

Cambridge Technicals Applied Science

Unit 1: Science Fundamentals

Level 3 Cambridge Technical in Applied Science 05847 - 05849/05874/05879

Mark Scheme for January 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Q	uest	ion	Answer		Guidance
1	(a)			1	 ALLOW any configuration of electrons only if 4 on outer and 2 on inner shells. ALLOW • or e = x
	(b)		7 ✓	1	
	(C)		positive and negative charges \checkmark	2	ALLOW shows of metano and electrons are belowed
			equal numbers of protons and electrons / 6 protons and 6 electrons \checkmark		ALLOW charges of protons and electrons are balanced ALLOW cancel each other out - if ref. to charge but not if ref. to named particles
	(d)	(i)	silicon ✓	1	
		(ii)	both have same number of electrons in the outer shell \checkmark	1	ALLOW same number of valence electrons / same chemical properties
		(iii)	(proton number/ atomic number increases so) more electrons ✓	2	IGNORE reactivity
			number of electrons per shell is limited/full \checkmark		IGNORE ref. to number of electrons
	(e)	(i)	four H around C \checkmark one pair of electrons at each bond \checkmark	2	H H H H H H H H H H H H H H H H H H H
					EXTRA electrons on shell = CON for mp2

C	luest	ion	Answer	Marks	Guidance
		(ii)	covalent ✓	1	
	(f)	(i)	circles around the dots with proton numbers 2, 10 and 18 \checkmark	1	All three correct circles = 1 mark
		(ii)	atomic radius decreases across each period \checkmark	2	ALLOW decreases within any set of data only with correct ref. to both atomic radius AND proton number
			atomic radius increases down each group \checkmark		ALLOW increases across any set of data only with correct ref. to both atomic radius AND proton number
		(iii)	EITHER	1	Candidates must make it clear which trend they are explaining
			numbers exerting greater attraction for electrons		period
			OR		
			increase down a group is due to increasing electron shells down the group shielding the outer electrons from the attractive force of the nucleus \checkmark		ALLOW correct ref. to numbers in Fig. 1.2 = down a group
			Total	15	

Q	Question		Answer	Marks	Guidance
2	(a)	(i)	ammonium ✓ amino acids ✓ protein ✓	3	One mark for each correct response via sentence completion.
		(ii)	 Any four from: the number of algae (blooms) increase ✓ the number of fish decreases ✓ 	4	ALLOW negative correlation between numbers of algae blooms and fish.
			gradual increase in algae bloom numbers / steep decline in fish numbers \checkmark		MAX. 3 = response refers ONLY to fish OR algae
			fish numbers drop from 100 to 0 \checkmark		
			fish numbers are 0 at approximately 120 m (down river) \checkmark		
			steep decline in fish numbers within the first 20 m \checkmark		
			algae bloom numbers increase from 10 to approximately 48 \checkmark		ALLOW any correct ref. to data values for fish or algae – up to a MAX. of 2 sets of data
		(iii)	decreased light intensity ✓	1	
	(b)	(i)	polluted/contaminated/nitrate-containing water / food / diet \checkmark	1	OWTTE
		(ii)	oxidation is loss of electrons ✓	4	
			${\sf Fe}^{2^+}$ is oxidised / loses an electron to become ${\sf Fe}^{3^+}$ \checkmark		ALLOW Fe/Iron = Fe ²⁺
			reduction is gain of electrons ✓		
			NO_2^- is reduced / loses oxygen / gains an electron \checkmark		ALLOW nitrate = NO ₂ .

Question		on	Answer		Guidance
		(iii)	${\sf Fe^{2^+}}$ binds/bonds with the oxygen molecules \checkmark	2	ALLOW iron/Fe = Fe ²⁺
			(transported) around body / in RBCs \checkmark		
			Tota	15	

Q	Question		Answer	Marks	Guidance
3	(a)		epithelial 🗸	1	
	(b)		 Fig. 3.1a one cell thick / one layer / flattened in shape / thin layer / simple / squamous ✓ increases absorption/diffusion of substances ✓ Fig. 3.1b several layers / thick layer / striated ✓ 	4	IGNORE refs. to location
			acts as a barrier/ increases protection (around the body surface, internal organs and blood vessels) \checkmark		ALLOW detail/example of protection e.g. against pathogens
	(c)	(i)	cytoplasm ✓	1	ALLOW cytosol / protoplasm
		(ii)	provides shape / support / structure to the cell / cytoskeleton / contains organelles/named organelle \checkmark	2	OWTTE
			site of chemical reactions / contains chemicals / transports chemicals \checkmark		ALLOW cytoplasmic streaming / cyclosis
		(iii)	Colloidal mixture Description	2	
			Gas dispersed in a liquid		
			Gel Solid dispersed in a liquid		
			$\sqrt{}$		

Quest	ion	Answer				larks	Guidance
(d)	(i)	eukaryotic DNA is a double helix / as nucleus/mitochondrion ✓ prokaryotic DNA as a circular ring/loop in a nucleus or a nuclear e	chromatin/chron b/plasmid / in the nvelope/membra	nosomes / in a e cytoplasm / not sto ane √	red	2	OWTTE
	(ii)	Molecule Adenine Deoxyribose Cytosine Guanine Phosphate Thymine	DNA	RNA ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×	√√	2	Mark as rows All 6 correct responses = 2 marks 4 or 5 correct responses = 1 mark 3 or fewer correct responses = 0 marks MUST show ticks or crosses
	(iii)	 (iii) Any two from: RNA is only a single strand molecule / DNA is a double strand molecule ✓ RNA size/shape allows it to pass through (nuclear pores) / DNA size/shape does not allow it to pass through (nuclear pores) ✓ DNA is held in position by proteins/histones/amino acids / RNA is not held in position by proteins/histones/amino acids ✓ 					ALLOW held/not held as chromatin IGNORE is fixed if unqualified
				1	otal	16	

Question		on	Answer				Guidance	
4	(a) (i) same molecular formula \checkmark different structural/display formulae / structure / arrangement / contain carbons with four different groups attached \checkmark molecular formula for both is C ₆ H ₁₂ O ₆ / C=O is at the end of molecule in glucose but not in fructose \checkmark				3	DO NOT ALLOW empirical formula ALLOW chemical formula IGNORE unqualified formula ALLOW fructose is an aldehyde but glucose is a ketone		
	(ii)		Sugar molecule	Number of asymmetric		2	One mark for each number	
				D-fructose	3			
			D-glucose 4					
					$\checkmark\checkmark$			
	(iii)		(iii) Sugar molecule Functional group			2	One mark for each correct link	
				Aldehyde				
			D-fructose					
			X	Carboxylic acid				
			D-glucose					
				Ester				
			Ketone					
			$\checkmark\checkmark$					
	(b)		addition ✓			1		

Q	Question		Answer			Marks	Guidance	
	(c)	(i)	disaccharide √				1	DO NOT ALLOW double sugar ALLOW maltose IGNORE dimer
		(ii)	H₂O ✓				1	DO NOT ALLOW water ALLOW H-O-H
	(d)						4	One mark for each correct row.
			Feature	Glycogen	Polypeptide			
			Type of monomer	glucose/sugar	amino acid			IGNORE carbohydrate (for glycogen)
			Type of bond between the monomers	glycosidic	peptide			
			Atoms present	C, H and O	C, H, O and N			IGNORE references to sulphur
			Function in the body	Energy/glucose/ sugar store	Enzymes, carrier proteins, structural role, protein			
					\checkmark	(
	(e)	(i)		H H H H -C - C - C - C H H H H	H H -CC H H	√ √	2	 1 mark for correct number of carbons (6) and hydrogens (12) 1 mark showing all single bonds AND no atom on either end of structure IGNORE brackets/use of n

Question		ion	Answer		Guidance
		(ii)	glycogen/carbohydrate contains oxygen/OH but polyethene does not ✓	1	ALLOW glycogen consists of carbon, hydrogen and oxygen whilst polyethene only consists of carbon and hydrogen IGNORE synthetic/organic / ref. to energy/glucose
			Total	17	

Question		on	Answer	Marks	Guidance
5	(a)	(i)	H₂O₂ ✓		
		(ii)	metabolism of amino acids ✓	1	
	(b)		water √	1	
	(c)		Any three from:	3	OWTTE
			particles in a liquid have more space between them than those in a solid / particles in a solid are close / packed together \checkmark particles in a solid do not move as much as particles in a liquid		ALLOW molecules = particles IGNORE atoms
			OR particles in a solid can only vibrate \checkmark		
			particles in a solid do not have as much energy as particles in a liquid \checkmark		ALLOW solid needs more energy to be decomposed/broken down
			particles in a solid do not collide with sufficient energy (to break the bonds in the hydrogen peroxide molecules) \checkmark		
			greater force between particles/molecules in solid \checkmark		DO NOT ALLOW pressure

Question	Answer Marks		Guidance	
(d)	[Level 3] Candidate shows a high level of understanding of enzyme-catalysed reactions and gives a good description of the graph. (5 – 6 marks) [Level 2] Candidate shows a detailed understanding of enzyme- catalysed reactions and gives a partial description of the graph. (3 – 4 marks) [Level 1] Candidate shows a basic understanding of enzyme- catalysed reactions OR gives a limited description of the graph. (1 – 2 marks) [Level 0] Candidate includes fewer than two valid points. (0 marks)	6	 Valid scientific points Description Relatively slow increase in volume of oxygen produced between 5 – 15oC The volume of oxygen produced increases with temperature to a maximum temperature (up to 36-38oC) Peak oxygen production at 36-38oC The volume of oxygen produced decreases with temperature after the maximum (36-38oC) Explanation Rate of reaction: Increases because the hydrogen peroxide particles have more kinetic energy/ more molecules have energy greater than the activation energy Increases because there are more frequent collisions between the hydrogen peroxide particles and the liver enzymes Enzymes/catalysts reduce the activation energy Speed up the rate of reactions, if qualified Decreases because the active site of the liver enzymes becomes denatured/deformed Decreases hydrogen peroxide particles no longer fit into the active site 	
	Total	12		

Question	Answer	Marks	Guidance
6 (a)	Any two from:	3	
	 property for one material with ref. to either strength or toughness ✓ comparison between two or more materials ✓ quantitative comparison (using approximate data on axes) between two or more materials, with ref. to strength or toughness ✓ 		
(b)	fracture when a small force is applied ✓ absorb little energy before breaking ✓ suddenly snap (without stretching or bending)	3	ALLOW break easily / fragile / weak / not malleable / low tensile strength IGNORE ref. to elasticity ALLOW not tough ALLOW not ductile/plastic
	wnen a torce is applied✓	6	IGNORE ref. to unqualified deformation
	IUlai	U U	

C	Question		Answer	Marks	Guidance
7	(a)		FIRST CHECK ANSWER ON ANSWER LINE If answer = 1.0 (W) award 2 marks	2	ALLOW answer is 1 = 2 marks
			5.0 x 0.2 ✓		
			= 1.0 (W) ✓		
	(b)	(i)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.12 (V) award 2 marks	2	ALLOW answer is .12 = 2 marks
			0.2 x 0.6 ✓		
			= 0.1(2) (V) ✓		
		(ii)	$(0.12 \times 0.2 =) 0.02(4) (W) \checkmark$	1	ecf from b(i)
		(iii)	(1.0 – 0.024 =) 0.976 (W) ✓	1	ALLOW 0.98 ecf from b(ii)
	(c)	(i)	power supplied = $5.0 \times 1.3 = 6.5 (W) \checkmark$	1	ALLOW 7 if correct calculation shown
		(ii)	p.d. = 1.3 x 0.6 = 0.78 (V) ✓ power dissipated = 0.78 x 1.3 = 1.01(4) (W) ✓	2	
	1		Total	9	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 Cambridge

