Oxford Cambridge and RSA

GCE

Physics B

Unit H557A/01: Fundamentals of physics
Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

LoR annotations required

A level annotation should be used where all marks for a level have been achieved e.g. a candidate has 6 marks, so they would have this annotation on their script:

If a candidate has achieved 5 marks then they have reached Level 3 but with one mark omitted. They should have the following annotations on their scripts:
\qquad
\qquad
The same principle should be applied to Level 2 and Level 1.
No marks (0) should have a cross.

Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.

Award No Response (NR) if:

- there is nothing written in the answer space

Award Zero '0' if:

- anything is written in the answer space and is not worthy of credit (this includes text and symbols).

Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this when reviewing scripts.

The scoris comments box is used by your team leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.
If you have any questions or comments for your team leader, use the phone, the scoris messaging system, or e-mail.
Assistant Examiners will send a brief report on the performance of candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the RM Cambridge Assessment Support Portal (and for traditional marking it is in the Instructions for Examiners). Your report should contain notes on particular strength displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ES	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\boldsymbol{A}	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\boldsymbol{S}	Correct response
AE	Arithmetic error
\boldsymbol{S}	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument
(1)m	a method mark, awarded if a correct method is used
(1)e	

Section A: MCQs

Question		Answer	Marks	Guidance
1		D	1	
2		A	1	
3		D	1	
4		C	1	
5		B	1	
6		B	1	
7		A	1	
8		A	1	
9		A	1	
10		A	1	
11		C	1	
12		B	1	
13		D	1	
14		A	1	
15		C	1	
16		B	1	
17		B	1	
18		A	1	
19		B	1	
20		C	1	
21		C	1	
22		D	1	
23		D	1	
24		B	1	
25		C	1	
26		B	1	
27		D	1	
28		A	1	
29		C	1	
30		C	1	
		Total	30	

Section B

Question		Answer		Marks	Guidance
31	(a)	$\begin{aligned} & (\text { power }=1 / f)=1 / v-1 / u \\ & =1 / 1.5-1 /-0.03 \\ & =34(\mathrm{D}) \end{aligned}$	\checkmark \checkmark \checkmark \checkmark	L M M	rearrangement accept real is + sign convention i.e. all signs positive substitution with correct sign / all + ve signs evaluation not -32.7 (D) / 32.7 (D) / -34 (D)
31	(b)	$(M=v / u=1.5 / 0.03)=50$	\checkmark	L	accept -50
		Total		4	

Question		Answer	Marks	Guidance
32	(a)	$\begin{aligned} & \text { time }=\text { file size } / \text { rate } O R=1.2 \times 10^{9} \times 8 / 24 \times 10^{6} \\ & =400 \mathrm{~s}>360 \mathrm{~s} \quad \text { OR } 400 \mathrm{~s}>6 \mathrm{~min} \quad \text { OR } 6.7 \mathrm{~min} \\ & \text { OR } 6 \mathrm{~min} 40 \mathrm{~s} \end{aligned}$	L L	method in words / numbers accept 8 bits per byte missed accept calculation in bytes and bytes/s evaluation must compare answers in secs to 6 minutes accept 6.6 s with / without recurring sign accept 6.8 s from using computer $\mathrm{k}=1024$
32	(b)	$8 \text { (kHz) }$ because there must be at least 2 samples per cycle (to pick up any variation)	M M	accept labelled diagrams showing waveform being sampled twice per wave / to avoid aliasing not because of Nyquist theorem / sampling f must be twice highest signal f/due to information loss
		Total	4	

Question		Answer	Marks	Guidance	
$\mathbf{3 3}$	(a)	210 84 \checkmark		L L	
$\mathbf{3 3}$	(b)		to conserve lepton number	\checkmark	

Question		Answer		Marks	Guidance
34	(a)	$\begin{aligned} & I=\Sigma \varepsilon / \Sigma R=\{12-9.0\} /\{17.7\} \\ & =0.17 \text { (A) OR } 0.169 \text { (A) } \end{aligned}$		$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{M} \end{aligned}$	allow first mark for recognition that 3 V drives the current OR for total resistance $=17.7 \Omega$
34	(b)	$\begin{aligned} & t=Q / I=0.50 \times 3600 / 0.12 \\ & =1.5 \times 10^{4} \mathrm{~s}=4.2 \text { (hours) } \end{aligned}$		L L	beware $500 \times 10^{-3} / 0.12=4.17$ is nonsense (ratio of two currents) so 0/2 marks accept 4.17 (hours) from correct method
		Total		4	

Question		Answer	Marks	Guidance
35	(a)	electron forms a standing wave of integer numbers of $\lambda / 2$ loops λ determines ($m v$ and hence kinetic) energy	M M	accept λ is quantised in $\lambda / 2$ loops of standing wave ignore mention of harmonics accept k.e. $=h^{2} / 2 m \lambda^{2}$ not $E=h c / \lambda$
35	(b)	three $\quad \checkmark$	L	
35	(c)	max photon energy $\Delta E=E_{3}-E_{1}$ $\left.h^{2} /\left\{2 m[2 d / 3]^{2}\right]\right\}-h^{2} /\left\{2 m[2 d]^{2}\right\}=h f \text { OR } 4.8 \times 10^{-17}(\mathrm{~J}) \checkmark$ $f=7.3 \times 10^{16}(\mathrm{~Hz})$	S\&C S\&C S\&C	accept if substituted into numbers select correct levels 3 and 1 $\text { OR } \quad \Delta E=(5.4-0.60) \times 10^{-17}(\mathrm{~J})$ method accept alternative levels of highest level and 0 energy if λ correctly substituted gives $5.4 \times 10^{-17} \mathrm{~J} \mathbf{O R}$ (8.1 OR 8.2) $\times 10^{16} \mathrm{~Hz}$ for 1 mark max evaluation $\begin{aligned} f & =h\{9 / 8-1 / 8\} /\left[m d^{2}\right]=6.6 \times 10^{-34} /\left\{9.1 \times 10^{-31} \times\left[10^{-10}\right]^{2}\right\} \\ & =7.3 \times 10^{16}(\mathrm{~Hz}) \end{aligned}$
		Total section B Total	$\begin{gathered} 6 \\ 22 \end{gathered}$	

Section C

Question			Answer	Marks	Guidance
36	(a)	(i)	Graph shows proportional relationship (between recession velocity and distance) If galactic recession is played back in time then earlier on galaxies were closer, at the big bang / origin all matter was at same location and rushing out wards	L L	allow shows straight line through the origin / $v=\mathrm{H}_{0} d$ not just graph is a straight / statement "this is Hubble's Law" / just shows correlation / + correlation
36	(a)	(ii)	Graph shows background radiation is in the microwave region / (peak) wavelength around 1 mm Radiation earlier (at big bang) was hotter / shorter λ higher f / X-ray or γ-ray AND λ has been stretched by the expansion of space (since big bang so that today CMBR is colder) longer λ	M M	accept is thermal / black body radiation accept ... AND (λ stretched by cosmological) redshift of photons
36	(b)		$\begin{aligned} & \lambda_{\text {peak }}=1 \mathrm{~mm} \text { read from graph } \\ & f=3 \times 10^{8} / 1 \times 10^{-3}=3 \times 10^{11}(\mathrm{~Hz}) \\ & T \approx h f / 5 \mathrm{k} \approx 6.6(3) \times 10^{-34} \times 3 \times 10^{11} /\left\{5 \times 1.4 \times 10^{-23}\right\} \\ & \approx 2.8(\mathrm{~K}) \end{aligned}$	M M H H	```accept in range (0.9 to 1.1) mm accept in range (2.7 to 3.3) \(\times 10^{11}(\mathrm{~Hz})\) accept \(E=h f=1.98 \times 10^{-22} \mathrm{~J}\) \\ allow \(k=1.38 \times 10^{-23}\) gives \(2.8(9)\) or 2.9 K for last 2 marks accept in range (2.5 to 3.2) (K)```
			Total	8	

Question			Answer	Marks	Guidance
37	(a)	(i)	p has $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}=E / \mathrm{chas} \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} /\left\{\mathrm{m} \mathrm{s}^{-1}\right\} \quad \checkmark$	L	allow cancellation as implicit allow use of J for unit of energy leading to Ns for momentum accept algebra that mixes units and symbols
37		(ii)	$T=$ rate of change of momentum $\mathrm{OR}=\Delta p / \Delta t$ factor $\times 2$ because $m v-\{-m v\}=2 m v$ $T=2 n \Delta\{E / c\} / \Delta t=2 n \Delta E / c \Delta t=2 P / \mathrm{c}$	L M M	allow introduction of x 2 at appropriate stage not $P=F v$ accept momentum is reversed no credit for just x 2 with no explanation must include n number of photons $\left(\mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$ in calculation for third mark
37		(iii)	$\begin{aligned} a & =T \times A / m=2 P \times A / m c \\ & =2 \times 1400 \times 10^{6} /\left\{10^{3} \times 3 \times 10^{8}\right\} \\ & =9.3 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M M	accept in algebra or numbers accept $9.3 \mathrm{~mm} \mathrm{~s}^{-2}$
37	(b)	(i)	$\begin{aligned} & \text { k.e. gained = e.p.e. lost OR } 1 / 2 m v^{2}=Q V \\ & \{m v\}^{2}=2 m Q V \rightarrow m v / m=\sqrt{ }\{2 V Q / m\} \\ & \text { OR } m v / m=\sqrt{ }\left\{2 m V Q / m^{2}\right\} \rightarrow \quad \rightarrow=\sqrt{ }\{2 V Q / m\} \end{aligned}$	L H	```energy conservation in words / algebra allow momentum per unit mass = velocity and subsequent derivation of }```
		(ii)	H^{+}has highest Q / m so best momentum transfer / larger p/m	$\begin{aligned} & \mathrm{S} \& \mathrm{C} \\ & \mathrm{~S} \mathrm{\& C} \end{aligned}$	ignore Xe^{+}is safer / energy to lift mass of H from Earth expect momentum comment
		(iii)	$\begin{aligned} & T=\Delta p / \Delta t=\Delta p / \Delta m \times \Delta m / \Delta t \quad \text { OR } \\ & \Delta m / \Delta t=T /\{\Delta p / \Delta m\}=0.24 / \downarrow\left\{2 \times 2000 \times 9.6 \times 10^{7}\right\} \\ & \\ & =3.87 \times 10^{-7} \mathrm{~kg} \mathrm{~s}^{-1} \quad\left(<4 \times 10^{-7} \mathrm{~kg} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & S \& C \\ & S \& C \end{aligned}$	No credit for only working out velocity of ions
			Total	12	

Question		Answer	Marks	Guidance
38	(a)	$\%$ uncertainties in $L \ll \%$ uncertainties in y ORA	L	accept \% uncertainties in L are negligible on this scale accept estimates e.g. 1 in $1000 \mathrm{~mm} \ll 1 / 2$ in 2 mm expect percentage / relative / estimated uncertainties not just uncertainty is less ignore comments on d
38	(b)	best fit line expect through the origin but accept lines starting at $(0.5,0.5)$ accept intercepts up to +2 squares on y-axis or +1 square on x-axis gradient of best fit line $=\left(2.25 \times 10^{-3} / 2.2\right)=1.0 \times 10^{-3} \checkmark$ accept in range $\{0.9$ to 1.2$\} \times 10^{-3}$ (round their values to 1 dp) penalise POT error on gradient accept y / x for proportional graphs expect evidence of $\Delta y / \Delta x$ for graphs not through $(0,0)$ uncertainty by graph of max OR min gradient or by $\pm \% \checkmark$ $\left(\max\right.$ gradient $=1.2 \times 10^{-3}, \min$ gradient $\left.=0.7 \times 10^{-3}\right)$ accept in range $\pm\{0.10$ to 0.5$\} \times 10^{-3} / \pm\{10$ to 50$\} \%$	L M H	 accept ecf on POT error on gradient i.e. missing $\times 10^{-3}$ can still score uncertainty mark e.g. 1 ± 0.2 allow a little pessimism comparing to max or min gradients through data

Question		Answer	Marks	Guidance
38	(c)	$\lambda=d \times \text { grad }=0.50 \times 10^{-3} \times 1.03 \times 10^{-3}=5 .(2) \times 10^{-7}(\mathrm{~m})$ accept values in the range 450 to 600 nm and consistent with their gradient from (b) relative uncertainty in d expressed as $\pm 20 \% / \pm 0.2$ evaluation combining uncertainties from grad and d to get overall uncertainty. Credit values in range of $\{ \pm 30 \%$ to $\pm 70 \%\}$ of their λ estimate overall uncertainty in range $\pm 150 \mathrm{~nm}$ to 360 nm	M H H	allow ecf on gradient value from (ii) accept 515 nm accept use of $\lambda=d \mathrm{x} \sin \theta$ (with $n=1$) accept ecf grad $\pm \%$ from (ii) accept absolute uncertainty in d is 0.1 mm if used in $\mathrm{max} / \mathrm{min}$ calculation of λ large pessimistic \% due to uncertainty in grad up to $\pm 50 \%$ ignore method of combining large \% uncertainties (several methods are used ours include extreme limits) $\text { so } 5.2 \pm\{1.5 \text { to } 3.6\} \times 10^{-7}(\mathrm{~m})$
38	(d)	refine design: use travelling microscope to measure d or y or both more precisely OR refine procedure: repeat measurements (to improve cluster and improve precision)	L	accept other sensible improvements in apparatus e.g. increase L so y is larger OR measure a larger number of fringes / increase d to see more fringes / decrease d to increase fringe separation (changing d needs justification for credit) not just measure d or y more precisely OR make y larger accept use of tube to exclude background light / use of brighter lamp / use of collimator round lamp to improve fringe contrast
		Total	8	

Question		Answer	Marks	Guidance
(a)				

Question			Answer	Marks	Guidance
39	(b)	(i)	$\begin{aligned} & \left\{1 / 2 m c^{2}\right\}_{\mathrm{Xe}}=\left\{1 / 2 m c^{2}\right\}_{\mathrm{H} 2} \\ & \sqrt{ }\left\{\overline{c^{2}}{ }_{\mathrm{H} 2} / \overline{c^{2}} \mathrm{Xe}_{\mathrm{e}}=\sqrt{ }\left\{m_{\mathrm{Xe}} / m_{\mathrm{H} 2}\right\}\right. \\ & =\sqrt{ } 66 / 8.1(2) \end{aligned}$	M M M	method or justification accept equipartition of energy OR average k.e of two species of molecules is equal OR $c_{\text {r.m.s. }}$ is speed of molecule with average kinetic energy not just $\sqrt{ }\left\{m_{\text {Xe }} / m_{\mathrm{H}_{2}}\right\}$ OR $\sqrt{ }\{132 / 2\}$ evaluation
39	(b)	(ii)	$\text { number }=N_{\mathrm{A}} \times \mathrm{e}^{-E k T}$ where $E=1 / 2 m_{\mathrm{H} 2} v_{\text {Escape }}{ }^{2} / 2.1 \times 10^{-19} \mathrm{~J}$ Boltzmann exponent $=E / k T=$ $1 / 2 \times 2 \times 10^{-3} \times\left[11.2 \times 10^{3}\right]^{2} /\left[6 \times 10^{23} \times 1.4 \times 10^{-23} \times 288\right]=51.8$ number $=N_{A} \times e^{-E / k T}=6 \times 10^{23} \times e^{-51.8}=19\left(\mathrm{~mole}^{-1}\right)$		method accept \{Boltzmann factor expressed in recognisable algebra / numbers\} x Avogadro's number E of H molecule part evaluation accept $m_{\mathrm{H} 2}=2 \times \mathrm{m}_{\mathrm{p}}$ or accept BF calculated at 3.2×10^{-23} correct evaluation scores full marks ignore fractions of molecules accept range between 8 and $52\left(\right.$ mole $\left.^{-1}\right)$ - extra sf in data book can give a large range of number of molecules since the answer is very sensitive to the value in the exponent
			Total	13	

	uestis	Answer	Marks	Guidance
40	(a)	best fit straight line drawn to intercept the current axis giving intercept from graph current $=9.7 \mathrm{~A}$ $R_{\text {Armature }}=12.0 / 9.7=1.2(4)(\Omega)$	L M M	must be sensible I.o.b.f. expect line to miss some uncertainty bars (intercept may be off top of the y-axis) expect in range 9.5 to 9.9 A but allow ecf from their graph FT allow ecf 12 / current value correctly evaluated accept in range 1.2 to $1.3(\Omega)$
40	(b)	This is LoR not tick-based marking - see page 4 of this mark scheme. Level 3 (5-6 marks) Includes clear explanation of both strands: - explaining action of self-regulating d.c. motor - induced e.m.f. and laws of Faraday and Lenz Explanations can be simple and non-algebraic and gain the highest level There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Covers both strands using a range of relevant physics ideas There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	6	accept labelled diagrams or graphs throughout. Indicative physics may include: Strand 1: self-regulating d.c. motor a simple answer based on information in the stem and graph should allow access to Level 3 - when motor connected to supply coil rotates at high f drawing a small current - as motor is mechanically loaded it slows drawing more current into coil - motor can now work harder - induced ε from coil cutting flux opposes V supply - $\mathcal{\varepsilon} \propto$ frequency of rotation OR $\mathcal{\varepsilon} \propto$ cutting of flux OR $\mathcal{E} \propto-N \Delta \Phi / \Delta t$ explained - the opposing e.m.f. limits current drawn into coil - until the current supplies the torque required by the mechanical load then motor reaches constant rate of rotation

Question		Answer	Marks	Guidance

Question			Answer	Marks	Guidance
41	(a)	i	Field at point X from one proton is equal and opposite to that from the other proton AW	L	accept Force per unit / test charge at point X not just fields cancel
41	(a)	ii	$\begin{aligned} & \text { Potential }=2 \times\left(9 \times 10^{9} \times 1.6 \times 10^{-19}\right) / 0.5 \times 10^{-9} \\ & =5.8(\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{M} \end{gathered}$	accept 5.7 if 8.98×10^{9} used for k allow 2.9 (V) for for MAX 1 (missing x2)
41	(b)	i	Force on third proton due to one other in triangle $=$ $\begin{aligned} & \left(9 \times 10^{9} \times\left(1.6 \times 10^{-19}\right)^{2}\right) /\left(1 \times 10^{-9}\right)^{2} \\ = & 2.3 \times 10^{-10} \mathrm{~N} \end{aligned}$ horizontal components will cancel (can show on diagram) sum of vertical components $=$ $2 \times 2.3 \times 10^{-10} \times \sin 60^{\circ}=3.98 \times 10^{-10}(\mathrm{~N})$	M M H H	Look for final answer and if not correct work through scheme to credit each marking point achieved. accept shown by vector addition triangle or use of $\cos 30^{\circ}$ or $\sin 60^{\circ}$ accept use of $\cos 30^{\circ}$ accept $4.0 \times 10^{-10}(\mathrm{~N})$ in this instance
41	(b)	ii	$\text { Force }=3.98 \times 10^{-10} \mathrm{~N} \times\left(1 \times 10^{-9}\right)^{2} /\left(1 \times 10^{-15}\right)^{2}$ $=398(\mathrm{~N})$	H S\&C	$\begin{aligned} & \text { accept } 4.0 \times 10^{-10}(\mathrm{~N}) \text { or ecf from } \mathrm{b}(\mathrm{i}) \\ & \text { accept force scaled up } \times\left\{10^{-9} / 10^{-15}\right\}^{2}=10^{12} \\ & \text { accept } 400(\mathrm{~N}) \end{aligned}$
			Total	9	
			Total section C Total sections B \& C	$\begin{aligned} & 58 \\ & 80 \end{aligned}$	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England

Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

