GCE

Physics B

H557/01: Fundamentals of physics
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ECF	Incorrect response
NBOD	Error carried forward
POT	Benefit of doubt not given
A	Power of 10 error
SF	Omission mark
\boldsymbol{S}	Error in number of significant figures
?	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$(\mathbf{1})$	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Statements which are irrelevant
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
Ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Section A: MCQs

Section B

Question		Answer	Marks	Guidance
$\mathbf{3 1}$	(a)	$=60(\Omega)$ \checkmark	L	
$\mathbf{3 1}$	(b)	$=0.12(\mathrm{~S})$ \checkmark	L	
		Total	$\mathbf{2}$	

Question		Answer	Marks	Guidance
32	(a)	$\begin{aligned} & t \text { to fall }=\sqrt{ }(2 \mathrm{~s} / \mathrm{g}) \quad / \quad \sqrt{ }(2 \times 44 / 9.8) \\ & v \\ & t_{v}=3 .(0) \mathrm{s} \\ & (R=v t)=(8.0 \times 3.0)=24 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	method in words / numbers / algebra not $t=2.99$ for part evaluation [result of rounding error from using $\mathrm{g}=9.81$] allow full credit for just correct answer even if used $t=2.99$
32	(b)	Reasoning clear i.e. same t (so must have $\times 3$ horizontal v) $=\underline{24}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \hline \mathbf{M} \\ & \mathbf{M} \end{aligned}$	not just $\times 3$ or $t=3$ allow falls at same rate so $t=3$ allow correct calculations involving new range 72 m allow ecf from (a) for evaluation mark only
		Total	5	

Question			Answer	Marks	Guidance
33	(a)	(i)	$\begin{aligned} & \text { turns ratio }=20: 1 \\ & \checkmark \\ & V_{s}=240 / 20=12 \text { (V a.c.) } \end{aligned}$	L L	allow 2000/100=20 allow formulation $V_{\mathrm{S}}=V_{\mathrm{P}} \times\left(t_{\mathrm{S}} / t_{\mathrm{P}}\right)$ allow full credit for just correct answer
33	(a)	(ii)	$\begin{aligned} & I_{\mathrm{S}}=24(\mathrm{~W}) / 12(\mathrm{~V})=2.0(\mathrm{~A} \text { a.c. }) \\ & \checkmark \\ & I_{\mathrm{P}}=2.0 / 20=0.10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{M} \end{aligned}$	accept other correct formulations $P_{\mathrm{P}}=P_{\mathrm{S}}$ allow full credit for just correct answer accept ecf of incorrect value of $V s$ from a(i)
33	(b)		heat loss is caused in coils by electrical resistance heat loss is caused in core by eddy currents heat loss is caused in core by magnetic hysteresis by vibration of parts of core or coils by flux leakage so S coil does not cut all flux from P	L	accept energy lost as heat due to (electrical) resistance of windings not power
			Total	5	

Question			Answer	Marks	Guidance
34	(a)	(i)	$\begin{aligned} \gamma \gamma & =E_{\text {Total }} / E_{\text {Rest }} \quad /=(140+73) / 140 \\ & =1.5(2) \end{aligned}$	L L	method in words / algebra / numbers accept 213/140 evaluation
34	(a)	(ii)	$1-(v / c)^{2}=1 / \gamma^{2}$ $v=\sqrt{ }\left(1-1 / 1.52^{2}\right) \times c=0.753 c$	M M	transcription in / algebra / numbers allow ecf from a(i) to give answer within $0.745<=\mathrm{v}<0.755$

| 34 | (b) | $L=\gamma \tau V \quad / \quad=1.52 \times 2.6 \times 10^{-8} \times 0.753 \times 3 \times 10^{8}$
 \checkmark
 $=8.9(3) \mathrm{m}$ | \mathbf{H}
 \mathbf{H} | method in words $/$ algebra $/$ numbers
 accept 8.89 m if 0.75 c used
 accept ecf from a(i) and a(ii) within range given |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Total | $\mathbf{6}$ | |

Section C

Question			Answer	Marks	Guidance
36	(a)	(i)	```both scales cover: 4 orders of magnitude / from 100 to 104```	L	allow to space out a very large range of values not exponential
36	(a)	(ii)	D has (directly) proportional response / D could be used for lower dose to patient / D has larger linear range	M	allow F has smaller usable linear region OR other ORA allow \mathbf{D} has an output for lower relative input radiation doses accept linear for all radiation doses
36	(a)	(iii)	$\begin{aligned} & \text { range } 10^{4}=10000 \quad / \quad 2^{n}=10000 \\ & n \\ & n \log _{10} 2=4 \\ & n=4 / \log _{10} 2=13.2 \text { so } 14 \text { needed } \end{aligned}$	M M	allow AW using $2^{14}=16384>10000$ for first mark, leading to comparison with $2^{13}=8192<10000$ as not enough bits for second mark allow AW using $\log _{2}(10000)=13.29$ for first mark leading to comparison with < 14 for second mark
36	(b)	(i)	recognition of 12 bits per pixel $\left(2^{12}=4096\right)$ $(2048 \times 1680 \times 12)=41 .(3) M(\text { bits })$	L M	not 14.1 G (bits) allow 39.4 M (bits) using computing $\mathrm{k}=1024$ allow correct answers in bits kbits etc
36	(b)	(ii)	bones are of particular interest to radiologist but have lower x-ray exposure than softer tissue / to spread out these low pixel values more gives more useful information than altering darker over exposed areas as much	H	accept AW e.g. gives a wider range of pixl values within the bone structure rather than the background which helps identify features of interest.

Question		Answer	Marks	Guidance		
$\mathbf{3 6}$	(b)	(iii)	edge enhancement and helps to look for bone fractures and splinters OR noise removal and of scattered x-rays improves visibility of real bone details \checkmark	\mathbf{M}		not just to see bones more clearly
:---						
requires named process and with reasoning for the mark						

Question			Answer	Marks	Guidance
37	(a)	(i)	$\rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+\quad \checkmark$	L	expect all symbols $\mathbf{2}, 1$ and $\mathbf{0}$ for the mark
37	(a)	(ii)	1. reactants binding energy $/ \mathrm{MeV}=2[-1]+3[-2.5]=-9.5$ OR 2. products binding energy $/ \mathrm{MeV}=4[-7]=-28.0$ binding energy released $-28.0-[-9.5]=-18.5(\mathrm{MeV})$	$\begin{aligned} & \text { M } \\ & \text { H } \end{aligned}$	accept values in range -9.5 to -10 MeV accept values in range - 28.0 to -28.4 first mark for either reactants or products energy correct accept values in range -18.0 to -18.9 accept final answer with + sign for energy released second mark for correct evaluation of released energy expect correct evaluations for first and second marks that are based on reading of ${ }^{2} \mathrm{H}$ of -1.0 to -1.1 and ${ }^{3} \mathrm{H}$ of -2.5 to -2.6
37	(a)	(iii)	momenta are equal and opposite $4 m \times v=m \times 4 v$ so neutron has $x 4$ speed of the ${ }^{4} \mathrm{He}$ nucleus energies in ratio $\left(\mathrm{n}:{ }^{4} \mathrm{He}\right)=1 / 2 m(4 v)^{2}: 1 / 24 m v^{2}$ $=4: 1$ (so neutron has $4 / 5$ of energy released)	$\begin{aligned} & S \& C \\ & S \& C \end{aligned}$	accept in numbers / words / algebra / use of $v / 4$ and v not just momentum is shared/conserved

Question		Answer	Marks	Guidance
$\mathbf{3 7}$	(b)	(i)	LHS: (electrical) potential energy of two proton charges approaching to a separation of R when strong nuclear attractive forces overcome electrical repulsion \checkmark	$\mathbf{S \& A}$
RHS: (an estimate of) the mean thermal energy per particle at absolute temperature T \checkmark	\mathbf{H}	accept two electronic charges approaching to separation R when strong nuclear attractive forces overcome electrical repulsion		
allow mean kinetic energy per particle at absolute				
temperature T				
allow at temperature T it is the energy at which many ${ }^{2} \mathrm{H}$				
and ${ }^{3} \mathrm{H}$ nuclei could overcome their electrical repulsion and				
possibly cause fusion				

	(c)	(i)	$\begin{aligned} & n \text { atoms }=\rho V N_{\mathrm{A}} / m_{\text {average }} \\ & =230 \times 4.2 \times 10^{-9} \times 6 \times 10^{23} / 2.5 \times 10^{-3}=2.3(2) \times 10^{20} \\ & \checkmark \\ & E=n k T=2.3 \times 10^{20} \times 1.4 \times 10^{-23} \times 4 \times 10^{8}=1.3 \mathrm{M}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & S \& C \\ & S \& C \\ & S \& C \end{aligned}$	correct evaluation of 2.3(2) $\times 10^{20}$ scores first two marks allow 2.6 $\mathrm{M}(\mathrm{J})$ if candidates count in electrons i.e. doubling particles in plasma
37	(c)	(ii)	$\begin{aligned} & E_{\text {Fusion }}=\left({ }^{2} \mathrm{H}^{3} \mathrm{H} \text { pairs) } \times E_{\text {Binding }}\right. \\ & =1 / 2 \times 2.3 \times 10^{20} \times 18.5 \times 10^{6}=2.1 \times 10^{27} \mathrm{eV} \\ & \text { (convert to J) } \quad E_{\text {Fusion }} \times 1.6 \times 10^{-19}=340 \mathrm{MJ} \\ & \text { so } E_{\text {Fusion }} \gg E_{\text {Heating }} \end{aligned}$	$\begin{aligned} & S \& C \\ & S \& C \end{aligned}$	allow ecf on $E_{\text {Binding }}$ from a (ii) and number of atoms from c (i) allow $1.3 \mathrm{MJ} \equiv 8.1 \times 10^{24} \mathrm{eV}$ and comparison in eV allow $\times 260$ energy to heat plasma allow $\times 130$ energy to heat plasma if electrons considered must have comparison for full credit
37	(c)	(iii)	production of high energy laser pulse producing solid pellets of ${ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{H}$ in 1:1 ratio short duration needed for pulse balancing radiation pressure from opposing lasers for inertial confinement timing of laser pulses to hit bead simultaneously /	M	allow any sensible practical difficulty / H \& S aspect not just large temperatures needed not just high energy usage / economic benefit

| | | containing super hot plasma away from vessel sides
 absorbing hot neutrons from fusion | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Total | $\mathbf{1 4}$ | |

Question			Answer	Marks	Guidance
					- at B2 gravity component anti-parallel to v slows comet down and component perpendicular to v changes direction accept AW e.g. at B2 a gravity component acts in the opposite direction to the speed, so the speed decreases - gravitational force increases as distance from Sun decreases so acceleration / velocity increases not just elliptical orbit has changing speed
38	(b)	(i)	$\begin{aligned} & \theta=10^{-6} \text { rads from diagram } \\ & \checkmark \\ & r=d \tan \theta=26 \times 10^{3} \times 9.5 \times 10^{15} \times \tan \left(10^{-6}\right)=2.5 \times \\ & 10^{14}(\mathrm{~m}) \\ & O R \\ & r=d \theta=26 \times 10^{3} \times 9.5 \times 10^{15} \times 10^{-6}=2.5 \times 10^{14}(\mathrm{~m}) \end{aligned}$	M	not using 1×10^{-6} as radius of circle / in $2 \pi r$ not incorrect use of $\sin \theta$ accept $2.47 \times 10^{14} / 2.46 \times 10^{14} / 2.6 \times 10^{14}$
38	(b)	(ii)	$\begin{aligned} & G M / R^{2}=(2 \pi R / T)^{2} / R \\ & \quad M=4 \pi^{2} R^{3} /\left(G T^{2}\right) \\ & \checkmark \\ & \text { solar masses } \\ & =4 \pi^{2}\left\{2.5 \times 10^{14}\right\}^{3} /\left\{6.7 \times 10^{-11} \times 2 \times 10^{30} \times\left[33 \times 3.2 \times 10^{7}\right]^{2}\right\} \\ & \checkmark \\ & =4.1 \times 10^{6} \end{aligned}$	$\begin{gathered} H \\ S \& C \\ S \& C \end{gathered}$	$\mathbf{1}^{\text {st }}$ mark stating K3 OR rearrangement for unknown M $\mathbf{2}^{\text {nd }}$ mark substitution including division by solar mass OR evaluation of black hole mass $M=8.3 \times 10^{36} \mathrm{~kg}$ $3^{\text {rd }}$ mark final evaluation
38	(b)	(iii)	$R_{\mathrm{S}}=2 \times 6.7 \times 10^{-11} \times 8.3 \times 10^{36} / 9 \times 10^{16}=1.2 \times 10^{10} \mathrm{~m}$	M	$\begin{aligned} & \text { accept } \quad R_{\mathrm{S}} \approx 1 / 53 \text { closest approach of S2 } \\ & \text { ecf from bii } \\ & \text { allow question b(ii) values for } \mathrm{M} 4 \times 10^{6} \times 2 \times 10^{30} \mathrm{~kg} \end{aligned}$
			Total	12	

Question		Answer	Marks	Guidance

Question			Answer	Marks	Guidance
40	(a)	(i)	$r=0.30 / 0.080=3.8(\Omega)$	L	evaluation accept in range 3.7 to 4.0 (Ω)
40	(a)	(ii)	```max electrons per sec = max current / e OR = 0.068/1.6 < 10-19 = 4.3 < 10 17 (\mp@subsup{\textrm{s}}{}{-1})```	L M	method accept in algebra / numbers / words evaluation accept $4.25 \times 10^{17}\left(\mathrm{~s}^{-1}\right)$
40	(a)	(iii)	in solar cell each electron is given energy by one photon being absorbed from the max total in the photon flux	H	accept photon flux incident on cell limits the charge flow accept surface area of cell limits charge flow at given illumination intensity
40	(b)		This is LoR not tick-based marking - see page 4 of this mark scheme. Level 3 (5-6 marks) Marshals argument in a clear manner and includes clear explanation of three strands: - circuit diagram - experimental method - precautions to ensure reliability There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Shows clear understanding of at least two of the three strands above to the argument or	LLL MMH	Indicative physics may include: Strand 1: circuit diagram with standard symbols - the solar cell with variable load resistor ($\approx 500 \Omega$) - voltmeter (5 V) in parallel (with solar cell) and ammeter (100 mA) in series with (load resistor) - switch to bring load into circuit Strand 2: experimental method - illuminate cell by fixed distance mains lamp - measure ε of cell with only meters connected - switch in load resistance set to max position - measure a pair of p.d. and current readings - alter load value and repeat V and A readings - continue until short circuit current is measured for very low load Strand 3: precautions to ensure reliability

Question	Answer	Marks	Guidance
	covers all three at a superficial manner and does not include enough indicative points for level 3. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Makes at least two independent points that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		- repeat readings at same p.d. and / or current settings so that mean values and uncertainties can be estimated - monitor cell temperature so that it is known to be constant during the data collection - if mains lamp causes significant heating, it could be switched off between readings and only turned on during data collection - monitor the light intensity of the lamp with a digital light-meter to check for mains variation and avoid readings if mains voltage drops / appropriate method for keeping light intensity constant accept well labelled diagrams throughout for credit if integrated into the explanation allow MAX Level 1 for credit of correct points that relate to an experiment in which light intensity is varied whilst load resistor value is fixed.
	Total	10	

Question			Answer	Marks	Guidance
41	(a)	(i)	```\(v=13\left(\mathrm{~ms}^{-1}\right)\) from Fig 41.3 peak \(f=34(\mathrm{~Hz})\) from Fig 41.2 OR \(s=1 /\) gradient \(=24 / 60=0.40(\mathrm{~m})\) peak vibration at \(v=13.5 \mathrm{~m} \mathrm{~s}^{-1}\) so peak \(f=13 .(5) / 0.40\) \(=34(\mathrm{~Hz})\)```	L M	accept in range 13 to $14\left(\mathrm{~ms}^{-1}\right)$ expect methods but give full credit for correct evaluations in range 32 to $35(\mathrm{~Hz})$ expect methods but give full credit for correct evaluations in range 0.39 to 0.41 (m) accept 13 or $14 \mathrm{~m} \mathrm{~s}^{-1}$ accept in range 32 to $35(\mathrm{~Hz})$
41	(a)	(ii)	$f \propto v$ so intensity graph is resonant response graph with frequency response the resonant response shows high Q / quality / low damping large amplitude oscillations build up around one input frequency (speed) / when it matches natural frequency of cavity the oscillation in car is only excited over a narrow band of velocities / frequencies when amplitude increases a lot there is a periodic / harmonic / simple harmonic input (the eddies being formed) driving another oscillator (the air volume in car)	M H	credit any two correct separate marking points
41	(b)		$f=(340 / 2 \pi) \sqrt{ }(0.18 /\{3.2 \times 0.14\})$	L	substitution

Question	Answer	Marks	Guidance
		L	evaluation
	Total	6	
	Total section C Total sections B \& C	$\begin{aligned} & 59 \\ & 80 \end{aligned}$	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

