Oxford Cambridge and RSA

Level 3 Cambridge Technical in Engineering
 05822/05823/05824/05825/05873

Formula Booklet

Unit 1 Mathematics for engineering
Unit 2 Science for engineering
Unit 3 Principles of mechanical engineering
Unit 4 Principles of electrical and electronic engineering
Unit 23 Applied mathematics for engineering

Abstract

This booklet contains formulae which learners studying the above units and taking associated examination papers may need to access.

Other relevant formulae may be provided in some questions within examination papers. However, in most cases suitable formulae will need to be selected and applied by the learner. Clean copies of this booklet will be supplied alongside examination papers to be used for reference during examinations.

Formulae have been organised by topic rather than by unit as some may be suitable for use in more than one unit or context.

Note for teachers

This booklet does not replace the taught content in the unit specifications or contain an exhaustive list of required formulae. You should ensure all unit content is taught before learners take associated examinations.

1. Trigonometry and Geometry

1.1 Geometry of 2D and 3D shapes

1.1.1.Circles and arcs

Circle: radius r

$$
\begin{gathered}
\text { Area of a circle }=\pi r^{2} \\
\text { Circumference of a circle }=2 \pi r
\end{gathered}
$$

Co-ordinate equation of a circle: radius r, centre (a, b)

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Arc and sector: radius r, angle θ

Arc length $=\theta r, \quad$ for θ expressed in radians
Area of sector $=\frac{1}{2} r^{2} \theta$, for θ expressed in radians

Arc length $=\frac{\theta}{180} \pi r, \quad$ for θ expressed in degrees
Area of sector $=\frac{\theta}{360} \pi r^{2}$, for θ expressed in degrees

Converting between radians and degrees

$$
\begin{aligned}
& x \text { radians }=\frac{180 x}{\pi} \text { degrees } \\
& x \text { degrees }=\frac{\pi x}{180} \text { radians }
\end{aligned}
$$

1.1.2 Triangles

Area $=\frac{1}{2} b h$ or $\frac{1}{2} b c \sin A$

1.2 Volume and Surface area of 3D shapes

Cuboid

$$
\begin{aligned}
& \begin{aligned}
\text { Surface area } & =2 l w+2 w h+2 h l \\
& =2(l w+w h+h l)
\end{aligned} \\
& \text { Volume }=l w h
\end{aligned}
$$

Sphere

Surface area $=4 \pi r^{2}$
Volume $=\frac{4}{3} \pi r^{3}$

Cone

Surface area $=\pi r^{2}+\pi r l$
Volume $=\frac{1}{3} \pi r^{2} h$

Cylinder

> Surface area $=2 \pi r^{2}+2 \pi r h$
> Volume $=\pi r^{2} h$

Rectangular Pyramid

Prism

Volume $=$ area of shaded cross-section $\times l$

Density

Density $=\frac{\text { mass }}{\text { volume }}$

1.3 Centroids of planar shapes

1.4 Trigonometry

$\sin \theta=\frac{a}{c}$
$\cos \theta=\frac{b}{c}$
$\tan \theta=\frac{a}{b}$
Pythagoras' rule: $c^{2}=a^{2}+b^{2}$

Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$

1.4.1 Trigonometric identities

Basic trigonometric values

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos 60^{\circ}=\frac{1}{2} \\
& \tan 60^{\circ}=\sqrt{3} \\
& \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}} \\
& \tan 45^{\circ}=1 \\
& \sin 30^{\circ}=\frac{1}{2} \\
& \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \tan 30^{\circ}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Trigonometric identities

$\sin A=\cos \left(90^{\circ}-A\right)$ for angle A in degrees
$\cos A=\sin \left(90^{\circ}-A\right)$ for angle A in degrees

$$
\begin{aligned}
\sin A & =\cos \left(A-\frac{\pi}{2}\right) \\
\cos A & =-\sin \left(A-\frac{\pi}{2}\right)
\end{aligned}
$$

$$
\tan A=\frac{\sin A}{\cos A}
$$

$$
\sin ^{2} A+\cos ^{2} A=1
$$

$$
\sin (-A)=-\sin A
$$

$$
\cos (-A)=\cos A
$$

$$
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B
$$

$$
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
$$

$$
\sin 2 A=2 \sin A \cos A
$$

$$
\cos 2 A=\cos ^{2} A-\sin ^{2} A
$$

2. Calculus

2.1 Differentiation

$\mathrm{f}(x)$	$\frac{\mathrm{df}(x)}{\mathrm{d} x}$
c	0
x^{n}	$n x^{n-1}$
$\sin (a x)$	$a \cos (a x)$
$\cos (a x)$	$-a \sin (a x)$
$\tan (a x)$	$a \sec ^{2}(a x)$
$\mathrm{e}^{a x}$	$a \mathrm{e}^{a x}$
$\ln (a x)$	$\frac{1}{x}$
a^{x}	$a^{x} \ln a$
$\log _{a} x$	$\frac{1}{x \ln a}$

2.1.1 Differentiation of the product of two functions

If $y=u \times v$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

2.1.2 Differentiation of the quotient of two functions

$$
\text { If } y=\frac{u}{v} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

2.1.3 Differentiation of a function of a function

If $y=u(v)$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} v} \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

2.2 Integration

2.2.1 Indefinite integrals

$\mathrm{f}(x)$	$\int \mathrm{f}(x) \mathrm{d} x(+c)$
a	$a x$
for $n \neq-1$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln \|x\|$
$\mathrm{e}^{a x}$	$\frac{\mathrm{e}^{a x}}{a}$
a^{x}	$\frac{a^{x}}{\ln a}$
$\sin (a x)$	$\frac{-\cos (a x)}{a}$
$\cos (a x)$	$\frac{\sin (a x)}{a}$

2.2.2 Definite integral

$$
\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x=[\mathrm{F}(x)]_{a}^{b}=\mathrm{F}(b)-\mathrm{F}(a)
$$

2.2.3 Integration by parts

$$
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

3. Algebraic formulae

3.1 Solution of quadratic equation

$$
\begin{aligned}
& a x^{2}+b x+c=0, \quad a \neq 0 \\
& \Rightarrow \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

3.2 Exponentials/Logarithms

$$
y=\mathrm{e}^{a x} \Rightarrow \ln y=a x
$$

4. Measurement

Absolute error = indicated value - true value
Relative error = absolute error
true value

Absolute correction = true value - indicated value
Relative correction $=$ absolute correction true value

5. Statistics

For a sample, size $N, x_{1}, x_{2}, x_{3}, \ldots, x_{N}$,
sample mean $\quad \bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{N}}{N}$
standard deviation

$$
S=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-(\bar{x})^{2}}
$$

5.1 Probability

For events A and B, with probabilities of occurrence $P(A)$ and $P(B)$,

$$
\mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B)
$$

If A and B are mutually exclusive events,

$$
\begin{gathered}
\mathrm{P}(A \text { and } B)=0 \\
\mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)
\end{gathered}
$$

If A and B are independent events,

$$
\mathrm{P}(A \text { and } B)=\mathrm{P}(A) \times \mathrm{P}(B)
$$

6. Mechanical equations

6.1 Stress and strain equations

$$
\begin{gathered}
\text { axial stress }(\sigma)=\frac{\text { axial force }}{\text { cross sectional area }} \\
\text { axial strain }(\xi)=\frac{\text { change in length }}{\text { original length }} \\
\text { shear stress }(\tau)=\frac{\text { shear force }}{\text { shear area }} \\
\text { Young's modulus }(E)=\frac{\text { stress }}{\text { strain }} \\
\text { Working or allowable stress }=\frac{\text { ultimate stress }}{\text { Factor of Safety (FOS) }}
\end{gathered}
$$

6.2 Mechanisms

Mechanical advantage $(M A)=\frac{\text { output force (or torque) }}{\text { input force (or torque) }}$

Velocity ratio $(V R)=\frac{\text { velocity of output from a mechanism }}{\text { velocity of input to a mechanism }}$

6.2.1 Levers

- Class one lever

- Class two lever

- Class three lever

$$
\mathrm{MA}=\frac{F_{0}}{F_{\mathrm{I}}}=\frac{a}{b} \quad V R=\frac{V_{0}}{V_{\mathrm{I}}}=\frac{b}{a}
$$

6.2.2 Gear systems

MA $=\frac{\text { Number of teeth on output gear }}{\text { Number of teeth on input gear }}$
VR $=$ Number of teeth on input gear
Number of teeth on output gear

6.2.3 Belt and pulley systems

MA = Diameter of output pulley
Diameter of input pulley
VR = Diameter of input pulley
Diameter of output pulley

6.3 Dynamics

Newton's equation force $=$ mass x acceleration $(F=m a)$
Gravitational potential energy $\left(W_{p}\right)=$ mass x gravitational acceleration x height (mgh)
Kinetic energy $\left(W_{k}\right)=1 / 2$ mass x velocity ${ }^{2}\left(\frac{1}{2} m v^{2}\right)$
Work done $=$ force \times distance $(F s)$
Instantaneous power $=$ force \times velocity $(F v)$
Average power $=$ work done $/$ time $\left(\frac{W}{t}\right)$
Friction Force \leq coefficient of friction x normal contact force ($F \leq \mu N$)
Momentum of abody $=$ mass \mathbf{x} velocity $(m v)$
Pressure $=$ force $/ \operatorname{area}\left(\frac{F}{A}\right)$

6.4 Kinematics

Constant acceleration formulae

a - acceleration
s - distance
t - time
u - initial velocity
v - final velocity

$$
\begin{gathered}
v^{2}=u^{2}+2 a s \\
s=u t+\frac{1}{2} a t^{2} \\
v=u+a t \\
s=\frac{1}{2}(u+v) t \\
s=v t-\frac{1}{2} a t^{2}
\end{gathered}
$$

6.5 Fluid mechanics

Pressure due to a column of liquid

$$
=\text { height of column } \times \text { gravitational acceleration } \times \text { density of liquid }(h g \rho)
$$

Up-thrust force on a submerged body

$=$ volume of submerged body \times gravitational acceleration \times density of liquid $(V g \rho)$

6.5.1 Energy equations

Non-flow energy equation

$U_{1}+Q=U_{2}+W$
so $Q=\left(U_{2}-U_{1}\right)+W$
where Q = energy entering the system
W = energy leaving the system
$U_{1}=$ initial energy in the system
$U_{2}=$ final energy in the system.

Steady flow energy equation

$Q=\left(W_{2}-W_{1}\right)+W$
where $Q=$ heat energy supplied to the system
$W_{1}=$ energy entering the system
$W_{2}=$ energy leaving the system
$W=$ work done by the system.

7. Thermal Physics

p - pressure
V - volume
C - constant
T - absolute temperature
n - number of moles of a gas
R - the gas constant

Boyle's law	$p V=C$	$p_{1} V_{1}=p_{2} V_{2}$
Charles' law	$\frac{V}{T}=C$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
Pressure law	$\frac{p}{T}=C$	$\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}$
Combined gas law	$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$	
Ideal gas law	$p V=n R T$	
Characteristic gas law	$p V=m R T$ where $m=$ mass of specific gas and	
$R=$ specific gas constant		
Efficiency	$\eta=\frac{\text { work output }}{\text { work input }}$	

7.1 Heat formulae

Latent heat formula

Heat absorbed or emitted during a change of state, $Q=m L$
where $Q=$ Energy, $L=$ latent heat of transformation, $m=$ mass

Sensible heat formula

Heat energy, $Q=m c \Delta T$
where $Q=$ Energy, $m=$ mass, $c=$ specific heat capacity of substance,
ΔT is change in temperature

8. Electrical equations

Q = charge	$N=$ number of turns
$V=$ voltage	$\theta=$ angle (in radians)
$I=$ current	$f=$ Frequency (in cycles per second)
$R=$ resistance	$\omega=2 \pi f$
$\rho=$ resistivity	$X_{L}, X_{C}=$ inductive reactance, capacitive reactance
$P=$ power	$Z=$ impedance
$E=$ electric field strength	$\emptyset=$ phase angle
(capacitors)	$E=$ emf (motors)
$C=$ capacitance	$I_{a}=$ armature current
$L=$ inductance	$I_{f}=$ field current
$t=$ time	$I_{l}=$ load current
$l=$ length	$R_{a}=$ armature resistance
$\tau=$ time constant	$R_{f}=$ field resistance
$W=$ energy	$n=$ speed (motors)
$A=$ cross sectional area	$T=$ torque
$\Phi=$ magnetic flux	$\eta=$ efficiency

Charge and potential energy	$Q=I t$
	$V=W / Q$
	$W=P t$
Drift velocity (current)	$I=n A v e$
Power	$P=V I$
	$P=I^{2} R$
	$P=V^{2} / R$
Resistance and Ohms law	Series resistance: $R=R_{1}+R_{2}+R_{3}+\ldots$
	Parallel resistance: $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$
	Ohms law: $R=V / I \quad V=I R \quad I=V / R$
Resistivity	$\rho=R A / l$
Electric field and capacitance	$E=V / d$
	$C=Q / V$
	$W=1 / 2 Q V$
Inductance and self-inductance	$L=\Phi N / I$
	$W_{L}=1 / 2 L I^{2}$
RC circuits	$\tau=R C$
	$v=v_{0} \mathrm{e}^{-t / R C}$
AC waveforms	$v=V \sin \theta$
	$i=I \sin \Theta$
	$v=V \sin \omega t$
	$i=I \sin \omega t$
AC circuits - resistance and reactance	$R=V / I$
	$X_{L}=V / I$ and $X_{L}=2 \pi f L$
	$X C=V / I$ and $X_{C}=\frac{1}{2 \pi f / C}$
Series RL and RC circuits	$Z=\sqrt{ }\left(R^{2}+X_{L}^{2}\right)$ and $\cos \varnothing=R / Z$
	$Z=\sqrt{ }\left(R^{2}+X_{C}^{2}\right)$ and $\cos \varnothing=R / Z$

Series RLC circuits	When $X_{L}>X_{C}$
	$Z=\sqrt{ }\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right]$ and $\cos \varnothing=R / Z$
	When $X_{C}>X_{L}$
	$Z=\sqrt{ }\left[R^{2}+\left(X_{C}-X_{L}\right)^{2}\right]$ and $\cos \varnothing=R / Z$
	When $X_{L}=X_{C}$
	$Z=R$
DC motor	$V=E+I_{a} R_{a}$
DC generator	$V=E-I_{a} R_{\mathrm{a}}$
DC Series wound self-excited generator	$V=E-I_{a} R_{t}$
	Where $R_{t}=R_{a}+R_{f}$
DC Shunt wound self-excited generator	$V=E-I_{a} R_{a}$
	Where $I_{a}=I_{f}+I_{l}$
	$I_{f}=V / R_{f}$
	$I_{l}=P / V$
DC Series wound motor	$V=E+I_{a} R_{t}$
	Where $R_{t}=R_{a}+R_{f}$
	$E \propto \Phi n$
DC Shunt wound motor - No-load	$V=E E_{l}+I_{a} R_{a}$
conditions:	Where $I_{a}=I_{l}-I_{f}$
	$I_{f}=V / R_{f}$
DC Shunt wound motor - Full load	$V=E E_{2}+I_{a} R_{a}$
conditions:	Where $I_{a}=I_{l}-I_{f}$
	$E_{1} / E_{2}=n_{1} / n_{2}$
	$T_{1} / T_{2}=\left(\Phi_{l} I_{a 1}\right) /\left(\Phi_{2} I_{a 2}\right)$
Speed control of DC motors - Shunt motor	$V=E+I_{a} R_{a}$
	$n=\left(V-I_{a} R_{a}\right) /(k \Phi)$
DC Machine efficiency	$\eta=$ output/input
	$\eta=1-($ losses/input $)$

OCR
 Oxford Cambridge and RSA

Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake a
the earliest possible opportunity.
the earliest possible opportunity.
Cambridge, CB2 8EA
OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicat
(UCLES), which is itself a department of the University of Cambridge.

