

GCE

Chemistry A

Unit H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
✓	Correct response
×	Incorrect response
~	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error

SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

C	Questi	ion		Α	nswer		Marks	Guidance
1	(a)		A solution of kn	own concenti	ation √		1	ALLOW description of concentration
1	(b)		Releases OH ⁻ (ions in aqueo	ous solution) \checkmark		1	ALLOW containing OH [−] ions IGNORE mention of pH
1	(c)	(i)	Final reading/cm ³ Initial	27.30	27.00	27.75	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			reading/cm ³ Titre/cm ³	0.45 26.85	0.60 26.4 0	1.25 26.5 0		ALLOW missing zeroes for burette readings
			 Initial and final readings All burette readings (×6) correct ✓ Titres recorded to two decimal places with the last figure 			h the last figure		i.e. 0.6 for 0.60 27 OR 27.0 for 27.00 ALLOW ECF from incorrect burette readings
			Mean titre cald					IF MEAN IS CALCULATED FROM ECF, IT MUST BE FROM CLOSEST TITRES ALLOW ecf from incorrect mean DO NOT ALLOW 26.5 cm ³
					to two decima	te al places with the		Question asks for nearest 0.05 cm ³
1	(c)	(ii)	$\frac{2 \times 0.05}{26.85} \times 100 =$				1	ALLOW 0.4 up to full calculation display of 0.372439478 ALLOW ECF FOR CORRECT CALCULATION FROM 1 (c) (i) OR USE OF ANY TITRE

G	luesti	ion	Answer	Marks	Guidance
1	(c)	(iii)	Use a (250 cm ³) volumetric flask (instead of a beaker) \checkmark	1	IGNORE graduated flask
1	(d)	(i)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 118 (g mol ⁻¹) award 4 marks If answer = 108 (g mol ⁻¹) award 3 marks n(NaOH) = 0.112 × $\frac{25.0}{1000}$ = 0.00280 (mol) \checkmark $n(\mathbf{A})$ in 25.0 cm ³	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Throughout: IGNORE trailing zeroes in intermediate working, e.g. For <i>n</i> (NaOH) ALLOW 0.0028 for 0.00280
			$=\frac{0.00280}{2} = 0.00140 \text{ (mol)} \checkmark$		ALLOW ECF from incorrect n(NaOH)
			$n(\mathbf{A})$ in 250 cm ³ = 0.00140 × $\frac{250.0}{27.30}$ = 0.0128 (mol) \checkmark		ALLOW ECF from incorrect <i>n</i> (A) OR <i>n</i> (NaOH) ALLOW 3 sig fig up to full calculator display correctly rounded (0.012820512)
			Molar mass, <i>M</i> (A) to nearest whole number.		ALLOW ECF from incorrect <i>n</i> (NaOH)
			$=\frac{1.513}{0.0128} = 118 \text{ (g mol}^{-1}) \checkmark$		Possible ECFs for 3 marks $1.513 \div (0.00140 \times 250/25) = 108$ $1.513 \div 0.00140 = 1081$ No $\div 2$ for n(A)• Molar mass A = 59 (g mol ⁻¹)Using mean titre of 26.45 cm ³ from 1c(i)• Molar mass A = 114 (g mol ⁻¹)Using 27.3 × 0.112 in M1 and then 25.0 in M3• Molar mass A = 99 (g mol ⁻¹)

	Question		Answer	Marks	Guidance	
1	(d)	(ii)	Structure of dicarboxylic acid HOOCCH ₂ CH ₂ COOH OR HOOCCH(CH ₃)COOH \checkmark STRUCTURE MUST MATCH <i>M</i> _r from answer to 1 d) i) (within 10 AMU)	1	ALLOW correct structural OR skeletal OR displayed formulae OR a combination ALLOW incorrect connectivity e.g –HO ALLOW ECF from incorrect molar mass in (d)(i) but only if $2 \times COOH$ possible and M_r is a close match to (d) (i) within 10 AMU	
			Total	13		

Q	uestion		Answe	er		Marks	Guidance
2	(a)	$\begin{bmatrix} Na \end{bmatrix}^+$ $\begin{bmatrix} Na \end{bmatrix}^+$ Na shown with either 0 contained on the selectrons (or vice versa) \checkmark Correct charges \checkmark	or 8 electr		2- crosses	2	ALLOW 2[Na] ⁺ ALLOW [Na] ⁺ ₂ Brackets not required For first mark, if eight electrons are shown around Na, the 'extra' electrons around S must match the symbol chosen for the electrons for Na. IGNORE inner shells Circles not required
2	(b)	Melting point / °C Type of structure Conductivity of solid Conductivity of liquid One mark for each corr e	Na₂S 1180 giant poor good ✓	Na 98 giant good good √	S 113 simple poor poor	3	Mark by COLUMN

(Question		Answer		Guidance
2	(c)	(i)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁴ ✓ Look carefully at (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake	1	 ALLOW subscripts ALLOW in any order i.e. 3d¹⁰ after 4s² or after 4p⁴ ALLOW upper case D, etc and subscripts, e.g3S₂3P⁶ DO NOT ALLOW [Ar] as shorthand for 1s²2s²2p⁶3s²3p⁶
2	(c)	(ii)	Gas B H ₂ Se / Hydrogen selenide / Selenium hydride ✓ Equation Na ₂ Se + 2HC <i>l</i> → 2NaC <i>l</i> + H ₂ Se All formulae and balancing ✓	2	ALLOW SeH ₂ ALLOW correct multiples IGNORE STATE SYMBOLS DO NOT ALLOW H ₂ S for gas B BUT ALLOW ECF from H ₂ S for equation: Na ₂ S +2HCl \rightarrow 2NaCl + H ₂ S
			lota	I Ö	

Questi	on	Answer	Marks	Guidance
3 (a)	(i)	$Br_2 + 2I^- \to I_2 + 2Br^- \checkmark$	1	ALLOW multiples IGNORE state symbols
	(ii)	lodine has a larger atomic radius ✓	3	ORA ALLOW iodine is larger / bromine is smaller ALLOW electron added to a shell further from the nucleus
		lodine has greater shielding / more shells \checkmark		
		Iodine has weaker / less nuclear attraction (on electron gained than bromine) ✓		ALLOW bromine has greater nuclear attraction IGNORE 'gained less easily' for 'weaker attraction' IGNORE references to ionisation energy DO NOT ALLOW mention of losing electrons for M3 ALLOW 'pull' for 'attraction' IGNORE just 'greater attraction' OR greater force

	Questi	on	Answer	Marks	Guidance
3	(b)	(i)	 Disproportionation Oxidation AND reduction of same element/iodine OR Iodine has been oxidised and Iodine has been reduced ✓ Oxidation from 0 to +1 in HIO ✓ Reduction from 0 to -1 in HI ✓ 	3	$\begin{array}{l} \textbf{ALLOW I or } I_2 \text{ for iodine} \\ \textbf{IGNORE} \text{ numbers around equation for oxidation states} \\ \textbf{ALLOW } 1-\text{ for } -1 \text{ AND } 1+\text{ for } +1 \\ \textbf{NOTE} (\text{for iodine/I}_2) \text{ from 0 only needs to be seen} \\ \text{once, does not need to be stated twice} \\ \textbf{ALLOW } 1 \text{ mark for 3 ox nos correct but no mention of} \\ \text{words oxidation/reduction:} \\ 0 \text{ in } I_2 \text{ AND } -1 \text{ in HI AND } +1 \text{ in HIO} \\ \textbf{ALLOW } 1 \text{ mark for species missing:} \\ \text{ lodine oxidised (from 0) to } -1 \\ \end{array}$
3		(ii)	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR forms carcinogens/toxic compounds ✓	1	 ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds IGNORE chlorine causes cancer harmful/dangerous chlorine causes breathing problems
3	(c)		FIRST CHECK ON ANSWER LINE If answer = (+) 431.5 (kJ mol ⁻¹) award 2 marks If answer = -431.5 (kJ mol ⁻¹) award 1 mark (wrong sign) 	2	ALLOW to 3 SF i.e. 432

H032	2/02
------	------

Question		Answer	Marks	Guidance
		+863/2 = (+)431.5 (kJ mol ^{−1}) ✓		ALLOW 1 mark for (+)247.5 / 248 (wrong expression) i.e. (436+243–184)/2
(d)	(i)	$Br_2(I) \rightarrow Br_2(g) \checkmark$	1	
	(ii)	Endothermic AND Energy required to overcome induced dipole–dipole forces/London forces ✓	1	Mark independently of 3 (d) (i) ALLOW endo to break intermolecular forces/bonds ALLOW bonds between molecules DO NOT ALLOW van der Waals' forces
		Tot	al 12	

Question	Answer	Marks	Guidance		
Question 4 (a) (i)	Answer $4NH_{a}(g) + 5O_{2}(g)$ $4NH_{a}(g) + 5O_{2}(g)$ AH $4NO(g) + 6H_{2}O(g)$ AH $4NO(g) + 6H_{2}O(g)$ AH <tr< td=""><td>Marks 2</td><td>GuidanceANNOTATE ANSWER WITH TICKS AND CROSSES ETCIGNORE state symbolsALLOW 1 mark for a correctly labelled endothermic diagramE_aALLOW 1 mark for a correctly labelled endothermic diagramE_aALLOW no arrowhead or arrowheads at both end of E_a line.E_aLine must reach maximum (or near to maximum) on curveFor E_a, ALLOW AE OR $A_E$$\Delta H$DO NOT ALLOW $-\Delta H$ DO NOT ALLOW $-\Delta H$ DO NOT ALLOW double headed arrow on ΔHALLOW ΔH arrow even with small gap at the top and bottom, i.e. line does not quite reach reactant or product line.ALLOW -905 for ΔH</br></td></tr<>	Marks 2	GuidanceANNOTATE ANSWER WITH TICKS AND CROSSES ETCIGNORE state symbolsALLOW 1 mark for a correctly labelled endothermic diagram E_a ALLOW 1 mark for a correctly labelled endothermic diagram E_a ALLOW no arrowhead or arrowheads at both 		

Questio	n	Answer	Marks	Guidance	
	(ii)	FIRST CHECK ON ANSWER LINE If answer = 6.79×10^7 (kJ) award 4 marks If answer = 2.72×10^8 (kJ) award 3 marks (no ÷ 4) (NH ₃) $= 5.1 \times 10^6 = 3.00 \times 10^5$ (mol) \checkmark Stoichiometry and ΔH 1 mol NH ₃ releases 905 OR 226.25 (kJ) \checkmark Energy released $(3.00 \times 10^5) \times 905 - 0R 67875000$ (kJ) \checkmark	4	IGNORE (-) SIGN Throughout: IGNORE trailing zeroes in intermediate working, e.g. For n(NH ₃) ALLOW 3 × 10 ⁵ for 3.00 × 10 ⁵	
		Final answer to 3SF AND standard form = 6.79 × 10 ⁷ (kJ) ✓ standard form AND 3 SF required		Common Errors 1.09×10^9 (x 4 instead of \div 4) 3 marks 2.72×10^8 (no \div 4) 3 marks 6.79×10^1 (no tonnes \rightarrow g) 3 marks	
(b)		$(\mathcal{K}_{c} =) \frac{[NO(g)]^{4} [H_{2}O(g)]^{6}}{[NH_{3}(g)]^{4} [O_{2}(g)]^{5}} \checkmark$	1	Square brackets required IGNORE state symbols	

Question	Answer	Marks	Guidance
4 (c)	EQUILIBRIUM CONDITIONSTemperature: 1 mark(Forward) reaction is exothermic/ ΔH is negativeOR (Forward) reaction gives out heat \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	 Pressure: 1 mark Left-hand side has fewer (gaseous) moles OR 9 (gaseous) moles form 10 (gaseous) moles ✓ OPTIMUM EQUILIBRIUM CONDITIONS: 1 mark (for maximum yield of NO) Low temperature AND low pressure ✓ 		ALLOW reverse arguments
	<i>RATE:</i> 1 mark Low temperature/pressure gives a slow rate/slower reaction so high temperatures / higher pressure needed to increase rate OR frequency of collisions ✓		Answer MUST relate temp/pressure to rate / frequency of collisions
	 INDUSTRIAL CONDITIONS / OPERATIONAL FACTORS: 1 mark High pressure provides a safety risk OR Higher temperatures increase energy costs / reduce yield / shift equilibrium to left OR (High) pressure is expensive (to generate) / uses a lot of energy ✓ 		ALLOW Temperature / pressure not too high because yield reduced IGNORE stated temperatures and pressures IGNORE catalyst
	Total	12	

Question	Answer	Marks	Guidance	
5 (a) (i)*	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Correctly labelled diagram of reflux apparatus that works, with no safety problems AND An appreciation of most of the purification steps required to gain a pure sample There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Labelled diagram of apparatus (either reflux or distillation) but with safety/procedural problems OR clear diagram of reflux apparatus without labelling AND Some details of further purification steps There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Diagram of apparatus (reflux OR separation OR distillation) drawn with no labelling OR labelled diagram with significant safety/procedural AND / OR Few or imprecise details about further purification stages There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks 	6	 Indicative scientific points may include: Apparatus set up for reflux: round-bottom/pear shaped flask heat source condenser Detail: water flow in condenser bottom to top; open system. Purification Use of a separating funnel to separate organic and aqueous layers Detail: Collect lower organic layer density greater Drying with an anhydrous salt, Detail: e.g. MgSO4, CaCl2, etc. Redistillation Detail: Collect fraction distilling at 102°C. 	

Question	Answer		Guidance
5 (a) (ii)	 FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 12.6 (g) award 2 marks n(1-bromobutane) = 0.150 × 61.4/100 = 0.0921 (mol) ✓ Mass 1-bromobutane = 0.0921 × 136.9 = 12.6 (g) ✓ 3 SF required 	2	Common errors: 33.4 (0.150 x 100/61.4 = 0.244 x 136.9) 1 mark ALLOW ECF for incorrect moles or incorrect M_r of 1-bromobutane (provided answer is to 3 SF) DO NOT ALLOW 6.82 (using M_r of butan-1-ol) ALLOW calculation using masses, e.g. • Theoretical = 0.150 × 136.9 = 20.535 (g) \checkmark (ALLOW 20.535 rounded back to 20.5) • Actual mass = 20.535 $\times \frac{61.4}{100}$ = 12.6 (g) \checkmark (20.5 also gives 12.6)
(b)	Tangent on graph drawn at approximately $t = 30 \text{ min } (\pm 10 \text{ mins}) \checkmark$ Calculation of rate = Gradient (y/x) of tangent drawn e.g. $\frac{0.19}{72} = 2.64 \times 10^{-3} / 0.00264 \text{ (mol dm}^{-3}\text{min}^{-1})\checkmark$	2	 DO NOT ALLOW interpolation (taking a direct reading from graph), answer must be derived from taking a gradient ALLOW ecf from incorrectly drawn tangent Tolerance: Readings from y axis should be ± 0.01 mol dm⁻³ (i.e. within 1 square) Readings from x axis should be ± 5 minutes (i.e. within 0.5 of a square) IGNORE units IGNORE sign
	Total	10	

(Question		Answer	Marks	
6	(a)		steam AND Acid/H⁺ (catalyst) ✓	1	
	(b)	(i)	1,2-dibromo-1,1-dichloroethane ✓	1	

Mark scheme

(Question		Answer	Marks	Guidance
6	(c)	(i)	$n \xrightarrow{H}_{H} C = C \xrightarrow{Cl}_{Cl} \qquad \qquad$	2	 For repeat unit, displayed formula required 'side bonds' required on either side of repeat unit from C atoms ALLOW section containing more than one repeat unit
			Equation balanced with $n \checkmark$ TAKE CARE of ' <i>n</i> ' position on both sides of equation.		DO NOT ALLOW ECF from incorrect repeat unit <i>n</i> on LHS at any height to the left of the formula <i>n</i> on RHS must be subscript
	(c)	(ii)	Advantage (1 mark) Energy production / (energy) used to produce electricity ✓ Disadvantage (1 mark) Formation of HCI/products of combustion cause acid rain OR Formation of CO ₂ /gases that cause global warming / greenhouse gases	2	ALLOW reduced use of fossil fuels ALLOW less landfill / less harm to wildlife ALLOW chlorine/Cl OR Cl ₂
			OR Formation of CO✓ Total	9	ALLOW toxic/poisonous waste products

scheme for guidance on how to mark this question.Level 3 (5-6 marks) A comprehensive description including most of the evidence to justify the correct structure of F (accept <i>cis</i> or <i>trans</i>). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.Indicative scientific points may includesLevel 2 (3-4 marks) The candidate attempts all three scientific points, but explanations are incomplete.Image: Rel developed line of reasoning which is clear and togically structured. The information presented is relevant and substantiated.Image: Rel developed line of reasoning which is clear and togically structured. The information presented is relevant and substantiated.Image: Rel developed line of reasoning which is clear and togically structure date the points. OR The candidate attempt at a feasible structure based on deduction from correct molecular formulaImage: Rel developed line of reasoning the sented with some structure. The information presented is relevant and supported by some evidence.Image: Rel developed line of reasoning. The information presented is relevant and supported by some evidence.Level 1 (1-2 marks) The correct empirical formula AND a simple description based on at least one of the main scientific points. OR The candidate explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.Image: Rel developed line of reasoning. The information presented at a logical structure with a line of reasoning. The information is in the most part relevant.	Question	Answer	Marks	Guidance
omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		 Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive description including most of the evidence to justify the correct structure of F (accept <i>cis</i> or <i>trans</i>). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) The candidate attempts all three scientific points, but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND an attempt at a feasible structure based on deduction from correct molecular formula There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) The correct empirical formula AND a simple description based on at least one of the main scientific points. OR 		LOOK AT THE SPECTRA for labelled peaks Indicative scientific points may include: $\frac{Empirical formula}{e = C_4H_6O}$ • empirical formula = C_4H_6O $\frac{e e e ment}{C} + \frac{\%}{68.6} + \frac{12}{12} + \frac{5.72}{4} + \frac{4}{14} + \frac{8.6}{16} + \frac{1}{1.43} + \frac{1}{10} + \frac{1}{1.43} + \frac{1}{1.43$
0 marks No response or no response worthy of credit.		The candidate explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		$\begin{array}{ccc} C_{H_3} & C_{=} O & C_{=} C \\ H & C_{H_3} & H \\ C_{I_3} & T_{I_3} & T_{I_3} \\ C_{I_3} &$
Total 6			6	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2018