCl\(_3\)(NH\(_3\))]\(^{-}\),
e.g. tetrahedral; ——Pt——
1st curly arrow must
• go to Pt
AND
start from, OR be traced back to any point across width of lone pair on N of NH\(_3\)
2nd curly arrow must start from, OR be traced back to, any part of Pt–Cl bond and go to one of the 3 Cl atoms |

Mark curly arrows as above for S\(_{N1}\) mechanism:
Mark curvy arrows as above for S\(_{N2}\)
Requires + on platinum intermediate
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) (i)</td>
<td>Phenol ✓
Amide ✓
• IGNORE attempt to classify amide, e.g. secondary</td>
<td>2</td>
<td>IF > 2 functional groups are shown,
• Mark 2 groups ONLY
• Mark incorrect groups first
Treat carbonyl with aldehyde OR with ketone as one functional group, i.e.
• carbonyl, aldehyde
• carbonyl, ketone
• carbonyl
IGNORE aryl OR alkyl group
• e.g. benzene, phenyl, aryl, arene, methyl
IGNORE hydroxyl/hydroxy</td>
</tr>
<tr>
<td>(b) (ii)*</td>
<td>Refer to marking instructions on page 5 of mark scheme for guidance on marking this question.</td>
<td>6</td>
<td>Indicative scientific points may include:
Calculation of mass of 4-nitrophenol
Using moles
• (n(\text{paracetamol}) = \frac{5.00}{151} = 0.0331) (mol)
• (n(4\text{-nitrophenol}) = \frac{0.0331 \times 100}{40} = 0.0828) (mol)
• Mass of 4-nitrophenol = 139 (\times) 0.0828 = 11.5 g
ALLOW 11.4–11.6 for small slip/rounding
Using mass
• Theoretical mass paracetamol = (5.00 \times \frac{100}{40} = 12.5) g
• Theoretical (n(4\text{-nitrophenol}) = \frac{12.5}{151} = 0.0828) (mol)
• Mass of 4-nitrophenol = 139 (\times) 0.0828 = 11.5 g
NOTE: Incorrect inverse ratio of (\frac{100}{40}) gives:</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| | Suggests reagents and intermediate with some omissions **AND** describes some purification steps, with some detail. | | - $0.0331 \times \frac{40}{100} = 0.0132$ (mol)
- Mass $= 139 \times 0.0132 = 1.84$ g |
| | **There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.** | | **Reagents and intermediate** |
| | **Level 1 (1-2 marks)** | Attempts to calculate the mass of 4-nitrophenol | • Reagents: Sn + (conc) HCl (then NaOH)
• Intermediate: 4-aminophenol or structure |
| | OR Suggests reagents OR intermediate but may be incomplete | OR Describes few purification steps. | **Purification** |
| | OR Describes few purification steps. | | • Dissolve impure solid in **minimum volume of** hot solvent
• **Cool** solution and filter solid
• **Scratch with glass rod**
• Wash with cold solvent/solvent and dry |
<p>| | There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. | | Examples of detail in bold (NOT INCLUSIVE) |
| | 0 marks No response or no response worthy of credit. | | NOTE: ‘Recrystallisation’ on its own is NOT a detailed description |
| | | | Total 11 |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (a)</td>
<td>TAKE CARE: Correct final answer of –52.3 OR –52.25 can be obtained from two cancelling errors:
• Use of 50 for energy released (no ×2 of 50 for two solutions mixed)
• No ÷ 2 in final step
–52.3 OR –52.25 would then be awarded 2 marks out of 4</td>
<td>4</td>
<td>ALLOW ECF throughout</td>
</tr>
</tbody>
</table>
| | **Correctly calculates \(n(\text{succinic acid}) \)**
\[
\begin{align*}
0.400 \times \frac{50.0}{1000} &= 0.02(00) \text{ (mol)} \checkmark
\end{align*}
\] | | |
| | **Energy released in J OR kJ**
\[
\begin{align*}
100.00 \times 4.18 \times 5.0 &= 2090 \text{ (J)} \checkmark
\end{align*}
\] | | **DO NOT ALLOW less than 3 SF**
IGNORE units |
| | **Energy released, in kJ or J, for formation of 2 mol \(\text{H}_2\text{O} \)**
\[
\begin{align*}
\pm \frac{2090}{0.0200} &= \pm 104500 \text{ (J)}
\end{align*}
\] | | |
| | **\(\Delta_{\text{neut}}H \) to 3 or more SF AND correct – sign**
\[
\begin{align*}
\Delta_{\text{neut}}H &= \frac{-104.5}{2} = -52.3 \text{ OR } -52.25 \text{ kJ mol}^{-1} \checkmark
\end{align*}
\] | | |
| 5 (b) (i) | **Titration** \(\checkmark \) | 1 | **IGNORE type of titration** |
| 5 (b) (ii) | (\(\text{CH}_2\text{COOH} \))\(_2 + 2\text{C}_2\text{H}_5\text{OH} \rightleftharpoons (\text{CH}_2\text{COOC}_2\text{H}_5)_2 + 2\text{H}_2\text{O} \checkmark \) | 1 | **ALLOW \(\rightarrow \) instead of \(\Rightarrow \) sign**

ALLOW molecular formulae or hybrid formulae

Structures provided on QP

\(\text{e.g. } \text{C}_4\text{H}_6\text{O}_4 + 2\text{C}_2\text{H}_5\text{O} \rightleftharpoons \text{C}_8\text{H}_{14}\text{O}_4 + 2\text{H}_2\text{O} \)
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iii)</td>
<td> ✓</td>
<td>1</td>
<td>IGNORE displayed formulae</td>
</tr>
<tr>
<td>(iv)</td>
<td>Volume cancels OR Same number of moles on each side of equation ✓</td>
<td>1</td>
<td>ALLOW units cancel OR same number of (moles of) reactants and products IGNORE volume is the same; K_c has no units</td>
</tr>
</tbody>
</table>
| (v) | **Moles of equilibrium products** 1 mark
$n((\text{CH}_2\text{COOC}_2\text{H}_5)_2) = 0.0300 \text{ (mol)}$ AND
n$(\text{H}_2\text{O}) = 0.0600 \text{ (mol)}$ ✓
Moles of C$_2$H$_5$OH 1 mark
n$(\text{C}_2\text{H}_5\text{OH}) = 0.150 - 0.060 = 0.0900 \text{ (mol)}$ ✓
K_c calculated 1 mark
$$
\begin{align*}
K_c & = \frac{0.03 \times 0.06^2}{0.02 \times 0.09^2} = 0.667 \text{ OR } 0.67 \checkmark \\
\text{NOTE: } 0.02 \text{ must be used for } n(\text{succinic acid})
\end{align*}
$$
| 3 | **ALLOW ECF**
ALLOW 0.66, 0.666, etc. (2 SF and more)
Treated as meaning 0.6 recurring
ALLOW 2/3
IGNORE any units |

Total 11
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 6 (a) (i) | 3-hydroxybutanal ✓ | 1 | ALLOW 3-hydroxybutan-1-al
| | | | IGNORE lack of hyphens or addition of commas
| | | | ALLOW 4-oxobutan-2-ol OR 1-oxobutan-3-ol
| | | | DO NOT ALLOW
| | | | • 3-hydroxybutal
| | | | • 3-hydroxybutanal
| (ii) | Addition ✓ | 1 | IGNORE nucleophilic OR electrophilic OR radical
| | | | DO NOT ALLOW addition–elimination, condensation, polymerisation
| (iii) | ALLOW any formula provided that number and type of atoms and charge are correct, e.g. For CH$_3$CHO, ALLOW CH$_3$COH, C$_2$H$_4$O, etc. | 3 | Throughout, IGNORE 'connectivity in any formula or structures shown. Examples in Answer column and in 6a(iv) guidance below

Step 1:
- Correct equation ✓
- One correct acid–base pair ✓
 i.e. A1 and B1 OR A2 and B2
| | | | | CH$_3$CHO + OH$^-$ ⇌ CH$_2$CHO + H$_2$O
| | | | OR | CH$_3$CHO + OH$^-$ ⇌ CH$_3$CO$^-$ + H$_2$O
| | | | A1 | B2 | B1 | A2
| | | | OR | A2 | B1 | B2 | A1

Step 2:
CH$_3$CHO + CH$_2$CHO + H$_2$O →
CH$_3$CHOHCH$_2$CHO + OH$^-$ ✓

Step 1: ALLOW H$^+$ transfer from OH$^-$,
 i.e.
| | | | | CH$_3$CHO + OH$^-$ ⇌ CH$_3$CH$_2$O$^+$ + O$^{2-}$ ✓
| | | | B2 | A1 | A2 | B1 ✓
| | | | OR | B1 | A2 | A1 | B2

Step 2:
CH$_3$CHO + CH$_3$CH$_2$O$^+$ + O$^{2-}$ →
CH$_3$CHOHCH$_2$CHO + OH$^-$ ✓
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| For $^\text{CH}_2\text{CHO}$: **ALLOW** CH_2CHO; CH_3CO; $\text{C}_2\text{H}_5\text{O}$
For $\text{CH}_3\text{CHOHCH}_2\text{CHO}$, **ALLOW** $\text{C}_4\text{H}_8\text{O}_2$

| (iv) | [Diagram of molecule] | 1 | **ALLOW** correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
For connectivity,
ALLOW $| \quad | \quad \text{CH}_3– \quad \text{C}_3\text{H}– \quad \text{OH}–$

| (b) | Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. | 6 | Indicative scientific points may include:
Explanation of role of electrophiles in organic chemistry

Reaction of aliphatic compound and mechanism
- Suitable reaction, e.g. ethene and Br_2
 May be shown within mechanism
- Mechanism, e.g.

Reaction of aromatic compound and mechanism
- Suitable reaction, e.g. benzene + Cl_2; HNO_3
 May be shown within mechanism
- Mechanism, e.g.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 (1–2 marks)</td>
<td>Selects suitable reagents for electrophilic reactions of one aliphatic AND one aromatic compound. OR Attempts to describe an electrophilic reaction and mechanism of one aliphatic OR one aromatic compound, with omissions/errors. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</td>
<td>0 marks</td>
<td>No response or no response worthy of credit.</td>
</tr>
</tbody>
</table>
| **Total** | | 12 | Examples of a detailed description (NOT INCLUSIVE)
 - Electrophile as electron pair acceptor
 - Types and names of mechanisms
 - Equations for generation of electrophile and regeneration of catalyst
 - Accurately positioned and directed curly arrows and charges/ dipoles included
 - Explanation of major and minor product from electrophilic addition |
OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.