Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
The total mark for the paper is 100.

Marks for method are indicated by an M. A method that is dependent on previous work is DM.

Marks for accuracy are of two kinds:
(i) A mark indicates correct work only and
(ii) F mark indicates that a "follow through" is allowed.

If an M mark is not gained then nor do any of the accuracy marks associated with it.

Marks not associated with a method are denoted B, which should be treated as "correct only", and E which may be wrong because of a previous error.

Marks are not divisible except as indicated. e.g. A 2,1 means that 2 are awarded for a correct answer and 1 for an answer that is only partially correct, as agreed at the meeting of Examiners.

When the method of solution is not one that has been discussed and does not fit the existing scheme then an alternative scheme should be devised which maintains the same number of M, A, F, B and E marks. You should also bring this to the attention of the Principal Examiner.

The rubric says that the norm is for answers to be given to 3 s.f. except where indicated. Where this rubric is ignored then 1 mark should be deducted once in the paper, at the point where it is first met. This should be indicated -1, TMSF or -1TFSF. Details will be discussed at the meeting of examiners.

Misreading of a question (including the candidate's own working) should normally be penalised by the loss of the relevant accuracy mark or two marks (whichever is less); but if the question is made substantially easier then further penalties may be imposed.

Sub-marks should be shown near to the relevant work. If these are individual marks then the appropriate letter should be given. Sub-marks are given in the question paper and the mark scheme. For substantially correct solutions a number of sub-marks may be combined, even up to the total mark for the question for a totally correct question. The sum of the sub-marks are then added and ringed at the end of the question. (This means that a totally correct question has the total mark written twice - once as a "sum of sub-marks" and unringed and once ringed as the total for the question.) The total mark for the paper should be given on the front page, top right and ringed.

Work that is crossed out and not replaced should be marked. If work has been crossed out and replaced then the replacement work should be marked even if it is incorrect and the crossed out work correct.

Any notation that is understandable may be used to support your marking. In particular:

isw – ignore subsequent working
www – without wrong working
soi – seen or implied
An independent person should be used to check the summation of marks. You should add the ringed marks on the paper to check the addition and the independent checker should add the unringed marks. There is a fee paid for this checking - if you are unable to find anyone to do this work the Board and the Principal Examiner must be informed.

Please mark in red.

If examiners have any doubt about the interpretation of any instructions or if any point of difficulty arises during the marking of scripts, they should communicate with the Principal Examiner.
Section A

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
<th>Mark Scheme</th>
</tr>
</thead>
</table>
| 1 | 3 – x < 4(x – 1)
⇒ 3 – x < 4x – 4
⇒ 7 < 5x
⇒ x > \frac{7}{5} | B1
Sight of 4x – 4
B1
Sight of ax and b where either a = 5 or b = 7 oe
B1
Final answer WWW |
| 2 | \[
= 1 - \left(\frac{12}{1}\right)x + \left(\frac{12}{2}\right)x^2 - \left(\frac{12}{3}\right)x^3
\]
\[= 1 - 12x + 66x^2 - 220x^3
\]
Ignore terms of higher power | B1
Sight of 4x – 4
B1
Sight of ax and b where either a = 5 or b = 7 oe
B1
2 out of 3 coefficients worked out
All coefficients and 1 |
| 3 (i) | Remainder is f(-1)
= -1 – 5 – 2 + 8 = 0
For long division \(x^3 + x^2\) in working and \(x^2\) in quotient must be seen for M1
Or by inspection \((x + 1)(x^2 + \ldots)\) for M1 | M1
Or long division
0 must be seen or implied
A1 |
| (ii) | \[x^3 - 5x^2 + 2x + 8 = 0
\]
\[⇒ (x+1)(x^2 - 6x + 8) = 0
\]
\[⇒ (x+1)(x-2)(x-4) = 0
\]
\[⇒ x = -1, 2, 4
\]
Allow ans with no working
Alt: Trial to find one root: \(x = 2, 4\)
⇒ \(x = -1, 2, 4\) | M1
Factorise cubic to give \((x + 1)(ax^2 + bx + c)\)
DM1
Solve their quadratic
A1
A1 |
<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>M1</th>
<th>A1</th>
<th></th>
<th>(ii)</th>
<th>M1</th>
<th>B1</th>
<th>B1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\left(\frac{5}{6} \right)^4 = \frac{625}{1296} = 0.4823)</td>
<td>Either form or 0.482 isw</td>
<td></td>
<td></td>
<td>(1 - \left(\frac{5}{6} \right)^4 - 4 \left(\frac{5}{6} \right)^3 \left(\frac{1}{6} \right))</td>
<td>1-2 terms</td>
<td>4 soi</td>
<td>Powers</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>(= 1 - \frac{625}{1296} - \frac{500}{1296} = 1 - 0.4823 - 0.3858)</td>
<td></td>
<td></td>
<td></td>
<td>(= \frac{171}{1296} = \frac{19}{144} = 0.1319)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alt: Add three terms</td>
<td>M1</td>
<td>B1 both coeffs</td>
<td>B1 powers</td>
<td>A1 ans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6 \left(\frac{5}{6} \right)^3 \left(\frac{1}{6} \right)^2 + 4 \left(\frac{5}{6} \right)^2 \left(\frac{1}{6} \right)^3 + \left(\frac{1}{6} \right)^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 0.11574 + 0.01543 + 0.00077)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 0.1319)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\frac{dy}{dx} = 3x^2 - 6x - 9 \]

\[= 0 \text{ when } 3x^2 - 6x - 9 = 0 \Rightarrow x^2 - 2x - 3 = 0 \]

\[\Rightarrow (x - 3)(x + 1) = 0 \Rightarrow x = 3, -1 \]

When \(x = -1, y = 12 \)

\[\frac{d^2y}{dx^2} = 6x - 6 < 0 \text{ when } x = -1 \text{ so maximum} \]

Allow SC1 for \((-1, 12)\) with no working

Alternative ways to demonstrate maximum at \(x = -1 \)

Value of \(y \)

\[
\begin{array}{ccc}
-1 & -1 & -1 + \\
y < 12 & y = 12 & y < 12 \\
\end{array}
\]

Gradient of tangent

\[
\begin{array}{ccc}
-1 & -1 & -1 + \\
\frac{dy}{dx} > 0 & \frac{dy}{dx} = 0 & \frac{dy}{dx} < 0 \\
\hline
\end{array}
\]

(ii) General shape:

- Turning points in correct quadrants
- Intercept on \(y \) axis in \([0, 12]\)
- Does not turn back on itself.

\[
\frac{\dot{u} \cdot \dot{v}}{a} = \frac{u^2 + v^2}{2} = 2016 \Rightarrow \dot{a} = -\frac{2u \cdot \dot{v}}{a} = -\frac{8064}{4032} = -2 \text{ m s}^{-2}
\]

6 (i) \(u = 90, v = 6, s = 2016 \)

\[\Rightarrow 6^2 = 90^2 + 2a \cdot 2016 \]

\[\Rightarrow a = \frac{-90^2 - 6^2}{4032} = \frac{-8064}{4032} = -2 \text{ m s}^{-2} \]

(ii) \(u = 90, v = 6, a = -2 \)

\[\Rightarrow 6 = 90 - 2t \]

\[\Rightarrow t = \frac{84}{2} = 42 \text{ secs} \]

The two parts can be the other way round
7 (i) \[
\frac{\sin \theta + \cos \theta}{\cos \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta}
\]

- \text{B1} \hspace{1cm} 1

Alt:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
\[
\Rightarrow \frac{\sin \theta + \cos \theta}{\sin \theta} = \frac{1}{\sin \theta}
\]
\[
\Rightarrow \frac{\sin \theta + \cos \theta}{\cos \theta} = \frac{1}{\sin \theta \cos \theta}
\]

(ii) \[
\frac{\sin \theta \cos \theta}{1} = \frac{1}{4} \Rightarrow \frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} = 4
\]
\[
\Rightarrow \tan \theta + \frac{1}{\tan \theta} = 4
\]

- \text{M1} \hspace{1cm} \text{A1} \hspace{1cm} \text{Using (i) and tan} \hspace{1cm} \text{2}

(iii) \[
\tan \theta + \frac{1}{\tan \theta} = 4 \Rightarrow \tan^2 \theta + 1 = 4 \tan \theta
\]
\[
\Rightarrow t^2 - 4t + 1 = 0
\]
\[
t = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3} \hspace{0.5cm} (=3.732 \text{ and } 0.268)
\]
\[
\Rightarrow \theta = 15^\circ \text{ and } 75^\circ
\]

- \text{M1} \hspace{1cm} \text{M1} \hspace{1cm} \text{Sub numbers into correct quadratic} \hspace{1cm} \text{A1} \hspace{1cm} \text{3sf or more} \hspace{1cm} \text{A1} \hspace{1cm} \text{Rounds to these} \hspace{1cm} \text{4}

Sp Case B1 for 15 and B1 for 75 with no supporting working

8 \[
v = 60 (t^4 - 10t^3 + 25t^2)
\]
\[
\Rightarrow s = \int_0^5 (60t^4 - 600t^3 + 1500t^2) \, dt
\]
\[
= \left[12t^5 - 150t^4 + 500t^3 \right]_0^5
\]
\[
= 6250 \text{ m}
\]

- \text{M1} \hspace{1cm} \text{A2,1} \hspace{1cm} \text{Integrate} \hspace{1cm} \text{Terms 1 each error} \hspace{1cm} \text{DM1} \hspace{1cm} \text{Sub } t = 5 \hspace{1cm} \text{A1} \hspace{1cm} \text{Cao} \hspace{1cm} \text{5}

If 60 is left out then 4/5 only.
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 9 | (i) | Centre is \(\left(\frac{1+15}{2}, \frac{3+1}{2} \right) = (8,2) \) | B1 | For 8 WWW
For 2 WWW | 2 |
| | | Nb Working with vectors to give diameter = [14,2]
and so radius = [7,1] giving centre (15 – 7, 3 –1) is
correct. | | | |
| | (ii) | \(|PC| = \sqrt{(8-1)^2 + (2-3)^2} = \sqrt{50} = 5\sqrt{2} \) | M1 | For \(\sqrt{50} \) | 2 |
| | | Alt:
Length of diameter = \(\sqrt{(15-1)^2 + (3-1)^2} = \sqrt{14^2 + 2^2} \)
\(= \sqrt{200} = 10\sqrt{2} \)
\(\Rightarrow \) Radius = \(5\sqrt{2} \) | A1 | | |
| | (iii) | \((x-8)^2 + (y-2)^2 = 50 \)
\(\Rightarrow x^2 + y^2 - 16x - 4y + 64 + 4 - 50 = 0 \)
\(\Rightarrow x^2 + y^2 - 16x - 4y + 18 = 0 \) | M1 | Correct use of formula
including 50 and using
their midpoint. | 2 |
| 10 | (i) | Sub (0,4)
Gives \(k = \frac{1}{2} \) | M1 | | 2 |
| | | | A1 | | |
| | (ii) | Sub (0, 4)
Gives \(c = -\frac{1}{4} \) | M1 | | 2 |
| | | | A1 | | |
| | (iii) | When \(x = 3 \)
\(y = -\frac{1}{4} (3-2)^2 (3-4) = 0.25 \) for cubic
Or when \(x= 3, y > 0 \) for cubic
John’s model is better | B1 | | 2 |
Section B

Allow 4 sf in this question

| 11 | (i) | \[
\frac{AF}{\sin 70} = \frac{BF}{\sin 60} = \frac{100}{\sin 50}
\]

\[\Rightarrow AF = \frac{100}{\sin 50} \times \sin 70 \quad (=122.7 \text{ m})\]

\[\Rightarrow BF = \frac{100}{\sin 50} \times \sin 60 = 113.1 \text{ m} \quad \text{oe}\]

Alt: Sin rule applied
Sight of 50 and 70

| 11 | (ii) | FT = AF \times \tan 10

\[= 122.7 \tan 10 = 21.6 \text{ m}\]

Anything that rounds to 21.6

| 11 | (iii) | CF = 122.7 \sin 60

\[= 106.3 \text{ m}\]

Or: their BF \times \sin 70

\[\Rightarrow \tan \theta = \frac{Their FT}{Their CF}\]

\[\Rightarrow \theta = 11.5^\circ\]

Alt: to find CF.

Area of triangle = \(\frac{1}{2} \times AF \times AB \times \sin 60 = 5313\)

\[\Rightarrow \frac{1}{2} \times CF \times 100 = 5313 \Rightarrow CF = 106.3 \quad \text{A1}\]
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>(y = 0.3x^2 - 1.5x)</td>
<td>B1 Derivative</td>
</tr>
<tr>
<td></td>
<td>[\frac{dy}{dx} = 0.6x - 1.5]</td>
<td>M1 Find (g_t) and use of (m_1 \times m_2 = -1)</td>
</tr>
<tr>
<td></td>
<td>When (x = 5), (g_t = 1.5)</td>
<td>A1 For (g_n)</td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow g_n = -\frac{2}{3})</td>
<td>A1 Line in any simplified form</td>
</tr>
<tr>
<td></td>
<td>AB: (y = -\frac{2}{3}(x - 5))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow 2x + 3y = 10)</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>Solve simultaneously:</td>
<td>M1 Method to eliminate one variable</td>
</tr>
<tr>
<td></td>
<td>(3y + 2x = 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2y + 3x = 0)</td>
<td>F1 (x) and (y).</td>
</tr>
<tr>
<td></td>
<td>(6y + 4x = 20)</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(6y + 9x = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5x = -20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow x = -4, y = 6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC1: answer with no working</td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>Area of triangle = (\frac{1}{2} \times 5 \times \text{their } y = 15)</td>
<td>E1 Might appear anywhere in this part</td>
</tr>
<tr>
<td></td>
<td>Area under curve = (\int_0^5 (0.3x^2 - 1.5x) , dx)</td>
<td>M1 Ignore limits here</td>
</tr>
<tr>
<td></td>
<td>(= \left[0.1x^3 - 0.75x^2 \right]_0^5)</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(= -6.25)</td>
<td>A1 Condone lack of (-ve) sign</td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow \text{Area of card} = 15 + 6.25 = 21.25)</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>Other methods, follow scheme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ieE1 Area of triangle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1 area as integral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 Integrand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 value for area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 Final answer</td>
<td></td>
</tr>
</tbody>
</table>
Question 13

(i)

Ali: \(\frac{72}{t} \)

Beth: \(\frac{72}{t + 2} \)

Accept Beth: \(\frac{72}{t} - 3 \)

(ii)

\[
\frac{72}{t} - \frac{72}{t + 2} = 3
\]

\[
\Rightarrow 72(t + 2) - 72t = 3t(t + 2)
\]

\[
\Rightarrow 72t + 144 - 72t = 3t(t + 2)
\]

\[
\Rightarrow 3t(t + 2) = 144
\]

Subtraction of their terms = 3

Multiply out and simplify

Alternative (based on alternative answer to (i))

\[
\frac{72}{t} - 3 = t + 2
\]

\[
\Rightarrow 72t = (72 - 3t)(t + 2)
\]

\[
\Rightarrow 72t = 72t - 3t^2 + 144 - 6t
\]

\[
\Rightarrow 3t^2 + 6t = 144 \Rightarrow 3(t + 2) = 144
\]

(iii)

\[
3(t + 2) = 144
\]

\[
\Rightarrow 3t^2 + 6t - 144 = 0
\]

\[
\Rightarrow t^2 + 2t - 48 = 0
\]

\[
\Rightarrow (t + 8)(t - 6) = 0
\]

\[
\Rightarrow t = 6
\]

\[
\Rightarrow \text{Ali takes 6 hours and Beth takes 8 hours.}
\]

SC1 for answer with no working

What is “simplified form”?

Either a quadratic with all three terms on left = 0 ready for the use of the formula

OR:

Divide through by 3 giving \(t^2 + 2t = 48 \) ready for solving by the completion of the square.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>(i)</td>
<td>200x + 100y ≥ 1500 oe</td>
</tr>
<tr>
<td></td>
<td>(ii)</td>
<td>y ≥ x</td>
</tr>
<tr>
<td></td>
<td>(iii)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(iv)</td>
<td>C = 80x + 60y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct point is (5, 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost = £700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In absence of OF, 80 × 5 + 60 × 5 must be seen</td>
</tr>
<tr>
<td></td>
<td>(v)</td>
<td>Now minimum cost is at (7, 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Giving £620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nb (8, 0) gives £640</td>
</tr>
</tbody>
</table>
OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored