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1 The differential equation
d2y

dt2
+ 2

dy
dt

+ y = f(t) is to be solved for t ≥ 0 subject to the conditions that

dy
dt

= 0 and y = 0 when t = 0.

Firstly consider the case f(t) = 2.

(i) Find the solution for y in terms of t. [10]

Now consider the case f(t) = e−t.

(ii) Explain briefly why a particular integral cannot be of the form ae−t or ate−t. Find a particular
integral and hence solve the differential equation, subject to the given conditions. [8]

(iii) For t > 0, show that y > 0 and find the maximum value of y. Hence sketch the solution for t ≥ 0.
[You may assume that tke−t → 0 as t → ∞ for any k.] [6]

2 A raindrop falls from rest through mist. Its velocity, v m s−1 vertically downwards, at time t seconds
after it starts to fall is modelled by the differential equation

(1 + t)dv
dt

+ 3v = (1 + t)g − 3.

(i) Solve the differential equation to show that v = 1
4
g(1 + t) − 1 + (1 − 1

4
g)(1 + t)−3. [10]

The model is refined and the term −3 is replaced by the term −2v, giving the differential equation

(1 + t)dv
dt

+ 3v = (1 + t)g − 2v.

(ii) Find the solution subject to the same initial conditions as before. [9]

(iii) For each model, describe what happens to the acceleration of the raindrop as t → ∞. [5]
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3 The population, P, of a species at time t years is to be modelled by a differential equation. The initial
population is 2000.

At first the model
dP
dt

= 0.5P is used.

(i) Find P in terms of t. [3]

To take account of observed fluctuations, the model is refined to give
dP
dt

= 0.5P + 170 sin 2t.

(ii) State the complementary function for this differential equation. Find a particular integral and
hence state the general solution. [8]

(iii) Find the solution subject to the given initial condition. [2]

The model is further refined to give
dP
dt

= 0.5P + P
2
3 sin 2t. This is to be solved using Euler’s method.

The algorithm is given by tr+1 = tr + h, Pr+1 = Pr + hṖr.

(iv) Using a step length of 0.1 and the given initial conditions, perform two iterations of the algorithm
to estimate the population when t = 0.2. [4]

The population is observed to tend to a non-zero finite limit as t →∞, so a further model is proposed,
given by

dP
dt

= 0.5P(1 − P
12 000

)
1
2
.

(v) Without solving the differential equation,

(A) find the limiting value of P as t → ∞, [3]

(B) find the value of P for which the rate of population growth is greatest. [4]

4 The simultaneous differential equations

dx
dt

= −3x + y + 9,

dy
dt

= −5x + y + 15,

are to be solved for t ≥ 0.

(i) Show that
d2x

dt2
+ 2

dx
dt

+ 2x = 6. [5]

(ii) Find the general solution for x. [7]

(iii) Hence find the corresponding general solution for y. [3]

(iv) Find the solutions subject to the conditions that x = y = 0 when t = 0. [4]

(v) Sketch, on separate axes, graphs of the solutions for t ≥ 0. [5]
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