Oxford Cambridge and RSA

## GCE

## Physics B

H557/03: Practical skills in physics
Advanced GCE

## Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

## Annotations available in RM Assessor

| Annotation | Meaning |
| :--- | :--- |
| BOD | Benefit of doubt given |
| CON | Contradiction |
| E | Incorrect response |
| ECF | Error carried forward |
| L1 | Level 1 |
| L2 | Level 2 |
| L3 | Level 3 |
| TE | Transcription error |
| NBOD | Benefit of doubt not given |
| POT | Power of 10 error |
| $\boldsymbol{\Omega}$ | Omission mark |
| SF | Error in number of significant figures |
| $\boldsymbol{S}$ | Correct response |
| $\boldsymbol{S}$ | Wrong physics or equation |

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation | Meaning |
| :---: | :--- |
| reject | alternative and acceptable answers for the same marking point |
| not | Answers which are not worthy of credit |
| Ignore | Statements which are irrelevant |
| Allow | Answers that can be accepted |
| ( ) | Words which are not essential to gain credit |
| - | Underlined words must be present in answer to score a mark |
| ECF | Error carried forward |
| AW | Alternative wording |
| ORA | Or reverse argument |

## Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.

| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | a | i | $\begin{aligned} & (n=\sin i \div \sin r=) \sin 40 \div \sin 22 \\ & (n=) 1.7(2) \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | If radians are used answer =-84 (award 1 mark for correct method even is working is missing). Answer correct to 2sf. Don't penalise 1.71. Raw answer of 1.7 gains both marks. |
|  |  | ii | angle   <br> maximum value $/{ }^{\circ}$ minimum value $/ \circ$  <br> angle of <br> incidence, $i$ 44 36 <br> angle of <br> refraction, $r$ 26 18 <br> Find max value of $n=\sin 44 \div \sin 18(=2.248)$ <br> AND/OR <br> Find min value of $n=\sin 36 \div \sin 26(=1.3408)$ <br> Uncertainty $=2.25-1.72=0.53$ [max value -1.7 ] <br> OR <br> Uncertainty $=1.72-1.34=0.38[1.7-\min$ value $]$ <br> OR <br> Uncertainty $=1 / 2(2.25-1.34)=0.46$ or 0.45 (depending on rounding) $[1 / 2(\max -\mathrm{min})]$ | 1 <br> 1 <br> 1 | All 4 values needed for the mark. <br> Allow ecf of incorrect max and/or min values of angles from table. <br> ALLOW correct use of the their max and/or min values and value of $n$ calculated in part (i). eg. $\sin 44 \div \sin 26=1.6$ and $\sin 36 \div \sin 18=1.9$, so uncertainty $=0.2$ or 0.1 . <br> ALLOW answers to 1 sf . <br> Do not credit a raw answer of 0.5 , which can be achieved by adding percentage uncertainties of angle $i$ and angle $r$ - an incorrect method. |



| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | a | i | Resolving forces horizontally gives $F=T \sin \theta=T\left(\frac{x}{L}\right)$ <br> Displacement from equilibrium position / $x$, is in opposite direction to $F$, hence negative sign. | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\text { ALLOW } F=T \tan \theta=T\left(\frac{x}{L}\right)$ <br> IGNORE reference to W (as this is resolving horizontally) |
|  |  | ii | Equating the two expressions for acceleration, $-4 \pi^{2} f^{2} x=-g \frac{x}{L}$ and cancelling $x$ and negative sign to give $4 \pi^{2} f^{2}=\frac{g}{L}$ <br> (Substituting $T=\frac{1}{f}$ ) to give $\frac{4 \pi^{2}}{T^{2}}=\frac{g}{L}$, and rearrangement (to give $\left.T^{2}=\frac{4 \pi^{2} L}{g}\right)$ | 1 <br> 1 | Any subject for the simplified equation, omitting one or more negative signs will lose the first marking point. Allow alternative methods, eg substitute $x=-\frac{a L}{g}$ into $a=-4 \pi^{2} f^{2} x$. |
|  | b | i | Reaction time or error in starting and/or stopping watch. Longer time (to measure) gives smaller percentage/relative/fractional uncertainty (due to reaction time) (or vice versa) | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Not just human error or random error. ALLOW uncertainty reduced to $\frac{1}{10}$ or $10 \%$ (of previous value) |
|  |  | ii | $\begin{aligned} & 1.613 \\ & 2.085 \\ & 2.375 \end{aligned}$ | 1 | All values calculated correctly to 4 SF: |




| b | i | $\begin{aligned} & \text { Use of } \frac{I}{V}=\frac{\sigma A}{L} \\ & I=\left(2.1 \times 10^{6}\right)\left(0.166 \times 10^{-6}\right)(2.0) \div 0.330 \\ & I=2.1 \mathrm{~A} \end{aligned}$ <br> Alternative method: $\begin{aligned} & \text { Either } G=\sigma A \div L=1.06 \Omega^{-1} \text { or } R=L \div \sigma A=0.95 \Omega \\ & I=G V=1.05 \times 2 O R I=V \div R=2 \div 0.95 \\ & I=2.1 \mathrm{~A} \checkmark \end{aligned}$ | 1 1 1 | POT error in area - either incorrect or missing will not gain this last mark. |
| :---: | :---: | :---: | :---: | :---: |
| b | ii | $\begin{aligned} & v=I / n A q=2.1 /\left(10^{28}\right)\left(0.166 \times 10^{-6}\right)\left(1.6 \times 10^{-19}\right) \\ & v=8 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ <br> [this is only an estimate so 1 sf is acceptable] | 1 | ALLOW ecf of incorrect value for current calculated in part (i), [ $v=$ current $\div 265.6]$ Incorrect POT for area should cancel out with incorrect POT in current from part (i). |
| b | iii | Positive ions/atoms have more kinetic energy <br> More energetic vibrations obstruct path of electrons more/electrons make more (frequent) collisions <br> (So) mean drift velocity decreases | 1 <br> 1 <br> 1 | IGNORE electrons have more KE. <br> IGNORE reference to thermal expansion of wire and resistance of wire. |
|  |  | Question total | 13 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | a | i | particles/molecules have negligible volume (compared to that of the container) <br> elastic collisions with container/walls/surfaces OR (all) collisions are elastic. <br> no interactions between particles/molecules (except during collisions) | $1$ $1$ $1$ | ALLOW atoms <br> ALLOW no loss of KE instead of elastic ALLOW atoms |
|  |  | ii | $\frac{3}{2} k T=\frac{1}{2} m \overline{c^{2}}(=$ mean kinetic energy $)$ <br> Use of $p V=\frac{1}{3} N m \overline{c^{2}}$ clearly leading to $p=\frac{N k T}{V}$ (any subject) As $N$ and $V$ (and $k$ ) are constants, (so $p \propto T$ ) | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | IGNORE $\mathrm{v}^{2}$ (if the first step is $\frac{3}{2} k T=\frac{1}{2} m v^{2}=\frac{1}{2} m \overline{c^{2}}$ award the first mark) <br> NOT c is a constant |
|  | b |  | Rearranging $\frac{3}{2} k T=\frac{1}{2} m c^{\overline{2}}$ to give $\overline{c^{2}}=\frac{3 k T}{m}$ or $\sqrt{\overline{c^{2}}}=\sqrt{\frac{3 k T}{m}}$ <br> Substituting correct values into equation (ignoring POT errors): EITHER <br> $\sqrt{\overline{c^{2}}}=\sqrt{\frac{3 k T}{m}} \quad$ where $\mathrm{m}=0.0399 \div 6.02 \times 10^{23}=6.63 \times 10^{-26} \mathrm{~kg}$ OR $\sqrt{\overline{c^{2}}}=\sqrt{\frac{3 R T}{m}}$, using $R=8.31$ and $m=0.0399$ <br> root mean square speed $=430 \mathrm{~m} \mathrm{~s}^{-1}$ | 1 1 1 | If k is used with molar mass the $\sqrt{\overline{c^{2}}}=5.5 \times 10^{-10}$ or $\overline{c^{2}}=3.0 \times$ $10^{-19}$. <br> If $R$ is used with molecular mass the answer $\sqrt{\overline{c^{2}}}=3.3 \times 10^{-12}$ or $\overline{c^{2}}=1.1 \times 10^{-23}$. <br> Any of these values (with or without a POT error) or $7.7 \times 10^{-22}$ or $5.05 \times 10^{-43}$ on answer line will gain the first marking point. <br> Final answer of ( $\left.\overline{c^{2}}=\right) 1.8 \times 10^{5}$ for first two marking points. <br> Note: Correct bald answer gains three marks. First marking point can be implicit. A POT error will lose a mark. |
|  | c | i | Two from: <br> - Record the temperature will all the thermometers (in the water bath) <br> - Uncertainty $= \pm$ range $\div 2$ or $\pm$ spread. <br> - Ignore/identify anomalous values or outliers as values greater than $x 2$ spread from mean | $1 \times 2$ | IGNORE find mean, percentage uncertainty. <br> ALLOW uncertainty $=$ max value - mean, OR uncertainty = mean - min value . <br> ALLOW outliers identified as being clearly different from the other readings. <br> NOT just ignore outliers. |




# OCR (Oxford Cambridge and RSA Examinations) <br> The Triangle Building <br> Shaftesbury Road <br> Cambridge <br> CB2 8EA <br> OCR Customer Contact Centre 

## Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]:    Oxford Cambridge and RSA Examinations
    is a Company Limited by Guarantee
    Registered in England
    Cambridge
    Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
    Registered Company Number: 3484466
    OCR is an exempt Charity
    OCR (Oxford Cambridge and RSA Examinations)
    Head office
    Telephone: 01223552552
    Facsimile: 01223552553

