Cambridge Technicals Engineering

Unit 2: Science for engineering

Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822-05825

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2019

Annotations

Annotation	Meaning
tick	correct response worthy of a mark. number of ticks = no of marks awarded
cross	incorrect
omission (carat)	missing something
ecf	error carried forward
bod	benefit of doubt
nbod	not benefit of doubt
pot	power of ten error
con	contradiction
re	rounding error
sf	significant figure error
up	unit penalty

Subject specific marking instructions

In all numerical calculation questions, a correct response to 2 sf will gain all marks unless specified otherwise. You do not need to see all the workings if the answer is correct.

Question			Answer	Marks	Guidance
2	(a)	(i)	$\begin{aligned} \text { Couple } & =\text { Torque } \div \text { Perpendicular distance between two forces } \\ \text { OR } & =120 \div 40 \\ & =120 \div\left(40 \times 10^{-3}\right)=3.0 \times 10^{3} \mathrm{~N} \text { or } 3 \mathrm{kN} \end{aligned}$	1	If answer $=\mathbf{3 0 0 0} \mathbf{N}$ award 2 marks. Stating correct equation. If no (or incorrect) conversion from mm to $\mathrm{m}(3 \mathrm{~N})$, award 1 mark out of 2. If radius used instead of diameter (6000 N), award 1 mark out of 2. Accept 1sf here.
2	(a)	(ii)	A pair of arrows applied tangentially at either end of a diameter. Correct direction on arrow(s) (anticlockwise).		There must be 2 arrows which are parallel (by eye), same length (by eye) and tangential (touching) the bar for this mark to be awarded. Accept a diameter at any angle. This is an independent mark which can be awarded for any arrowhead (causing anticlockwise motion) shown anywhere on the diagram.
2	(b)	(i)	EITHER: Force in string $\mathrm{F}_{\mathrm{B}}=\sqrt{ }\left(\mathrm{F}_{\mathrm{A}}{ }^{2}+\mathrm{W}^{2}\right) \mathrm{OR}=\sqrt{ }\left(4^{2}+3^{2}\right)$ $=\sqrt{ }(16+9)=5 \mathrm{kN}$ OR Drawing (scale) diagram of vector triangle with a ruler. Correct final value for force between 4.9 and 5.1 kN .	1 1 (1) (1)	If answer $=5 \mathrm{kN}$ award 2 marks. Use of correct equation. ALLOW $4^{2}+3^{2}$ OR $16+9$ for 1 mark. Arrows not needed

Question			Answer	Marks	Guidance
2	(b)	(ii)	$\cos \alpha=\mathrm{F}_{\mathrm{A}} \div \mathrm{F}_{\mathrm{B}}=4 \div 5 \text { OR } \sin \alpha=\mathrm{W} \div \mathrm{F}_{\mathrm{B}}=3 \div 5 \text { OR } \tan \alpha=\mathrm{W} \div \mathrm{F}_{\mathrm{A}}=3 \div 4, \text { so }$ $\alpha=37^{\circ}$	1	Allow ecf from 2(b)(i). If measured from scale diagram accept α in range 30° to 40°.
2	(c)	(i)	A horizontal line across at least as far as $\mathrm{t}=3 \mathrm{~s}$. at $\mathrm{v}=-2 \mathrm{~m} \mathrm{~s}^{-1}$	1	By eye.
2	(c)	(ii)	Acceleration $=0 \mathrm{~ms}^{-2}$ because (one of the following or wtte) - the velocity is constant - the velocity vs time graph has a zero gradient - the position vs time graph is a straight line	1	ALLOW acceleration is the gradient of velocity-time graph or the rate of change of velocity. ALLOW ecf for a calculation of the gradient of their straight line drawn in part (i).
2	(c)	(iii)	$\begin{aligned} (\text { Work done }) & =\text { Force } \times \text { distance travelled } \mathrm{OR}=\left(5 \times 10^{3}\right) \times 6 \\ & =3.0 \times 10^{4} \underline{\mathbf{J}} \text { or } 30 \underline{\mathbf{k J}} \end{aligned}$	1 1	If answer $=\mathbf{3 0} \mathrm{kJ}$ or $3 \times 10^{4} \mathrm{~J}$ award 2 marks. Evidence of use of correct equation. A value of 30 or 30,000 with no working is evidence of 5×6. Value must include consistent unit. Allow dimensionally correct alternative units.
2			Question total	12	

Question			Answer	Marks	Guidance
3	(a)	(i)	Resistance in parallel section: $\frac{1}{R}=\frac{1}{23}+\frac{1}{22}$ (R calculated correctly as) 11.2 or $\frac{1}{0.089}$ or $\frac{506}{45}$ or equivalent fraction $R_{T}=11(.2)+9=20(.2)$	1	Working must be shown this a show that question. A correct algebraic/numeric expression with a clear subject and the final answer to at least 3 sf will gain 3 marks. Just seeing. $\frac{1}{23}+\frac{1}{22}=\frac{45}{506}$, does not gain the first marking point. Accept reverse argument clearly explained.
3	(a)	(ii)	$\begin{aligned} (\mathrm{I} & =) \mathrm{V} \div \mathrm{R} \mathrm{OR}=12 \div 20 \text { OR } 12 \div 20.2 \\ & =0.60 \text { or } 0.59 \mathrm{~A} \end{aligned}$	1	If answer = 0.6 A award 2 marks. Rearranged equation or correct substitution [12 $=\mathrm{I} \times 20(.2)$] No ecf from part (i) (unless R rounds to 20) Accept 1 sf .
3	(b)	(i)	EITHER: $\begin{gathered} (\text { Energy stored })=1 / 2 \mathrm{C} \mathrm{~V}^{2} \mathrm{OR}=0.5 \times 12 \times 10^{-3} \times 9^{2} \\ =0.49 \mathrm{~J} \end{gathered}$ OR $\begin{aligned} & (\mathrm{Q}=\mathrm{CV})=12\left(\times 10^{-3}\right) \times 9=\left(108\left(\times 10^{-3}\right) \text { or } 110\left(\times 10^{-3}\right)\right) \\ & (\mathrm{W})=1 / 2 \times 108 \times 10^{-3} \times 9=0.49(\text { or } 0.50) \mathrm{J} \end{aligned}$	1 1 (1) (1)	If answer $=0.49 \mathrm{~J}$ award 2 marks. Quoting or using correct equation. If no (or incorrect) conversion from mF to F , answer will be 490 J second mark lost.
3	(b)	(ii)	$\begin{aligned} \tau & =\operatorname{RCOR}=20 \times 12\left(\times 10^{-3}\right) \\ & =0.24 \mathrm{~s}=0.24 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If answer $=0.24 \mathrm{~s}$ award 2 marks. Quoting correct equation. Correct POT. Only penalise this POT error once in question. Allow ecf for incorrect POT already penalised in (i).

Question		Answer	Marks	Guidance	
$\mathbf{3}$	(b)	(iii)	$\mathrm{V}=\mathrm{V}_{0} \mathrm{e}^{(-t / \mathrm{RC})}=9 \mathrm{e}^{(-0.4 / 0.24)}$	1	If answer = 1.7 V Vaward 2 marks. Substituting values into correct equation. Ignore minus sign for substitution mark (about 48). Allow ecf of incorrect value for RC from part (ii).
$\mathbf{3}$		$=1.7 \mathrm{~V}$	1	$\mathbf{1 1}$	

Question			Answer	Marks	Guidance
4	(a)	(i)	(Young's modulus) = gradient (of elastic region) of stress-strain curve OR stress \div strain $\begin{aligned} \mathrm{OR} & =140 \div 0.002 \\ & =70,000 \mathrm{MPa} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If answer $=70,000 \mathrm{MPa}$ award 2 marks. se of correct equation. Accept 1 sf. Penalise POT error in final answer.
4	(a)	(ii)	Point marked at highest point of curve.	1	Accept point anywhere within box shown on diagram, or on the corresponding position on the stress axis.
4	(a)	(iii)	Elastic and Plastic (deformation). Elastic deformation is reversible / plastic deformation is permanent; Any 2 of: Elastic deformation - bonds between atoms are stretched (under load); Elastic deformation - atoms return to original position when load removed; Plastic deformation - planes/rows of atoms slide over one another; Plastic deformation - dislocations move, slip occurs (through the structure) Plastic deformation - necking occurs. [wtte]	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	Both needed for mark. Either or both statement(s) scores one mark. Ignore reference to failure of material.
4	(b)		First box ticked.	1	
4	(c)		Repeated vibration: Endurance Resistance to scratches and abrasions: Hardness	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept fatigue strength not durability.
4			Question total	10	

Question			Answer	Marks	Guidance
5	(a)		Viscosity is a fluid's ability to resist shear forces	1	
5	(b)	(i)	Arrows towards plate surface(s) at right angles (minimum 3 arrows); Evenly distributed arrows towards plate (by eye) across both (top and bottom) surfaces.	1	This mark can be awarded if only one surface is used. A minimum of 3 arrows on each of top and bottom surface are required to assess even distribution.
5	(b)	(ii)	$\begin{aligned} & (\text { Pressure })=\rho_{\mathrm{w}} \mathrm{gh} \mathrm{OR}=790 \times 9.8 \times 5 \mathrm{OR}=3.9 \times 10^{4} \mathrm{~Pa} \\ & (\mathrm{~F}=\mathrm{PA})=3.9 \times 10^{4} \times 15 \\ & (\mathrm{~F})=5.8 \times 10^{5} \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If answer $=5.8 \times 10^{5} \mathrm{~N}$ award 3 marks. Calculating pressure.
5	(b)	(iii)	$\begin{aligned} & \text { (Absolute pressure) } \\ & \begin{aligned} =\text { gauge pressure } & + \text { atmospheric pressure OR } 3.9 \times 10^{4}+101\left(\times 10^{3}\right) \\ & =\left((790 \times 9.8 \times 5)+\left(101 \times 10^{3}\right)\right)=1.4 \times 10^{5} \mathrm{~Pa} \end{aligned} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If answer $==1.4 \times 10^{5} \mathrm{~Pa}$ award 2 marks. Evidence of use of correct equation Allow ecf from incorrect pressure calculated in part (ii).
5	(b)	(iv)	Upthrust $=$ weight of the volume displaced OR Upthrust $=$ density x volume x acceleration of gravity $\mathrm{OR} 22\left(\mathrm{x} 10^{3}\right)=790 \times$ V $\times 9.8$) Volume $\left(=\left(22 \times 10^{3}\right) \div(790 \times 9.8)\right)=2.84\left(\mathrm{~m}^{3}\right)$ Thickness $(=$ volume \div area $)=2.84 \div 15$ $=0.19 \mathrm{~m}$ OR 19 cm	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	If answer $=\mathbf{0 . 1 9} \mathbf{m}$ award 4 marks. Stating or using correct equation. Calculation of volume (ignore POT here) Must include consistent unit (somewhere on the page).
5			Question total	12	

Question		Answer	Marks	Guidance $\mathbf{6}$ (a)	(i)

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

