Cambridge Technicals Engineering

Unit 2: Science for engineering

Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822-05825

Mark Scheme for January 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
tick	correct response worthy of a mark. number of ticks = no of marks awarded
cross	incorrect
omission (carat)	missing something
ecf	error carried forward
bod	benefit of doubt
nbod	not benefit of doubt
pot	power of ten error
con	contradiction
re	rounding error
sf	significant figure error
up	unit penalty

Subject specific marking instructions

In all numerical calculation questions a correct response to 2 sf will gain all marks unless specified otherwise. You do not need to see all the workings if the answer is correct.

Question			Answer	Marks	Guidance
1	(a)			2	All three correct, 2 marks One (or two), 1 mark
	(b)		Second box ticked	1	One tick only, no marks if more than one box ticked.
	(c)	(i)	$\begin{aligned} & \hline-(\text { minus sign }) \\ & 1(\mathrm{kPa}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
		(ii)	ANY 2 of: Gauge pressure $=$ absolute pressure - atmospheric pressure or wtte . Gauge pressure (of the atmosphere) would be zero / negligible / 1 Absolute pressure of the atmosphere is (equal to the) atmospheric pressure. Gauge pressure is a measure of pressure / force per unit area in an enclosed space or wtte.	2	ALLOW Gauge pressure does not include (excludes) atmospheric pressure
	(d)		finds difference i.e. $1.68 \times 10^{-8}-1.61 \times 10^{-8}=7 \times 10^{-10} \Omega \mathrm{~m}$ divides their difference by true value i.e. $0.07 \div 1.68=0.042$ or $4.2(\%)$ OR division $1.61 \div 1.68=0.958[1]$ relative error $=1-0.958=0.042$ or $4.2(\%)$ [1] division $1.68 \div 1.61=0.958=1.043$ [1] relative error $=1.043-1=0.043$ or $4.3(\%)$ [1]	1	ALLOW division by measured value for $2^{\text {nd }}$ MP i.e. accept answer of $0.07 \div 1.61=4.3 \%[2]$ ALLOW final answer to be in percentage, decimal or fraction in its simplest form eg 1/24. IGNORE any units given on answer line. BUT 0.042% only gets one mark. IGNORE sign.
1			TOTAL	9	

Question			Answer	Marks	Guidance
2	(a)		Force EITHER giving a mass of 1 kg an acceleration (in the direction of the force) of $1 \mathrm{~ms}^{-2}$ OR giving a freely moving body a rate of change of momentum of $1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$ (in the direction of the force).	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Units required for second mark. NOT a definition of force.
	(b)	(i)	$(2 \mathrm{~cm} \times 60 \mathrm{kN} / \mathrm{cm}=) 120 \mathrm{kN}$	1	within range $\pm 10 \mathrm{kN}$
		(ii)	$\begin{aligned} & 120 \mathrm{kN}=120000 \mathrm{~N} \\ & 120000 \div 9.8=12000(\mathrm{~kg})(\text { actual value } 12245(\mathrm{~kg})) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Converting kN to N . ALLOW ecf of value from (b)(i) Dividing by g. ALLOW use of $g=10$ ms^{-2} as this also give same value to 2 sf . This mark can be gained without the correct unit conversion.
		(iii)	Triangle or parallelogram of forces on diagram (arrows not required). ALLOW a right-angled triangle with Reaction force as the hypotenuse. Measures correct resultant as 4 cm 240kN Award second 2 marks if answer correct using calculation e.g. Resolve forces horizontally $\left(280 \sin 60^{\circ}-0=240\right)$ and/or vertically $(280 \cos$ $60^{\circ}-120=21$ [[1]; Resultant $=\sqrt{ }\left((\text { vertical force })^{2}+(\text { horizontal force })^{2}\right)=240 \mathrm{kN}$ OR no/negligible vertical component so resultant = horizontal component [1]	1	First mark is for the diagram. If nothing relevant on diagram, then a maximum of 2 marks can be awarded. ACCEPT final value between 230 kN and 250 kN for [2] marks ALLOW reaction force between 270 kN and 290 kN for calculation method and ALLOW ecf of weight from $b(i)$. ALLOW angle between 55° and 65°. ALLOW final answer in surd form $(30 \sqrt{ } 65)$ for both marks.
		(iv)	point/place/position where the weight/gravitational force (can be considered to) acts .	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
2			TOTAL	10	

Question			Answer	Marks	NOT just 'C'. Guidance
3	(a)		coulomb	1	NOT just 'C'.
	(b)	(i)	Converting current to SI units $1.5 \times 10^{-9}(\mathrm{~A})$ Evidence of substituting correct values into equation $\mathrm{I}=$ nAve (any subject); Rearrangement of equation with numbers or symbols $\left[\mathrm{v}=\mathrm{I} \div \mathrm{nAe}\right.$ or $\left.\mathrm{v}=1.5 \times 10^{-9} \div\left(2.5 \times 10^{-4} \times 1.5 \times 10^{16} \times 1.6 \times 10^{-19}\right)\right]$ Evaluation, $\mathrm{v}=0.0025\left(\mathrm{~ms}^{-1}\right)$	1 1 1	If unit conversion is incorrect or missing, the remaining 3 marks can be awarded. Award this mark if equation is stated and all values listed correctly. A correct raw answer eg, $2.5 \mathrm{~mm} \mathrm{~s}^{-1}$ will gain all 4 marks.
	(b)	(ii)	negative (circled)	1	ALLOW any clear indication.
	(c)	(i)	30 (k	1	ALLOW value between 28 and $32 \mathrm{k} \Omega$
		(ii)	$20 \mathrm{k} \Omega$ at $30^{\circ} \mathrm{C}$ $10(\mathrm{k} \Omega)$ change	1	ALLOW value between 18 and $21 \mathrm{k} \Omega$ ALLOW ecf from (c)(i). IGNORE sign of final answer.
		(iii)	ANY 2 of: Gradient of graph levels off (at higher temperatures) (or wtte) Change of resistance (at higher temperatures) is small. Thermistor has low sensitivity. Temperature values won't be precise/accurate.	2	ALLOW by example i.e. values in that range are quoted from graph ALLOW temperature difficult to read for $4^{\text {th }}$ marking point. ALLOW no data above $80^{\circ} \mathrm{C}$ or doubt about whether thermistor works above $80^{\circ} \mathrm{C}$, for 1 mark.
3			TOTAL	11	

Question			Answer	Marks	Guidance
4	(a)		Brittleness \square Ductility \checkmark Hardness \square Malleability \square Toughness \checkmark		One mark for each correct tick. If there are more than 2 ticks, an incorrect tick cancels out a correct tick.
	(b)	(i)	Read off extension from graph $=0.0025(\mathrm{~m})$ $(\text { Strain }=) 0.0025 \div 17.5=0.00014$		ALLOW value between 0.0022 and 0.0028 . If read off is outside acceptable range above, but between 0.0020 and 0.0030 , then the calculation mark can be awarded with ecf. IGNORE any units given.
	(b)	(ii)	extends linear section or indicates read-off at end of linear section or states in words that the line is no longer linear (or wtte) Any value between 40 and $48(\mathrm{kN})$	1	
	(b)	(iii)	$\begin{aligned} & \text { Read off extension at } 30 \mathrm{kN} \text { load }(0.0034>\mathrm{x}>0.0039) \\ & \text { Recall equation } \mathrm{E}=1 / 2 \mathrm{Fx}\left(\text { or } \mathrm{E}=1 / 2 \mathrm{kx}^{2}\right) \text { or evidence of area under graph. } \\ & 1 / 2 \times 0.00375 \times 30=0.05625 \mathrm{OR} 1 / 2 \times 0.00375 \times 30000=56.25 \\ & (0.05625) \underline{\mathbf{k J}} \text { or }(56.25) \underline{\mathbf{J}} \end{aligned}$	1	Ignore POT of Force value in calculation. ALLOW Nm instead of J. Unit must be consistent with value of force used to gain the final mark. If no evidence of calculation unit mark can be awarded for kJ on its own.
4			TOTAL	10	

Question		Answer	Marks	Guidance
5	(a)	Liquid Gas	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Accept plasma
	(b)	Upthrust or force on an immersed object, equals weight of fluid displaced.	1	ALLOW force due to buoyancy. DO NOT ALLOW mass of fluid, but mass of fluid $\times \mathrm{g}$ is acceptable
	(c)	$\begin{aligned} & \text { Weight of boat or } \mathrm{mg}=\mathrm{Upthrust} \text { or } \mathrm{V} \rho g \\ & \text { Substituting into volume }=\mathrm{m} \div \rho \text { or } 2500 \div 1020 \text { or } 24500 \div 1020 \mathrm{~g} \\ & \quad=2.5\left(\mathrm{~m}^{3}\right) \end{aligned}$	1	NOT upthrust $=\mathrm{V} \rho g$, as that is given in the formula booklet. Any subject. This mark is for substituting. Actual value $=2.45 \mathrm{~m}^{3}$.
	(d)	Irregular paths / not following a streamline / random directions Random speed / velocity	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ALLOW chaotic motion / eddies. ALLOW not all at the same speed/velocity.
	(e)	$\begin{aligned} & \mathrm{P}=\mathrm{VI}=48 \times 85 \\ & 4080 \mathrm{~W}=4.1(\mathrm{~kW}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Actual value $=4.08 \mathrm{~kW}$.
	(f)	```Input power \((=3.1 \div 0.85)=3.6 \mathrm{~kW}\) Substituting into \(E=\operatorname{Pt}[30=3.6 \times \mathrm{t}]\) \(\mathrm{t}=8.2\) (hours) OR Available power from battery \(=0.85 \times 30 \mathrm{kWh}=25.5 \mathrm{kWh}\) Substituting into E \(=\operatorname{Pt}[25.5=3.1 \times \mathrm{t}]\) \(\mathrm{t}=8.2\) (hours) OR Substituting into \(\mathrm{E}=\mathrm{Pt}[30=3.1 \times \mathrm{t}]\) time \(=9.7\) with \(85 \%\) efficiency \(\mathrm{t}=0.85 \times 9.7=8.2\) (hours)```	1 1 1 (1) (1) (1) (1) (1) (1)	Any subject ALLOW answer given to 1sf. A final answer of 9.7 hours will get 2 marks. If input power $=3.1 \times 0.85=2.6 \mathrm{~kW}$, to give a final answer of 11 hours, 1 mark can be awarded.
5		TOTAL	14	

Question		Answer	Marks	Guidance
6	(a)	(have) minimum (internal) energy	1	DO NOT ALLOW zero energy ALLOW have particles with zero vibrational / kinetic energy. ALLOW have particles that don't move / vibrate.
	(b)	291 (K)	1	
	(c)	Converting volume to SI units: 5 litres $=0.005 \mathrm{~m}^{3}$ Substituting values into $\mathrm{pV}=\mathrm{nRT}$ (any subject) Correct rearrangement of equation; eg $n=(105000 \times 0.005) \div(8.314 \times 291)$ 0.22 (moles)	1 1 1 1	IGNORE POT for substitution mark. Award substitution mark if equation is stated and all correct values seen. ALLOW $18^{\circ} \mathrm{C}$ for sub mark. Using $\mathrm{T}=18^{\circ} \mathrm{C}$ can gain a maximum of 3 marks; eg answer $=3.5$. ALLOW ecf for T value given in part (b).
6		TOTAL	6	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

