

Cambridge Technicals Engineering

Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822 - 05825

Mark Scheme for January 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Unit 3

Annotations

Annotation	Meaning
tick	Correct response worthy of a mark. Number of ticks = number of marks awarded.
cross	Incorrect response
Omission mark (carat)	Incomplete response
ECF	Error carried forward
BOD	Benefit of doubt
NBOD	No benefit of doubt
POT	Power of ten error
RE	Rounding error
SF	Significant figure error

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper.

Penalise a rounding error in the second significant figure once only in the paper.

Subject-specific marking instructions

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy/answer marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored. **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given. **A** marks: These are accuracy or answer marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Question		Answer/Indicative content					Mark	Guidance		
1	(i)		(Area =) 0.5 (10 x 8) + 10 x 12					C1	Award C mark for correct method with a single	
			$= 160 \text{ (cm}^2)$						A1	error.
								[2]		
	(ii)								ecf i) throughout	
			{Volum	e = 160) x 0.5 / 80	(cm^3)			C1	in any units,
			(Mass =) 80 x 8	/ 640 (g)				C1	their volume x density, in any units
			(Mass =) 0.64 (k	(g)				A1	
									[3]	
	(iii)		Use of s	econd m	oment of a	rea metho	od, may be seen	n in vector format,		Allow ecf from (i)
			table for	mat or o	other.				C1	Area and co-ordinates of centroid found for first
				-						shape (numbers 120,6,5). Award if 2/3 correct.
			Shape	Area	Xi	yi	a _i x _i	a _i y _i	C1	Area and co-ordinates of centroid found for second
			1	120	6	5	720	600		shape (numbers 40, 14.67,6.67). Award if 2/3
			2	40	14.666	6.66	586.67	266.67		correct.
				160			1306.67	866.67	C1	The sum of their $a_i x_i$ found and divided by their total
										area. (Using $\bar{x} = \frac{\sum a_i x_i}{\sum a_i x_i}$)
	$\overline{\pi} = \frac{1306.67}{0.17}$							The sum of their a:v: found and divided by their total		
	$x = \frac{160}{160} = 8.17 (cm)$					160 –	C1	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$		
		$\overline{y} = \frac{866.67}{160} = 5.42$ (cm)							area. (Using $y = \frac{1}{total area}$)	
						160			A 1	
									AI	BOTH correct answers for \bar{x} and \bar{y} rounding to 8.2
										and 5.4 respectively to 2 s.f.
			(9)			109 0 (5	
2	(a)		(Stress = E x strain =) $70 \times 10^9 \times 0.0015$						CI	Correct use of correct formula, allow pot error eg 70
								4.1	X 0.15	
		$= 105 \text{ MPa} / 105,000,000 \text{ Pa/Nm}^{-2}$						Al	Including correct unit	
<u> </u>										
	(b)		Area = $\pi \ge 0.005^2 / 7.854 \ge 10^{-5} \text{ (m}^2\text{)}$						CI	Calculation of area in any units. May be seen within
								C1	shear stress calculation	
			Shear Stress = Shear Force÷Shear Area / 30000 ÷(2A)							use of $\angle A$ must be seen
			101 14	D.					A 1	Martin la la mait Assault 16 di di
1			= 191 M	lPa					Al	Nust include unit. Accept alternative correct prefix.

Unit 3

Unit 3

(Question		Answer/Indicative content	Mark	Guidance
				[3]	
				4.1	
	(c)	(i) (i)	Elastic Limit / Limit of Proportionality	Al	NOTE
		(11)	Elastic (deformation/ energy)	Al	NOT Force
		(III)	<u>Plastic</u> / <u>In-elastic</u> (deformation/energy)	Al	NOT Force
				[3]	
3	(a)	(i)	Overall VR = product of drivers÷product of driven 40×80	C1	
			$=\frac{40\times80}{30\times20}$ (= 5.33) OR 40÷30 AND 80÷20 seen	CI	Use of formula for overall VR
			(Output speed =) $90 \ge 5.33$	01	A11 (00-20) 00 OD (40-20) 00 C (1; C 1
				CI	Allow $(80\div20)$ x90 OR $(40\div30)$ x90 for this C mark
			= 480 rpm	A 1	
				AI	
				[3]	
		(ii)	$(VR =) \frac{n \times 80}{n} = 6$	C1	Use of VR formula to set up equation
			(n =) 45	A1	
			(II -) +5	[2]	
	(h)		To transmit rotary motion between axis that are not aligned	<u>[4]</u> A 1	Accent any sensible reference made to two
	(0)		To transmit notion between shafts that are at 90 degrees to each other	711	aves/shafts which are at 90 degrees
			To change the direction of motion of shafts		(Shafts need not necessarily be at 90 degrees to each
			To enalige the direction of motion of sharts		other although this is the most common)
<u> </u>				[1]	
	(c)		(diameter of input =) VR x diameter of output $/ 1.4 \times 80$	C1	Correct rearrangement of formula used
			= 112 cm	A1	
				[2]	
	(d)		Chopsticks, Tweezers, Stapler, Fishing rod, etc	A1	Accept any valid application. Accept bicep curl.
	(~)			[1]	
	(e)	(i)	(Output force = MA x input force = 2.05×160) = $328(N)$	A1	
	(-)			[1]	
		(ii)	$(b = a/MA = 1.2 \div 2.05) = 0.585(m)$	Al	
		()			

Question		ion	Answer/Indicative content	Mark	Guidance
				[1]	
4	(a)	(i)	(Resultant vertical force =) 250sin50 + 60sin30 - 120 / 101.511 (Resultant horizontal force =) 250cos50 - 60cos30 / 108.735	C1 C1	Allow a single error in sign or sin/cos Allow a single error in sign or sin/cos
			Magnitude = $\sqrt{101.511^2 + 108.735^2}$ = 149 (N) (148.7)	C1 A1	Pythagoras step with their forces Accept any answers rounding to 149
				[4]	
		(ii)	$tan^{-1}\left(\frac{108.735}{101.511}\right) = 47.0 \ (^{\circ})$	C1 A1	tan ⁻¹ with their vertical and horizontal components in any order (or equivalent sin/cos using their resultant)
				[2]	
		(iii)	(Power = Force x velocity = 149 x 1.2 =) 179 (W) (178.44)	A1	Ecf part i)
				[1]	
	(b)		(Increase in GPE = mgh =) $4 \times 9.8 \times 0.8 / 31.36$ (J) W.E principle: Work done by machine – Work against Friction = Inc. PE / Work done by machine – $50 = 31.36$	C1 C1	Use of GPE formula Use of work energy principle, signs must be correct. Accept either in words or as a calculation
			(Work done machine =) 81.36 (J)	A1	
				[3]	
5		(i)	(Use of suvat with u=0, s=4, v=0.8 and equation $v^2=u^2 + 2as$) 0.8 ² = (0 +) 2 x 4a (a =) 0.08 (ms ⁻²)	C1	
				AI [2]	

Unit 3

Question	Answer/Indicative content	Mark	Guidance
5 (ii)		C1	2 out of 3 arrows correct
	N or R	A1	Diagram as shown
	K		Accept labels written in words rather than symbols
			eg Normal Reaction
			Accept arrows if direction correct.
			Do not accept lines instead of arrows.
	15kg E or uB		Culturet 1 moule for each missing on incompation
	Γοιμιτ		Subtract I mark for each missing of incorrect arrow.
			Ignore acceleration arrow in clearly labelled.
			Accept 15g force resolved into components of
			15gsin10 down slope and 15gcos10 into slope, but
			to be correct both are required and should be instead
	\mathbb{V} or ma or 15g or 15y9 8		of 15g not as well as.
		[2]	
(iii)	(Use of F=ma down slope)		
	15gsin10 - F = 15a	C2	Award C1 if just one sign error or sin/cos error
	(T -) 24 22 (NI)	A 1	and i)
	$(\Gamma -) 24.33 (N)$	AI	
		[3]	
(iv)	$(\mu = F/N =) 24.33/15gcos10$	C1	Award if EITHER cos10 or g is omitted (NOT
			BOTH)
	= 0.168	A1	ecf iii)
	(When her stationers E = 15 as in 10) > 25.52($\begin{bmatrix} 2 \end{bmatrix}$	Colorian of now E
(V)	(when box stationary $F = 15gsin10 = 25.526$ (u = $F/N = 25.526/15gcos10 = 0.176$		Calculation of new F
	$(\mu - 1/1) = 23.320/13g00810 = 0.170$ (Suitable range is) 0.168 < $\mu < 0.176$		Inequality signs must be correct
	$\int (5 \mu \cos \theta \sin \theta$	AI	inequality signs must be concer

Unit 3

Unit 3

Question		tion	Answer/Indicative content	Mark	Guidance
				[3]	
6	(a)		Encastre	A1	Allow reasonable spelling errrors
				[1]	
	(b)	(i) (ii)	Moments about end A: $R_B \ge 20000 \ge 2 + 60000 \ge 7$ $R_B = 57,500 (N)$ Moments about end B OR Vertical Equilibrium: $R_A + R_B = 20000 + 60000$ $R_A = 22,500 (N)$	[1] C1 A1 C1 A1 [4] C1 C1 C1 C1 A1	Must have 3 terms but allow one sign error or 1 incorrect distance. 0 moment at free ends, linear diagram Calculation of moment at 2m (22,500 x 2) ignore signs Calculation of moment at 7m (57,500 x 1) ignore signs Diagram as shown. Award all marks if opposite sign convention used and entire diagram is reflected about x-axis or y-
				[4]	Allow values marked on axes or at critical values

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

