Oxford Cambridge and RSA

GCE

Physics B (Advancing Physics)

H157/01: Foundations of physics
Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\checkmark	Correct response
AE	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
(1)m	an evaluation mark, awarded for correct substitution and evaluation
(1)e	

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: $21 \mathrm{c}, 22 \mathrm{~b}, 23 \mathrm{~d}$ Section A: MCQs

Question		Answer	Marks		
1		B	1		
2			A	1	
3			D	1	
4		B	1		
5		D	1		
6			C	1	
7			C	1	
8			D	1	
9		C	1		
10		B	1		
11			A	1	
12			B	1	
13			C	1	
14			B	1	
15			B	1	
16			C	1	
17			C	1	
19				1	
20				1	
			Total		

SECTION B

Question		Expected Answer	Mark	Rationale/Additional Guidance
21	a	coulomb	1	Accept minor spelling errors Accept C
	b	$\begin{aligned} & \text { Volume }=A L \\ & \text { Charge (per unit volume) }=n e \\ & \text { and leading to Charge (per unit volume) } \times \text { volume }=n A l e \end{aligned}$	1 1	Expect to see a clear statement of calculation of volume Allow $V=A L$ either separately or in a more complete equation Expect to see a statement of where ne comes from e.g. charge on electron is e so total charge (per unit volume) is ne. Allow correct evaluation through current $=n A v e$ of clearly expressed.
	C	$\begin{aligned} & 3.2=8.0 \times 10^{28} \times A \times 0.50 \times 10^{-3} \times 1.6 \times 10^{-19} \\ & A=5.0 \times 10^{-7} \\ & 5.0 \times 10^{-7}=\pi d^{8} / 4 \text { gives } d=8.0 \times 10^{-4}(\mathrm{~m}) \end{aligned}$	1 1 1	Substitution. Penalise POT on v here. Area calculation Evaluation. Allow correct method leading to an appropriate evaluation of d from an arithmetic error on A if A is clear.
		Total	6	

Question		Expected Answer	Mark	Rationale/Additional Guidance
22	a	$2 L$	1	
	b	$\begin{aligned} & 340=f \times(2 \times 0.61) \mathrm{ecf} \\ & f=278.6 \\ & f=280(\mathrm{~Hz}) \end{aligned}$	1 1	Substitution. Allow ecf for incorrect value of multiple of L from (a). Evaluation Answer to 2sf. The sf mark can be awarded for any 2sf answer where a valid attempt to determine f has been made.
	c	λ is now $4 L / 4 \times 0.61$ $f=140(\mathrm{~Hz})$		Allow doubles wavelength OR frequency will halve. Allow 139 from none rounded value in 22b Do not penalise sf. Bare answer scores both marks. Ecf on 22b / 2
		Total	6	

Question		Expected Answer	Mark	Rationale/Additional Guidance
23	a	Time is available for review, so the accuracy is increased OR Data is recorded, so can be reviewed/checked later OR Can be slowed down/freeze-framed on playback, so readings/measurements can be taken easier OR Allows more data to be taken in shorter time, so more data points for graph.	1	Expect an explanation along with a statement. Allow suitable valid alternatives. Allow alternatives which relate to distance/time measurements being used.
	b	Acceleration determined from gradient Gradient calculation shown which comes out to be ~ 10	1 1	Allow a $=\Delta \mathrm{y} / \Delta \mathrm{x}$ or $\mathrm{a}=\Delta v / \Delta t$ or a $=$ rise $/$ run Allow gradient triangle drawn on graph. First mark is for explanation. Allow substitution of values from graph into suitable equation of motion $\text { e.g. }(4-0) /(0.4-0)=10$ Allow $4 / 0 / 4=10$. Second mark is for calculation. Allow calculation from equation of motion.
	C	$v=4.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ from graph $E=1 / 2 \times 0.05 \times 4^{2}$ $E=0.40(\mathrm{~J})$	1 1 1	Value correctly read from graph. Incorrect reading will lose all marks. Substitution. Penalise POT on m for this mark. Evaluation. Accept 0.4 (J).
	d	Calculation of KE at rebound $=\left(1 / 2 \times 0.05 \times 2.8^{2}\right)=0.196(\mathrm{~J})$ Evaluation of difference in KE (e.g. $0.40-0.196)=0.204(\mathrm{~J})$	1 1	No mark for simply determining rebound speed. Allow 0.20 J Ecf on c and/or misread / arithmetic error for rebound KE

		Percentage change (= KE change / initial KE $)=51 \%$	$\mathbf{1}$	OR evaluation of 49\% e.g. $0.204 / 0.4=51 \%$ Accept 50% if KE at rebound to 2sf.
	Total	$\mathbf{9}$		
	Total Section B	$\mathbf{2 1}$		

SECTION C

Question		Expected Answer	Mark	Rationale/Additional Guidance
24	a	Angle between incident ray and (marked) normal Angle between refracted ray and (marked) normal	1 1	Expect marks as curved lines within angle, or arrow pointing to angle. Allow 1 mark if both angles measured from ray to surface instead of normal Allow any pair that would work e.g. incident entering and incident exiting. No marks If more than two angles marked.
	b	Mark in pairs (suggestion + suitable reason): - Mark rays with pins So you can draw more accurately once block is removed - Use a narrower beam To reduce uncertainty in angle measurement - Adjust lamp / filament or use laser So the rays are narrower - Dim room / brighten bulb or use laser So you can see the rays more clearly / better contrast	2	Accept other suitable correct suggestions. Do not allow e.g sharper pencil, smaller scale and other methods which do not improve accuracy of measurement.
	C	$\begin{aligned} & n=\sin 28 / \sin 17 \\ & =1.6(1) \end{aligned}$	1 1	Bare answer score both marks. Allow 1.60 only if correct calculation shown.
	d	The larger the refractive index, the slower the speed The higher the refractive index, the greater the decrease in wavelength OR Refractive index has no effect on frequency.	1 1	ORA ORA Expect answers which refer to the correct sense of change of speed and / or wavelength.
		Total	8	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Expected Answer \& Mark \& Rationale/Additional Guidance \\
\hline 25 \& a \& Light waves maintain a constant phase relationship \& 1 \& Allow a constant phase difference. Do not allow zero phase difference. \\
\hline \& b \& Clear statement of small angle approximation \(\tan \theta \sim \theta\)
\[
\theta=14 / 200=0.07 \text { QED }
\] \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \begin{tabular}{l}
Allow \(\sin \theta \sim \theta\) \\
Allow answer drawn on fig 25.1 \\
Substitution leading to evaluation. \\
No mark if not used small angle approximation.
\end{tabular} \\
\hline \& C \& \begin{tabular}{l}
(Path difference of \(\lambda / 2\) means) waves are in anti-phase Or \(180^{\circ} / \pi(\mathrm{rad})\) out of phase \\
To cause destructive interference
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1
\end{tabular} \& \begin{tabular}{l}
Not just out of phase / not in phase Allow diagram showing two waves in antiphase / diagram with two phasor arrows shown with zero resultant \\
Allow destructive superposition / cancellation NOT superimposed / superimposition
\end{tabular} \\
\hline \& d \& \[
1 / 2 \times\left(0.01 \times 10^{-3}\right) \times 0.07=\lambda / 2
\]
\[
\lambda=700(\mathrm{~nm})
\] \& 1

1 \& | Use of $\sin \theta \sim \theta$ by implication Allow 0.07 rad is $4(.01)^{\circ}$ leading to $1 / 2 \times\left(0.01 \times 10^{-3}\right) \times \sin 4^{\circ}=\lambda / 2$ |
| :--- |
| No ecf from incorrect angle calculated in b. Allow $1^{\text {st }}$ mark for calculation of 350 nm (missing factor of 2). |
| Allow $\lambda=698(\mathrm{~nm})$ from use of $\sin 4^{\circ}$. |

\hline \& e \& | Advantage: Distance to A / separation of max/min (or 14cm) would increase, so smaller \% uncertainty (in distance measurement) |
| :--- |
| Disadvantage: Pattern is dimmer, so less contrast between bright and dark. | \& 1

1 \& | Do not allow responses relating to reduced \% uncertainty in D. |
| :--- |
| Allow: so more difficult to see (pattern). Do not allow statements regarding clarity. |

\hline \& \& Total \& 9 \&

\hline
\end{tabular}

Question			Expected Answer	Mark	Rationale/Additional Guidance
26	a		So that negligible current passes through it In order that it does not affect the value it's trying to measure	1 1	Allow so that (total/combined/parallel) resistance of the wire/voltmeter doesn't change Do not allow responses such as "so the reading is accurate". Do not allow responses such as "so that more current flows through the wire" for second mark. Allow appropriate effect on ammeter e.g otherwise the current on ammeter is through voltmeter and wire (which is larger).
	b		$\begin{aligned} & \text { Current }=1 /(47+3)=20(\mathrm{~mA}) \\ & \text { p.d. }=1 / 2 \times 0.02 \times 3=0.03(\mathrm{~V}) \text { or } 30 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow equivalent other working e.g. by proportion or use of potential divider e.g. $1 \times 1.5 / 50=0.03 \mathrm{~V}$. Allow first mark for evaluations of pd as 0.06 V .
	C	i	Straight line through the origin	1	Allow a linear extrapolation on the graph to origin, if linear/straight line is used in written response.
	C	ii	Calculates R / l at $l=20 \mathrm{~cm}$; (expect $3.5 \Omega \mathrm{~m}^{-1}$) Calculates R / l in linear section (expect $3.0 \Omega \mathrm{~m}^{-1}$) Increase is $0.5 / 3.0=17 \%$ Temperature rise $=17 \% / 0.4 \%=43\left({ }^{\circ} \mathrm{C}\right)$	1 1 1 1 1	e.g. $R / l=0.7 / 0.2=3.5 \Omega \mathrm{~m}^{-1}$. Allow 0.68 or 0.69 for R leading to 3.4 or $3.45 \Omega \mathrm{~m}^{-1}$. Do not allow gradient calculation at 20 cm . e.g. $R / l=1.8 / 0.6=3.0 \Omega \mathrm{~m}^{-1}$. Allow some tolerance from graph. Allow gradient calculation for this part, as long as it is calculated wholly in the linear region. Allow ecf for third mark for reasonable attempts for R / l Allow ecf for fourth mark for reasonable attempt at \% increase.

C	iii	Cross-sectional area/diameter of wire	1	Allow emf / pd of cell / thickness of wire. Ignore irrelevant statements Not material of wire.
d		(Reduce uncertainty/more accurate/more precise because...) \qquad the key is narrower than a crocodile clip \qquad the ruler makes sure the reading is taken in line with the key It will reduce parallax error.	2	This statement needs to be made before marks can be awarded. Any two separate marking points. ALLOW suitable example values e.g $\pm 0.5 \mathrm{~mm}$ instead of $\pm 2 \mathrm{~mm}$
		Total Total Section C Total Sections B \& C	12 29 50	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

