Cambridge Technicals Engineering

Unit 4: Principles of electrical and electronic engineering
Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822-05825

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2019

Annotations

Annotation	Meaning
tick	Correct response
cross	Incorrect response
Omission mark (carat)	Incomplete response
ECF	Error carried forward
BOD	Benefit of doubt
NBOD	No benefit of doubt
RE	Rounding error

Subject-specific marking instructions

In all numerical calculation questions a correct response will gain all marks unless specified otherwise.
Rounding of answers should be to the same number of significant figures as the data in the question, or, otherwise, an answer will be correct provided it rounds to the correct answer.
Symbols used in circuit diagrams must identify relevant components uniquely and unambiguously.

Question			Answer	Marks	Guidance
1	(a)	(i)	battery supplies current to lamp ammeter measures current through lamp [and voltmeter] voltmeter measures p.d. across lamp [and ammeter]	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Ignore wrongly placed meters for this mark
1	(a)	(ii)	$12 / 0.080=150(\Omega)$	1	Correct answer only.
1	(a)	(iii)	Line passes through $(0,0) \&(12,80)$ within 1 mm Line curved correctly (>40 mA @ 6 V)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Question			Answer	Marks	Guidance
1	(b)	(i)	7.3 (mA)	1	Correct answer only.
1	(b)	(ii)	$7.3-2=5.3(\mathrm{~mA})$	1	Correct answer only.
1	(b)	(iii)	$\mathrm{V}=\mathrm{IR}=0.0073 \times 470=3.4(\mathrm{~V})$	1	3.431 V to at least 2 s.f. ECF 1(b)(i)
1	(b)	(iv)	$\mathrm{R}=\mathrm{V} / \mathrm{I}=11 / 0.0073=1500(\Omega)$	1	1507 / $1510(\Omega)$ to at least 2 s.f. ECF 1(b)(i)
1	(b)	(v)	$\begin{aligned} & \mathrm{V} \text { across } 1.8 \mathrm{k} \Omega \text { resistor }=\mathrm{IR}=0.002 \times 1800=3.6 \mathrm{~V} \\ & 220 \Omega+\mathrm{R}_{3}=\mathrm{V} / \mathrm{I}=3.6 / 5.3^{*}=680 \Omega \\ & \mathrm{R}_{3}=680-220=460(\Omega)(\text { accept } \pm 10) \end{aligned}$	2	Allow ECF for their I_{3} from 1 (b)(ii) Award I mark for method, One mark for correct answer Allow any alternative method e.g.: V across $220 \Omega=0.0053 \times 220=1.2 \mathrm{~V}$ V across $\mathrm{R}_{3}=18-11-3.4-1.2=2.4 \mathrm{~V}$ $\mathrm{R}_{3}=2.4 / 0.0053=452.8 \Omega$
2	(a)		convert mechanical energy into electrical energy/to produce an ac supply	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
2	(b)	(i)	$\begin{aligned} & \mathrm{T}=4 \mathrm{~ms}=0.004 \mathrm{~s} \\ & \mathrm{f}=1 / \mathrm{T}=1 / 0.004=\mathbf{2 5 0}(\mathrm{Hz}) \end{aligned}$	1	Correct answer only.
2	(b)	(ii)	$90\left({ }^{\circ}\right)$	1	
2	(b)	(iii)	Arrow labelled V at right angles to I \checkmark leads I	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Question			Answer	Marks	Guidance
2	(b)	(iv)	Use of $220 \mu \mathrm{H}$ converted to 0.00022 H Calculation using $X_{L}=2 \pi f \mathrm{~L}=0.350(\Omega)$ ecf from $b(i)$ and L Correct unit $\boldsymbol{\Omega}$	1 1 1	Synoptic link from Unit 2 $0.346(\Omega)$ to at least 2 s.f. for [2]

Question			Answer	Marks	Guidance
3	(a)		Property of a motor that is different for shunt-wound and series-wound motors linked to the operation of the workshop pillar drill E.g.: - Shunt-wound motor runs at fairly constant/self-regulating speed/torque (1) control of drill rotational speed needed for drilling (1). - Series wound motor would get uncontrollably fast when no mechanical load is present (1) no mechanical load present when drill is started before contact made with material to be drilled. (1)	1 1	
3	(b)		Power supply provides current to armature Field winding in parallel with armature	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Question			Answer	Marks	Guidance
3	(c)	(i)	Evidence of calculating resistors in parallel $\begin{gathered} \frac{1}{R}=\frac{1}{2.55}+\frac{1}{333}=0.395 \\ R=\frac{1}{0.395}=2.53 \end{gathered}$ Resistance of motor $=2.53(\Omega)$	1 1	Synoptic link from Unit 2 $R=\frac{2.55 \times 333}{2.55+333}=2.53$ Not 2.5 nor 2.55
3	(c)	(ii)	$\mathrm{I}_{f}=\frac{V}{R_{f}}=\frac{90}{333}=0.270$ (A)	1	Correct answer only.
3	(c)	(iii)	Correct rearrangement of equation $E=V-I_{a} R_{a}$ Correct values used in calculation $90 \mathrm{~V}, 0.606 \mathrm{~A}, 2.55 \Omega$ $E=90-(0.606 \times 2.55)=88.5(V)$	1 1	Synoptic link from Unit 1
4	(a)	(i)	Any valid advantage e.g.: - Uses less copper than single-phase for transmitting current. - More efficient for driving motors. - Smaller motors for the same power. - Continuous power delivery so no pulsating at 100 Hz .	1	

Question			Answer	Marks	Guidance
4	(a)	(ii)	$120\left(^{\circ}\right)$	1	Correct answer only.
4	(a)	(iii)	Any valid advantage e.g.: - Simple wiring of supply so cheaper/easier installation. - Equipment simpler to construct so cheaper appliances. - Low power, low voltage equipment easier to produce from single phase.	1	
4	(a)	(iv)	Up to a maximum of 3 of: - When too much current flows - A contact opens (wtte) - Stopping further current flowing - Preventing damage to wiring/appliances	3	Accept alternative suitable answers.
4	(b)		1 mark for each correct box in correct sequence	4	

Question		Answer	Marks	Guidance	
5	(a)	An operational amplifier (op-amp) is a DC coupled voltage amplifier with a high open loop gain. Op-amps have a high input impedance. Op-amps have a low output impedance.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		
5	(b)	Feedback resistor from output of op-amp to inverting input Output of op-amp to output Input to non-inverting input of op-amp (ignore any resistor in series or parallel) Resistor from inverting input to 0 V	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		output
5	(c)	Ratio of $\mathrm{R}_{\mathrm{F}}: \mathrm{R}_{2}=3: 1$ [1]	1		
5	(d)	Values next to correct resistors ecf from 5c (must have first and final marks from 5 b)	1	Both must be correct for 1 mark.	
5	(e)	10/4 $=2.5$ (V)	1	Correct answer only.	

Question		Answer			Marks	Guidance
6	(a)				1	Correct symbol and A, B and Q correctly labelled for 1 mark.
6	(b)	All combinations of A Q correct (must have	B 0 1 0 1	mark) \mathbf{Q} 1 0 0 0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
6	(c)	$\mathbf{Q}=\overline{\mathbf{A}+\mathbf{B}}$			1	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

