Contents

<table>
<thead>
<tr>
<th>Question</th>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>Question 1(a)</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>Question 1(b)</td>
<td>5</td>
<td>49</td>
</tr>
<tr>
<td>Question 2</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Question 3(b)</td>
<td>9</td>
<td>53</td>
</tr>
<tr>
<td>Question 4</td>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>Question 5(a)</td>
<td>12</td>
<td>57</td>
</tr>
<tr>
<td>Question 5(b)</td>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>Question 6</td>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>Question 7</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>Question 8(b)(i) and (ii)</td>
<td>23</td>
<td>61</td>
</tr>
<tr>
<td>Question 9(b)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Question 10</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Question 11</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Question 12</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Question 13(a)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Question 13(b)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Question 14</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Question 15</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Question 16(a)</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

These exemplar answers have been chosen from the summer 2018 examination series.

OCR is open to a wide variety of approaches and all answers are considered on their merits. These exemplars, therefore, should not be seen as the only way to answer questions but do illustrate how the mark scheme has been applied.

Please always refer to the specification https://www.ocr.org.uk/Images/168982-specification-gcse-mathematics-j560.pdf for full details of the assessment for this qualification. These exemplar answers should also be read in conjunction with the sample assessment materials and the June 2018 Examiners’ report or Report to Centres available from Interchange https://interchange.ocr.org.uk/Home.mvc/Index

The question paper, mark scheme and any resource booklet(s) will be available on the OCR website from summer 2019. Until then, they are available on OCR Interchange (school exams officers will have a login for this and are able to set up teachers with specific logins – see the following link for further information http://www.ocr.org.uk/administration/support-and-tools/interchange/managing-user-accounts/).

It is important to note that approaches to question setting and marking will remain consistent. At the same time OCR reviews all its qualifications annually and may make small adjustments to improve the performance of its assessments. We will let you know of any substantive changes.

Question 1(a)

1. (a) Calculate.

\[
\frac{3}{5} + \frac{5}{8}
\]

Give your answer as a mixed number in its simplest form.

(a) ... [3]

Exemplar 1

(a) Calculate.

\[
\frac{3}{5} + \frac{5}{8} = \frac{24}{40} + \frac{25}{40} = \frac{49}{40} = \frac{11}{40}
\]

(a) ... [3]

Examiner commentary

Correct answer, given as a mixed number as required with full supporting working shown.

Exemplar 2

2 marks

\[
\frac{3}{5} + \frac{5}{8} = \frac{24}{40} + \frac{25}{40} = \frac{49}{40} = \frac{11}{40}
\]

(a) ... [3]

Examiner commentary

Candidate shows correct working and converts both fractions to a common denominator correctly but then makes an arithmetic error when adding. M2 is credited for correct conversion to a common denominator.
Question 1(b)

(b) Work out.

\[5 \times 10^4 - 1.6 \times 10^3 \]

Give your answer in standard form.

(b) .. [3]

Exemplar 1

3 marks

Examiner commentary

Candidate shows correct working and gives the correct answer in standard form.

Exemplar 2

2 marks

(b) Work out.

\[5 \times 10^4 - 1.6 \times 10^3 \]

Give your answer in standard form.

(b) .. [3]

Examiner commentary

Candidate shows correct working and arrives at a correct value but does not convert to standard form so M2 is credited.
Exemplar 3

1 mark

Examiner commentary

Incorrect answer but the candidate is credited 1 mark for converting 5×10^4 to 50 000 in working.

Exemplar 4

0 marks

Examiner commentary

Incorrect processing with no correct working shown.
Question 2

2 Gemma’s solution to the inequality $3x + 1 > -5$ is shown on the number line.

Is Gemma’s solution correct?
Explain your reasoning.

Exemplar 1 3 marks

Examiner commentary
Clear working shown with the solution to the given inequality and then correct explanation of the error. Candidate earns M2 for solution to inequality and A1 for correct reasoning.

Exemplar 2 2 marks

Examiner commentary
Candidate is credited M2 for correct solution to the given inequality shown but the conclusion is incorrect so A0.
Exemplar 3

Is Gemma’s solution correct? Explain your reasoning.

\[3x + 1 = -5 \]
\[3x = -6 \]
\[x = -2 \]

No because \(x = -2 \) and that is bigger than \(-5\) [3]

Examiner commentary
Candidate earns M1 for correct first step in solving the inequality. The use of the equals sign instead of the inequality sign is condoned for M1.

Exemplar 4

No because \(3x + 1 \) is bigger than \(-5\) so the arrow is facing the wrong way and the circle should be on \(-5\) [3]

Examiner commentary
No attempt to solve the inequality and an incorrect conclusion so no marks scored.
Question 3(b)

3 Work out.

(b) \[
\begin{pmatrix}
3 \\
4
\end{pmatrix}
- 2
\begin{pmatrix}
1 \\
-3
\end{pmatrix}
\]

Exemplar 1 2 marks

Examiner commentary
Both components of the vector given correctly so full marks credited.

Exemplar 2 1 mark

Examiner commentary
Only one component of the vector given correctly so this earns 1 mark.
Question 4

Here is the nutritional information for a 110 g serving of cereal.

<table>
<thead>
<tr>
<th>Carbohydrates</th>
<th>99.4 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td>9.5 g</td>
</tr>
<tr>
<td>Fats</td>
<td>1.1 g</td>
</tr>
</tbody>
</table>

Emily says that more than 90% of this serving is carbohydrates.

Is she correct?
Explain your reasoning.

Exemplar 1
3 marks

Is she correct?
Explain your reasoning.

Yes, she is correct because 99 g would be 90% of the serving so 99.4 g is more than 90%.

Examiner commentary

Correct attempt to find 90% of 110 and a correct answer of 99 earns M1A1. A correct conclusion earns A1 meaning the candidate earns full marks for the question.
Examiner commentary

The candidate has written a correct fraction and although this is not processed and multiplied by 100 it is sufficient to earn M1.
Question 5(a)

5. The table shows the relative frequencies of the results for a football team after a number of games.

<table>
<thead>
<tr>
<th>Result of game</th>
<th>won</th>
<th>lost</th>
<th>drew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative frequency</td>
<td>0.2</td>
<td>0.45</td>
<td>0.35</td>
</tr>
</tbody>
</table>

(a) Complete the table. [2]

Exemplar 1 2 marks

<table>
<thead>
<tr>
<th>Result of game</th>
<th>won</th>
<th>lost</th>
<th>drew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative frequency</td>
<td>0.2</td>
<td>0.45</td>
<td>0.35</td>
</tr>
</tbody>
</table>

(a) Complete the table. [2]

1 - 0.2 - 0.45 = 0.35.

Examiner commentary

Correct answer earns 2 marks.
Question 5(b)

(b) The team lost 10 more games than they won.

How many games did the team play altogether?

(b) .. [3]

Exemplar 1

3 marks

Examiner commentary

Correct answer earns 3 marks.

Exemplar 2

1 mark

Examiner commentary

Candidate shows that 10 represents 0.25 and then cannot complete correctly with an error for the number of games for probability 0.45. This earns M1.
Exemplar Candidate Work

Exemplar 3 0 marks

(b) [3]

Examiner commentary

Nothing of credit in working so M0.
Question 6

6 Jack sent 15% more text messages in March than in February. Jack sent 460 text messages in March.

How many more texts did Jack send in March than in February?

Exemplar 1

Examiner commentary
Correct answer so full marks earned.
Exemplar 2

$$M = 460$$
$$115\% = 460$$
$$\frac{115}{5} = \frac{460}{5}$$
$$23\% = 92$$
$$1\% = \frac{92}{23}$$
$$1\% = 4$$

$$M = 1.15M$$
$$4 \times 15 = 15\%$$
$$60 = 15\%$$
$$4\% (100\% = 115\% - 15\%)$$
$$100\% = 460 - 60$$
$$= 400$$

$$\text{Examiner commentary}$$

Candidate shows correct working in dividing 460 by 1.15 to reach 400. This earns B3 but then does not subtract the 400 from 460 to find how many more texts Jack sent in March than in February.

Exemplar 3

How many more texts did Jack send in March than in February?

$$\frac{1}{100} \times 460 = 4.60$$
$$4\% = 1\% \times 115\%$$
$$\frac{0.4}{115} = 1\%$$
$$\times 100$$

$$\frac{0.06}{115} \times 100 = 0.60$$

Candidate recognises this is a reverse percentage problem and attempts to divide by 115 and then multiply by 100 but makes an error in the processing. This earns M2.
Examiner commentary

Candidate does not recognise this is a reverse percentage problem and reduces 460 by 15%. This earns no marks.
Question 7

7 Here is the floor plan of a rectangular room.

Tim buys carpet tiles for this room.

Each tile is a square measuring 50 cm by 50 cm.
The tiles are only sold in packs of ten.
Each pack costs £20.
Tim pays for fitting at a rate of £7.50 per square metre, with any fraction of a square metre rounded up.

Work out the total cost of the tiles and fitting.

Exemplar 1

Exemplar 1 6 marks

Work out the total cost of the tiles and fitting.

\[
\text{Area of floor} = 3 \times 4.5 = 13.5 \text{ m}^2 \\
\text{Tile area} = 0.5 \times 0.5 = 0.25 \text{ m}^2 \\
13.5 \div 0.25 = 54 \quad \leftarrow \text{total tiles needed}.
\]

Therefore 6 packs are needed.

\[
6 \times 20 = £120 \quad \leftarrow \text{total cost of tiles.}
\]

\[
120 + 105 = 225
\]

£ 225 \[6\]
Examiner commentary
Candidate gives a correct answer with fully correct supporting working and earns full marks.

Exemplar 2

Examiner commentary
Candidate earns 2 method marks for 3×4.5 and 0.5×0.5 shown in working. They do not show the number of tiles needed for the room but correctly give the number of packs needed and then multiply this by the cost which earns a further method mark. One more method mark is earned for rounding the area of the room 13.5 up to the next integer (14) and then multiplying this by 7.5 even though they make an error in processing when doing this. This earns 4 marks in total.
Exemplar Candidate Work

Exemplar 3

3 marks

The candidate gives the correct number of tiles needed (54) but then makes no further progress so B3 is earned.

Examiner commentary
Examiner commentary

Candidate earns M1 for attempting to find the area of the room and a further M1 for attempting to find the area of one tile.
Examiner commentary

Candidate earns M1 for 3×4.5 even though this is incorrectly processed.
Question 8(b)(i) and (ii)

8 Hannah wants to display all the possible outcomes when rolling two fair 6-sided dice.

(b) (i) Draw a sample space to display all the possible outcomes. [2]

(ii) Show that the probability of the scores on the two dice adding to 11 is $\frac{1}{18}$. [2]

Exemplar 1

(b) (i) Draw a sample space to display all the possible outcomes. [2]

(ii) Show that the probability of the scores on the two dice adding to 11 is $\frac{1}{18}$.

Examiner commentary

The candidate has used a table to show the sample space. They have worked out the products rather than listing the pairs or calculating the totals so M1 is earned for the attempt. The second part is completely correct and earns 2 marks.
Exemplar 2

2 marks

(b) (i) Draw a sample space to display all the possible outcomes.

\[\begin{align*}
\text{Side 1} &= 1, 2, 3, 4, 5, 6 \\
\text{Side 2} &= 1, 2, 3, 4, 5, 6
\end{align*}\]

(ii) Show that the probability of the scores on the two dice adding to 11 is \(\frac{1}{18}\).

\[\begin{align*}
6+5 &= 11 \\
5+6 &= 11
\end{align*}\]

\[\frac{2}{36} = \frac{1}{18}\]

Examiner commentary

In the first part, the sample space shows no ordered pairs or combinations and earns no marks. The second part shows both pairs that give a total of 11 and then the correct probability so earns 2 marks.
Question 9(b)

Exemplar 1

3 marks

Examiner commentary

A correct well drawn graph earning full marks.
Examiner commentary

Graph is not fully correct as the curve does not pass through all of the plots. The plots are all correct however so this earns B2.
Examiner commentary

Graph is not fully correct as the curve has excessive feathering and is of poor quality. The plots are all correct however so this earns B2.
Question 10

Ifsaw noticed this information on her car’s dashboard at the end of her journey. She started her journey with a full tank of fuel and her miles travelled set to zero.

(a) Work out how far Ifsaw’s car can travel on a full tank of fuel.

Exemplar 1

\[
\begin{align*}
165 \div 3 &= 55 \\
55 \times 8 &= 440
\end{align*}
\]

(a) .. miles [3]

Examiner commentary

Correct answer with supporting working earns 3 marks.
Exemplar 2

2 marks

Examiner commentary
Candidate shows a complete correct method but makes a processing error when dividing 165 by 3 so M2 is earned.

Exemplar 3

1 mark

Examiner commentary
The candidate shows a partial method when dividing 165 by 3 but then does not complete. M1 is earned.
Question 11

Exemplar 1

6 marks

The diagram shows two right-angled triangles ABD and BCD, sharing a common side BD.
AD = 10 cm, BC = 12 cm and angle DBC = 60°.

Work out the length of AB.

Candidate shows a fully correct method with no errors and gives a correct solution.

Examiner commentary

Candidate shows a fully correct method with no errors and gives a correct solution.
Exemplar 2

3 marks

Work out the length of AB.

\[\text{Work out the length of AB.} \]

\[\sin 30^\circ = \frac{1}{2} \]

\[\sin 30^\circ \times 12 = 6 \]

\[\text{BD} = 6 \]

\[\cos 90^\circ = 0 \]

\[\tan 90^\circ = 1 \]

\[\tan 90^\circ \times 6 = 6 \]

\[\text{AB} = 6 \]

\[\text{cm} [6] \]

Examiner commentary

Candidate correctly finds BD and shows the method leading to this to earn B1 for \(\sin 30^\circ = \frac{1}{2} \), M1 for \(12 \times \sin 30^\circ \) and A1 for BD = 6. They cannot complete correctly to find AB so no further marks earned.
Exemplar 3

Work out the length of AB.

Examiner commentary
Candidate earns M1 for showing $BD = 12 \times \cos 60$ but then makes no further progress.
Question 12

Carol says that \(64^{-\frac{1}{2}} = \frac{1}{32} \).

Explain her error and give the correct value of \(64^{-\frac{1}{2}} \) in the form \(\frac{p}{q} \).

Exemplar 1 3 marks

She needs to square root 64 and not half it. The correct value of
\[64^{-\frac{1}{2}} = \frac{1}{\sqrt{64}} \quad \text{which is} \quad \frac{1}{8} \]

Examiner commentary
Candidate gives the correct answer of \(\frac{1}{8} \) and also correctly explains the error made and the correct step needed. Full marks earned.

Exemplar 2 2 marks

\[64^{\frac{1}{2}} \] gives 8 because \(8 \times 8 = 64 \) and \(8 \times 8 \) gives a number bigger than 1 so it would be \(\frac{1}{8} \) because negative power makes it a fraction.

Examiner commentary
Candidate gives the correct answer of \(\frac{1}{8} \) but is unable to explain the error made so this earns 2 marks only.
Question 13(a)

13 (a) Write \(\frac{5}{12}\) as a recurring decimal.

Exemplar 1

Examiner commentary
Correct answer with correct recurring decimal notation used so full marks earned.

Exemplar 2

Examiner commentary
Candidate reaches answer 0.41… which earns B1.
Question 13(b)

(b) Convert 0.76 to a fraction.

Exemplar 1

\[x = 0.76767676 \]
\[10x = 7.6767676 \]
\[100x = 76.767676 \]
\[100x - x = 99x \]
\[76.767676 - 0.767676 = 76 \]
\[99x = 76 \]
\[x = \frac{76}{99} \]

Examiner commentary

Candidate gives correct answer with supporting working and earns 2 marks.
Examiner commentary

Incorrect answer but candidate earns M1 for showing 76.76… in working.
Question 14

Exemplar 1 5 marks

14 The diagram shows a cylinder and a cone.

The cylinder has radius 2 cm and height 9 cm.
The cone has radius \(r \) cm and height \(h \) cm.

The ratio \(r : h \) is \(1 : 4 \).
The volume of the cone is equal to the volume of the cylinder.

Work out the value of \(r \).

[The volume \(V \) of a cone with radius \(r \) and height \(h \) is \(V = \frac{1}{3} \pi r^2 h \).]

\[
\text{volume of cylinder} = \pi r^2 h = \frac{2^2 \times 2 \times 9}{4 \times 9} = 36 \pi
\]

so

\[
36 \pi = \frac{1}{3} \pi r^2 h
\]

so

\[
108 = r^2 h & \quad \text{and } r : h \text{ is } 1 : 4
\]

\[
108 = r^2 \times \frac{1}{4} r
\]

so

\[
108 = 4 r^3
\]

\[
27 = r^3
\]

so

\[
r = 3
\]

\[
\sqrt[3]{108} = 4.76
\]

\[
h = 4 \times 3 = 12
\]

The total volume of the cylinder is

\[
36 \pi + \frac{1}{3} \pi r^2 h = 4 \times 3 = 36 \pi
\]

Examiner commentary

Candidate shows fully correct step by step working and gives a correct answer so 5 marks earned.
Examiner commentary

Candidate finds the volume of the cylinder correctly in terms of \(\pi \) to earn 2 marks but then makes no further progress.
Question 15

15 \(n \) is a positive integer.

Prove that \(13n + 3 + (3n - 5)(2n + 3) \) is a multiple of 6.

Exemplar 1

\[
13n + 3 + 6n^2 + 9n - 10n - 15
\]

\[
13n + 3 + 6n^2 + 9n - 10n - 15
\]

\[
6n^2 + 22n - 10n + 3 - 15
\]

\[
6n^2 + 2n - 12
\]

so as it is in the form \(6 \times k \) where \(k \) is any other number, \(k \) must be a multiple of 6.

Examiner commentary

Candidate shows a correct step by step method and completes all algebraic manipulation correctly with no omissions. They correctly remove a common factor of 6 from the expression, showing the factorised expression and then conclude correctly reflecting on the demand of the question.
Exemplar 2

3 marks

Examiner commentary

Candidate correctly expands brackets and simplifies the resulting expression to earn M2 A1. They make an error when factorising the expression and omit their conclusion so the final A1 is not earned.

Exemplar 3

2 marks

Examiner commentary

Candidate correctly expands the brackets to 4 terms to earn M2 but then makes an error when simplifying the expression and earns no further marks.
n is a positive integer.

Prove that $13n + 3 + (3n - 5)(2n + 3)$ is a multiple of 6.

\[
13n + 3 + 16n - 15
\]

\[
= 19n + 3 - 15 = 0
\]

\[
= 19n + 15
\]

\[
= 22n + 15
\]

\[
= 19n + 12
\]

\[
= n = 6
\]

\[
= 3n = 2
\]

\[
= n = \frac{2}{3}
\]

Examiner commentary

Candidate attempts to expand brackets and makes an error with one term. They earn M1 for three correct terms out of four shown.
Question 16(a)

16 A, B, C and D are points on the circumference of a circle.

PQ is a tangent to the circle at D.
Angle BDQ = 72° and angle ABD = 63°.

(a) Work out angle x.
Give a reason for your answer.

Angle x =° because ...
.. [2]

Exemplar 1

Angle x = 72° because alternate segment theorem
.. [2]

Examiner commentary

Angle x is given correctly and the correct terminology is given in the reasoning so both marks are earned.
Examiner commentary

Angle x is given correctly but the reasoning is not correct and does not use the required terminology of 'alternate segment'.
Question 16(b)

(b) Work out angle y. Give a reason for your answer.

Angle $y =$° because ...

... [2]

Exemplar 1 2 marks

Angle $y =$ $108°$ because angles opposite in a cyclic quadrilateral add up to $180°$.

... [2]

Examiner commentary

Angle y is given correctly and the correct terminology is given in the reasoning so both marks are earned.

Exemplar 2 1 mark

\[
\begin{align*}
\begin{array}{c}
\frac{z}{8} \\
- \frac{72}{108}
\end{array}
\end{align*}
\]

Angle $y =$ $108°$ because opposite angles in a quadrilateral in a circle add up to $180°$.

... [2]

Examiner commentary

Angle y is given correctly but the correct terminology is not given in the reasoning with the term ‘cyclic’ omitted so one mark only.
Question 17

Exemplar 1

4 marks

17 \((x + a)(x + 3)(2x + 1) = bx^3 + cx^2 + dx - 12\)

Find the value of \(a\), \(b\), \(c\) and \(d\).

\[(5c + a)(3x + 3)\]
\[x^2 + 3ax + ax + 3a\]

\[(5c + 3)(2xc + 1)\]
\[2xc^2 + 10xc + 6xc + 3\]
\[2xc^2 + 7xc + 3\]

\[
\begin{array}{c|ccc}
\text{x} & 2xc^2 & +7xc & +3c \\
\hline
+4 & & & \\
\hline
-4 & -8xc^2 & -28xc & -12 \\
\end{array}
\]

\[-12 \div 3 = -4\]

Examiner commentary

All values correctly given and correct working showing expansion of the three brackets.
Exemplar Candidate Work

Exemplar 2

Examiner commentary

Looking at the answer line first, the value of b is correctly given but the value of a is incorrect. The candidate’s answers for c and d correctly follow through from their incorrect value of a so 3 marks are earned.
Exemplar 3

17 \((x+a)(x+3)(2x+1) = bx^3 + cx^2 + dx + e\)

Find the value of \(a\), \(b\), \(c\) and \(d\).

\[
\begin{align*}
(x+a)(x+3)(2x+1) &= (2x^3 + 6x^2 + 3x + 2ax^2 + 6ax + 3a) \\
&= 2x^3 + 8x^2 + 3x + 2ax^2 + 6ax + 3a \\
&= 2x^3 + 8x^2 + 3x \\
2ax^2 + 7ax + 3a &= 12 \\
12 &= 2ax^2 + 7ax + 3a
\end{align*}
\]

\[
\frac{12}{3} = 4
\]

The candidate gives one correct value on the answer line with the others all incorrect. In the working on the third line, the candidate has shown a correct unsimplified expression for the three bracket expansion and this earns B2.

Examiner commentary

The candidate gives one correct value on the answer line with the others all incorrect. In the working on the third line, the candidate has shown a correct unsimplified expression for the three bracket expansion and this earns B2.
Exemplar 4

17. \((x + 3)(2x + 1) = bx^3 + cx^2 + dx - 12\)

Find the values of \(a, b, c\) and \(d\).

\[
(x + a)(2x^2 + 6x + x + 3) = bx^3 + cx^2 + dx - 12
\]

\[
(x + a) \textcolor{green}{2x^2 + 7x + 3} = bx^3 + cx^2 + dx - 12
\]

\[
(2x^3 + 7x^2 + 3x) = bx^3 + cx^2 + dx - 12
\]

\[
-74x^3 + 84x^2 - 36x
\]

Examiner commentary

The candidate scores 1 mark for giving a correct value for \(b\). In the working there is evidence of a correct two bracket expansion but not for a correct three bracket expansion so 1 mark overall.
Question 18(a)

18 (a) A straight line passes through the point (0, 6) and is perpendicular to \(y = 4x - 5 \).

Find the equation of this line, giving your answer in the form \(y = mx + c \).

(a) .. [3]

Exemplar 1 3 marks

Examiner commentary

A correct answer is given. The candidate shows understanding of the relationship between gradients of perpendicular lines and uses the given coordinate to find the constant value in the equation correctly.

Exemplar 2 1 mark

Examiner commentary

The candidate does not recall the relationship between gradients of perpendicular lines by giving `4` as the gradient but correctly finds the constant value 6 in the equation to score M1.
Question 18(b)

Exemplar 1

6 marks

(b) Work out the coordinates of the intersection of the graphs of \(y = 4x - 5 \) and \(y = x^2 - 17 \).

\[y = 4x - 5 \]
\[y = x^2 - 17 \]
\[x^2 - (4x - 5) = 17 \]
\[x^2 - 4x + 5 = 17 \]
\[x^2 - 4x = 12 \]
\[(x - 2)(x - 6) = 0 \]
\[x = 2 \]
\[x = 6 \]

\[y = 4x - 5 \]
\[y = 2(2) - 5 \]
\[y = 13 \]

\[y = 4x - 5 \]
\[y = 4(6) - 5 \]
\[y = 19 \]

(b) \((-2, 13)\), \((-6, 19)\) [6]

Examiner commentary

Candidate gives a correct solution supported by a correct algebraic method and scores full marks.
Examiner commentary

Candidate shows a correct first step in forming an equation in x from the two given equations. They simplify the equation to a 3 term quadratic and then attempt to factorise but make an error with the factors. They earn M2 for the quadratic equation and M1 for a pair of factors in brackets which, when expanded, will give 2 correct terms in the quadratic equation.
Examiner commentary

Candidate shows a correct first step in forming an equation in x from the two given equations but does not simplify it to a 3 term quadratic. M1 only is earned for the first step.
Question 19(a)

Exemplar 1

4 marks

Examiner commentary

A correct histogram with all blocks correctly drawn and vertical axis correctly scaled and labelled ‘frequency density’.
Examiner commentary

The bars on the histogram are all correct heights and widths and the vertical axis is correctly scaled but incorrectly labelled as class width. Candidate earns 3 marks for the correct blocks.
Examiner commentary

Only two of the blocks have been drawn correctly and by the table the candidate shows two correct frequency densities so no mark earned at this stage. The vertical axis is correctly scaled and labelled and this earns one mark.
Question 19(b)

(b) Ceri says

The longest time that any of these students took to travel to school was 80 minutes.

Is she correct?
Give a reason for your answer.

... [1]

Exemplar 1 1 mark

NO the longest was between 40 and 80

but might not be 80 .. [1]

Examiner commentary

An example of a correct reason which gives an acceptable decision ‘No’ and refers to the data being anywhere in the interval but not necessarily 80 minutes.

Exemplar 2 0 marks

Give a reason for your answer.

Yes because but it is very unusual because of the range:.. [1]

Examiner commentary

The candidate makes an incorrect decision ‘Yes’ and so this scores no marks.
Question 19(c)(i)

(c) Ceri also claims that 25% of all of the students at this Academy took more than 30 minutes to travel to school.

(i) Show how Ceri might have worked out her claim. [2]

Exemplar 1 2 marks

\[
\frac{42}{168} = \frac{22}{84} = \frac{11}{42}
\]

Examiner commentary
Candidate shows how 42 is established from 20 + 44 ÷ 2 and then shows that this is 25% of 168. Full marks are earned.

Exemplar 2 1 mark

\[
\frac{20 < t \leq 40}{30 < t \leq 40} = 22
\]

Examiner commentary
Candidate shows how 42 is established from 20 + 44 ÷ 2 to earn M1 but does not earn the A mark as there is an error in finding 25% of 168.
Question 19(c)(ii)

(ii) State one assumption that Ceri has made in making her claim.

Exemplar 1 1 mark

That the frequency within the $20 \leq t \leq 40$ range are evenly distributed, i.e. there are the same amount of people taking.

Examiner commentary
An example of an acceptable reason that refers to the even frequency distribution in the relevant interval.

Exemplar 2 0 marks

That there is no traffic or congestion.

Examiner commentary
An incorrect reason that does not address the issue.
Question 20(a)(i)

20 In the following equation, \(n \) is an integer greater than 1.

\[(\sqrt{2})^n = k\sqrt{2} \]

(a) (i) Find \(k \) when \(n = 7 \).

(a)(i) \[k = \ldots \rd

Exemplar 1

Examiner commentary

A correct answer supported by correct working.

Exemplar 2

Examiner commentary

The candidate has shown correct working in reaching \(8\sqrt{2} \) to earn M1 but has not given the \(k \) value as 8 in the answer.
Question 20(a)(ii)

(ii) Find \(n \) when \(k = 64 \).

(ii) \(n = \) ... \([2]\)

Exemplar 1

\[
64\sqrt{2} = 2^{6.5} \\
\sqrt{2}^{13} \\
\]

(ii) \(n = \) ... \([2]\)

Examiner commentary
An unusual method to use an index of 6.5 in the working but the candidate correctly associates \(2^{6.5} \) with \((\sqrt{2})^{13} \) and gives the correct answer.

Exemplar 2

\[
n = 9, 9', 9'', ... 12 \\
\]

(ii) \(n = \) ... \([2]\)

Examiner commentary
An incorrect answer, but in the working the candidate has given the correct figures for at least 2 different values of \(n \) to earn B1.
Question 20(b)

(b) Show that \(\frac{14}{3 - \sqrt{2}} \) can be written in the form \(a + b\sqrt{2} \). [5]

Exemplar 1 5 marks

Examiner commentary
In ‘Show that’ questions, it is important that the candidate shows each step of working to reach the answer. Here all steps are shown clearly and there are no errors in reaching the correct answer.

Exemplar 2 4 marks

Examiner commentary
The candidate shows the correct working to rationalise the surd expression and then correctly deals with the brackets in the numerator and denominator but then there is an error when dividing by 7 resulting in an incorrect answer. The working shown scores M1 and B3.
Exemplar 3

2 marks

Examiner commentary
The candidate shows the correct working to rationalise the surd expression and then correctly deals with the brackets in the numerator but makes an error when expanding the denominator. The working shown scores M1M1.

Exemplar 4

0 marks

Examiner commentary
The candidate realises that the surd expression needs to be rationalised but cannot recall how to correctly do this and makes an error at the first stage. No marks were earned.
We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print
OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by OCR. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

This resource may be freely copied and distributed, as long as the OCR logo and this small print remain intact and OCR is acknowledged as the originator of this work.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at:
resources.feedback@ocr.org.uk

OCR acknowledges the use of the following content:
Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Looking for a resource?
There is now a quick and easy search tool to help find free resources for your qualification:
www.ocr.org.uk/i-want-to/find-resources/