Cambridge Technicals Engineering

Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822-05825

Mark Scheme for January 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
tick	Correct response worthy of a mark. Number of ticks = number of marks awarded.
cross	Incorrect response
Omission mark (carat)	Incomplete response
ECF	Error carried forward
BOD	Benefit of doubt
NBOD	No benefit of doubt
POT	Power of ten error
RE	Rounding error
SF	Significant figure error

If the data given in a question is to 2 sf, then allow to 2 or more significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Penalise a rounding error in the second significant figure once only in the paper.

Subject-specific marking instructions

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
\mathbf{M} marks: These are method marks upon which A-marks (accuracy/answer marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.
A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Question			Answer/Indicative content	Mark	Guidance
				[3]	
	(c)	(i) (ii) (iii)	Elastic Limit / Limit of Proportionality Elastic (deformation/ energy) Plastic / In-elastic (deformation/energy)	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	NOT Force NOT Force
				[3]	
3	(a)	(i)	Overall VR $=$ product of drivers \div product of driven $=\frac{40 \times 80}{30 \times 20}(=5.33 .$.$) OR 40 \div 30$ AND $80 \div 20$ seen (Output speed =) 90×5.33 $=480 \mathrm{rpm}$	C1 C1 A1	Use of formula for overall VR Allow ($80 \div 20$) x 90 OR $(40 \div 30) \mathrm{x} 90$ for this C mark
				[3]	
		(ii)	$\begin{aligned} & (\mathrm{VR}=) \frac{n \times 80}{30 \times 20}=6 \\ & (\mathrm{n}=) 45 \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Use of VR formula to set up equation
				[2]	
	(b)		To transmit rotary motion between axis that are not aligned To transmit motion between shafts that are at 90 degrees to each other To change the direction of motion of shafts	A1	Accept any sensible reference made to two axes/shafts which are at 90 degrees (Shafts need not necessarily be at 90 degrees to each other, although this is the most common)
				[1]	
	(c)		(diameter of input =) VR x diameter of output / 1.4×80 $=112 \mathrm{~cm}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Correct rearrangement of formula used
				[2]	
	(d)		Chopsticks, Tweezers, Stapler, Fishing rod, etc	A1	Accept any valid application. Accept bicep curl.
				[1]	
	(e)	(i)	$($ Output force $=$ MA \times input force $=2.05 \times 160)=328(\mathrm{~N})$	A1	
				[1]	
		(ii)	$(\mathrm{b}=\mathrm{a} / \mathrm{MA}=1.2 \div 2.05)=0.585(\mathrm{~m})$	A1	

Question			Answer/Indicative content	Mark	Guidance
5	5	(ii)		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2 out of 3 arrows correct Diagram as shown Accept labels written in words rather than symbols eg Normal Reaction Accept arrows if direction correct. Do not accept lines instead of arrows. Subtract 1 mark for each missing or incorrect arrow. Ignore acceleration arrow if clearly labelled. Accept 15 g force resolved into components of $15 \mathrm{~g} \sin 10$ down slope and 15 gcos 10 into slope, but to be correct both are required and should be instead of 15 g not as well as.
				[2]	
		(iii)	(Use of $\mathrm{F}=$ ma down slope) $15 \mathrm{~g} \sin 10-\mathrm{F}=15 \mathrm{a}$ $(\mathrm{F}=) 24.33(\mathrm{~N})$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{~A} 1 \end{aligned}$	Award C1 if just one sign error or sin/cos error ecf i)
				[3]	
		(iv)	$\begin{aligned} & (\mu=\mathrm{F} / \mathrm{N}=) 24.33 / 15 \mathrm{gcos} 10 \\ & =0.168 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Award if EITHER $\cos 10$ or g is omitted (NOT BOTH) ecf iii)
				[2]	
		(v)	(When box stationary $\mathrm{F}=15 \mathrm{gsin} 10=$) 25.526 $(\mu=\mathrm{F} / \mathrm{N}=25.526 / 15 \mathrm{~g} \cos 10=) 0.176$ (Suitable range is) $0.168 \leq \mu<0.176$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Calculation of new F Inequality signs must be correct

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

