Mark Scheme for January 2011
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td>Rb-87 has (two) more neutrons ✓</td>
<td>1</td>
<td>ALLOW Different numbers of neutrons</td>
</tr>
<tr>
<td></td>
<td>ALLOW 2 neutrons</td>
<td></td>
<td>DO NOT ALLOW incorrect references to protons and electrons</td>
</tr>
<tr>
<td></td>
<td>ALLOW Rb-85 has 48 neutrons AND Rb-87 has 50 neutrons</td>
<td></td>
<td>DO NOT ALLOW incorrect references to protons and electrons</td>
</tr>
<tr>
<td>(b)</td>
<td>The (weighted) mean mass of an atom (of an element) OR</td>
<td>3</td>
<td>ALLOW average atomic mass</td>
</tr>
<tr>
<td></td>
<td>The (weighted) average mass of an atom *(of an element) ✓</td>
<td></td>
<td>DO NOT ALLOW mean mass of an element</td>
</tr>
<tr>
<td></td>
<td>compared with 1/12th (the mass) ✓</td>
<td></td>
<td>ALLOW mean mass of isotopes OR average mass of isotopes</td>
</tr>
<tr>
<td></td>
<td>of (one atom of) carbon-12 ✓</td>
<td></td>
<td>DO NOT ALLOW the singular; ‘isotope’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For second AND third marking points</td>
</tr>
<tr>
<td></td>
<td>ALLOW compared with *(the mass of) carbon-12 which is 12</td>
<td></td>
<td>ALLOW mass of one mole of atoms ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compared to 1/12th ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mass of) one mole OR 12 g of carbon-12 ✓</td>
</tr>
<tr>
<td></td>
<td>ALLOW mass of one mole of atoms ✓</td>
<td></td>
<td>ALLOW mass of one mole of atoms OR 12 g of carbon-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW 1/12th mass of one mole OR 12 g of carbon-12</td>
</tr>
<tr>
<td>(c)</td>
<td>(85.00 × 72.15) + (87.00 × 27.85) = 100</td>
<td>2</td>
<td>ALLOW two marks for correct answer $A_r = 85.56$ (with no working)</td>
</tr>
<tr>
<td></td>
<td>OR 61.3275 + 24.2295</td>
<td></td>
<td>ALLOW one mark for ECF from seen incorrect sum provided final answer is between 85 and 87 and is to 2 decimal places, e.g. 85.567 gives ECF of 85.57 for one mark</td>
</tr>
<tr>
<td></td>
<td>OR 85.557 ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A_r = 85.56$ *(to 2 decimal places) ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Mark</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 1 (d) | Spherical OR sphere ✓ | 1 | DO NOT ALLOW ’circular’
IGNORE unlabelled 2-D diagrams |
| (e) (i) | Sr⁺(g) → Sr²⁺(g) + e⁻ ✓ | 1 | ALLOW e for electrons
ALLOW Sr⁺(g) – e⁻ → Sr²⁺(g)
DO NOT ALLOW Sr⁺(g) + e⁻ → Sr²⁺(g) + 2e⁻
IGNORE state symbols for electrons |
| (e) (ii) | Sr has one more proton
OR greater nuclear charge ✓ | 3 | Use annotations with ticks, crosses ECF etc. for this part
Comparison should be used for each mark
ALLOW Sr has more protons
ALLOW ‘across the period’ for ‘Sr’
IGNORE ‘atomic number increases’, but ALLOW ‘proton number’ increases
IGNORE ‘nucleus gets bigger’
‘Charge increases’ is insufficient
ALLOW ‘effective nuclear charge increases’ OR ‘shielded nuclear charge increases’
Quality of Written Communication – Nuclear OR proton(s)
OR nucleus spelled correctly **ONCE** **for the first marking point**
ALLOW shielding is similar
ALLOW screening for shielding
IGNORE sub-shells
DO NOT ALLOW ‘distance is similar’
ALLOW ‘greater nuclear pull’ for ‘greater nuclear attraction’
DO NOT ALLOW ‘nuclear charge’ for nuclear attraction
ORA throughout |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 1 (e) | 2nd IE of Rb involves removing electron from shell closer to nucleus √ | 2 | **IGNORE** new shell \nALLOW There is one shell fewer in Rb⁺ (than Sr⁺)
ALLOW Rb⁺ has a smaller radius (than Sr⁺)
ALLOW Rb⁺ loses an electron from the 4th shell AND Sr⁺ loses an electron from the 5th shell.
ALLOW responses which do not specifically say ‘nuclear’ attraction (e.g. Rb has greater attraction) as long as nucleus is seen in first point
A comparison of Rb to Sr must be used, e.g. ‘Because of shielding’ is not enough
ORA |
| | Stronger nuclear attraction on (outermost electron) of Rb
OR (outermost electron) of Rb experiences less
shielding √ | | |
<p>| | Total | 13 | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (a) (i)</td>
<td>mol of $H_xA = \frac{25.00 \times 0.0500}{1000} = 1.25 \times 10^{-3}$ OR 0.00125 mol ✓</td>
<td>1</td>
<td>ALLOW 0.0013 OR 1.3×10^{-3} ALLOW correct answer only without working</td>
</tr>
<tr>
<td>(ii)</td>
<td>mol of $NaOH = \frac{12.50 \times 0.200}{1000} = 2.5(0) \times 10^{-3}$ OR $0.0025(0)$ mol ✓</td>
<td>1</td>
<td>ALLOW correct answer without working</td>
</tr>
<tr>
<td>(iii)</td>
<td>Answer 2a(ii) rounded to nearest whole number ✓ Answer 2a(i) If 2a(i) and 2a(ii) are correct this will be $x = \frac{2.50 \times 10^{-3} \text{mol}}{1.25 \times 10^{-3} \text{mol}} = 2$ OR H_2A</td>
<td>1</td>
<td>ALLOW answer without working if answers to 2a(i) AND 2a(ii) are seen DO NOT ALLOW responses without seeing answers in 2a(i) AND 2a(ii)</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>$HNO_3 \checkmark$ $CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O \checkmark$</td>
<td>2</td>
<td>IGNORE state symbols ALLOW correct multiples</td>
</tr>
<tr>
<td>(ii)</td>
<td>(Electrostatic) attraction between oppositely charged ions ✓</td>
<td>1</td>
<td>Attraction is essential IGNORE references to metal and non-metal</td>
</tr>
<tr>
<td>(iii)</td>
<td>Ions are mobile OR ions can move ✓</td>
<td>1</td>
<td>IGNORE ‘free ions’ IGNORE ‘delocalised ions’ IGNORE ions can move when molten IGNORE charge carriers DO NOT ALLOW Any mention of electrons moving ALLOW ions move when in a liquid IGNORE responses which give liquid ions</td>
</tr>
<tr>
<td>(iv)</td>
<td>(+) 5 ✓</td>
<td>1</td>
<td>ALLOW ✓</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Mark</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>2 (c)</td>
<td>Cu(NO$_3$)$_2$•6H$_2$O ✓</td>
<td>1</td>
<td>ALLOW Cu(NO$_3$)$_2$•6H$_2$O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW Cu(NO$_3$)$_2$(H$_2$O)$_6$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW Cu(NO$_3$)$_2$.6H$_2$O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO NOT ALLOW CuN$_2$O$_6$•6H$_2$O</td>
</tr>
</tbody>
</table>

Total 9
Question 3

(a)
The ability of an **atom** to attract electrons ✓

in a covalent bond ✓

(b)

\[\delta^+\text{N}-%F^- \text{ AND } \delta^-\text{N}-%\text{Br}\delta^+ \]

ALLOW \(\dplus\/\dminus\)

DO NOT ALLOW +/–

(c) (i)
octahedral **OR** octahedron ✓

(ii)

![Diagram of BF₃ showing three 'dot-and-cross' bonds between B and F and all F atoms with complete octet of electrons ✓](image1)

![Diagram of NH₃ showing three 'dot-and-cross' bonds between N and H and N atom has a lone pair ✓](image2)

Marking points 3, 4 and 5 may be awarded independently

- electron pairs repel ✓

- NH₃ has **one lone** pair and **three bonding** pairs of electrons **AND** lone pair of electrons repels **more** than bonding pairs ✓

- BF₃ has **three** (bonding) pairs of electrons (which repel equally) ✓

Mark Scheme January 2011

Question	**Answer**	**Mark**	**Guidance**
3 (a) | The ability of an **atom** to attract electrons ✓ | 2 | ALLOW 'attraction of an **atom** for electrons’
ALLOW 'pull' for 'attract'
DO NOT ALLOW 'element' for 'atom'
ALLOW 'shared pair' or 'bond(ing) pair' for 'covalent bond'

(b) | \[\delta^+\text{N}-%F^- \text{ AND } \delta^-\text{N}-%\text{Br}\delta^+ \] ✓ | 1 | ALLOW \(\dplus\/\dminus\)
DO NOT ALLOW +/–

(c) (i) | octahedral **OR** octahedron ✓ | 1 |

(ii) | ![Diagram of BF₃ showing three 'dot-and-cross' bonds between B and F and all F atoms with complete octet of electrons ✓](image1)

![Diagram of NH₃ showing three 'dot-and-cross' bonds between N and H and N atom has a lone pair ✓](image2)

Marking points 3, 4 and 5 may be awarded independently

- electron pairs repel ✓

- NH₃ has **one lone** pair and **three bonding** pairs of electrons **AND** lone pair of electrons repels **more** than bonding pairs ✓

- BF₃ has **three** (bonding) pairs of electrons (which repel equally) ✓

--

ALLOW diagrams without circles
Must be ‘*dot-and-cross’

IGNORE 'electrons repel'
DO NOT ALLOW 'atoms repel'
ALLOW 'bonds repel'

ALLOW 'bonds' for ‘bonding pairs’
ALLOW 'four pairs' in place of ‘one lone pair and three bonding pairs’

The third marking point can be gained from statements seen in fourth or fifth marking points
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 3 (c) (iii) | **BF₃** is symmetrical ✓
The dipoles cancel out ✓ | 2 | IGNORE 'polar bonds cancel'
IGNORE 'charges cancel' |
Question Answer Mark Guidance

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 4 (a) | Used to neutralise **acidic** soils ✓ | 2 | ALLOW raises the pH of the soil
IGNORE references to fertilisers
ALLOW pH becomes **too** high
IGNORE ‘harmful’
IGNORE ‘corrosive’ |
| | Excess will result in soils becoming **too** alkaline (to sustain crop growth) ✓ | | |
| (b) (i) | $0.00131 \times 40.1 = 0.0525 \text{ g OR } 5.25 \times 10^{-2}$ ✓ | 1 | ALLOW 0.053 OR 0.05253 OR 0.052531 g
IGNORE 0.05 if correct answer seen in working
DO NOT ALLOW 0.052 OR 0.0524 |
| (ii) | $0.00131 \times 24.0 = 0.0314 \text{ dm}^3 \text{ OR } 3.14 \times 10^{-2}$ ✓ | 1 | ALLOW 0.031 OR 0.03144 dm3
IGNORE 0.03 if correct answer seen in working
DO NOT ALLOW 31.4 |
| (iii) | Mol of OH$^-$ ions = $0.00131 \times 2 = 0.00262 \text{ OR } 2.62 \times 10^{-3}$ ✓ | 2 | ALLOW 0.0026
ALLOW 0.01048 OR 0.01(0)
ALLOW ECF from incorrect mol of OH$^-$
DO NOT ALLOW 2nd mark as ECF if 0.0525 is used as no of mol of OH$^-$ ions
DO NOT ALLOW 2nd mark as ECF if 0.0314 is used as no of mol of OH$^-$ ions
0.00524 mol dm$^{-3}$ is a likely ECF as a result of not multiplying 0.00131 by 2, but 0.00131 must be seen in working |
| (c) (i) | Fewer **moles** of Ba (in 0.0525 g)
OR Fewer **atoms** of Ba (in 0.0525) ✓ | 1 | ORA
Assume candidate is referring to Ba if not stated
IGNORE A; Ba > A, Ca |
| (ii) | Idea of Ba having a quicker **rate** OR more **vigorous** reaction ✓ | 1 | ALLOW more exothermic **OR** gets hotter OR fizzes more
Assume candidate is referring to Ba if not stated
Comparison is essential
IGNORE ‘Ba more reactive’
ORA |

Total: 8
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (a)</td>
<td>Creating the dipole mark
uneven distribution of electrons ✓</td>
<td>3</td>
<td>Use annotations with ticks, crosses ECF etc. for this part
ALLOW movement of electrons
ALLOW changing electron density
ALLOW ‘transient’, ‘oscillating’, ‘momentary’, ‘changing’
ALLOW ‘induces a dipole in neighbouring molecules’
ALLOW ‘causes a resultant dipole in neighbouring molecules’
ALLOW ‘atoms’ for ‘molecules’</td>
</tr>
<tr>
<td>(i)</td>
<td>Type of dipole mark
creates an instantaneous dipole OR temporary dipole ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Induction of a second dipole mark
causes induced dipole(s) in neighbouring molecules ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>boiling points increase down the group ✓</td>
<td>3</td>
<td>Use annotations with ticks, crosses ECF etc. for this part
ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest
ALLOW Cl for chlorine etc.
For ‘down the group’ ALLOW ‘as molecules get bigger’
ALLOW number of electron shells increases
IGNORE ‘more shells’ (if no reference to electrons)
ALLOW ‘more’ for ‘stronger’
ALLOW iodine has most electrons
ALLOW chlorine has fewest electrons
DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark</td>
</tr>
<tr>
<td></td>
<td>greater number of electrons OR stronger intermolecular forces OR stronger van der Waals’ forces ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>more energy needed to break intermolecular OR van der Waals’ forces ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Same number of outer(most) electrons OR same outer(most) electron structure ✓</td>
<td>1</td>
<td>ALLOW same number of electrons in outer shell
ALLOW It has seven outer electrons
IGNORE same group
DO NOT ALLOW ‘same number of electrons’</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Mark</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 5 (c) (i) | **Colours:** *(Add Br₂ to NaCl, (Cyclohexane layer) turns orange OR yellow ✓)* *(Add Br₂ to NaI, (Cyclohexane layer) turns purple OR lilac OR violet OR pink OR mauve ✓)* | 6 | **Use annotations with ticks, crosses ECF etc. for this part**
ALLOW any combination of these but no others
ALLOW any combination of these but no others
DO NOT ALLOW 'precipitate' with either colour
DO NOT ALLOW equation mark if incorrect equation(s) also seen
IGNORE Br₂ + 2Cl⁻ → Br₂ + 2Cl⁻
IGNORE correct non-ionic version of equation
IGNORE state symbols
ALLOW Chlorine is the most reactive
ALLOW Cl for chlorine etc.
ALLOW Iodine is the least reactive
ALLOW chlorine is best at electron capture
ALLOW chlorine has ‘greatest’ electron affinity
IGNORE chlorine is most electronegative
DO NOT ALLOW explanations in terms of displacement
Quality of Written Communication – Electron(s) OR negative spelled correctly at least ONCE for marking point 5
ALLOW Chlorine atom has fewest shells
ALLOW outer(most) shell closest to the nucleus
ALLOW Chlorine atom has lowest shielding
ORA for marking points 4, 5 and 6 |
| **Equation:** Br₂ + 2I⁻ → I₂ + 2Br⁻ ✓ | **Reactivity:**
Reactivity decreases down the group
OR Oxidising power decreases down the group ✓
Explanations:
Chlorine will gain electron easiest
OR form negative ion easiest ✓
Because chlorine (atom) is smallest
OR Outer(most) shell of chlorine least shielded
OR Nuclear attraction on electrons of chlorine is greatest ✓ | | |
<p>| | | | |
| | | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 5 (c) (ii) | Bromine is toxic ✓ | 1 | ALLOW cyclohexane is toxic
ALLOW bromine irritates the lungs
DO NOT ALLOW Cl₂ is toxic
IGNORE ‘strong smelling’
IGNORE ‘halogens’ are toxic |
| (d) (i) | 2F₂ + 2H₂O → 4HF + O₂ ✓ | 1 | ALLOW correct multiples, including use of ½ O₂
ALLOW 4HF
IGNORE state symbols |
| (ii) | Oxygen has been oxidised as (oxidation number has increased from) O = −2 to O = 0 ✓
Fluorine has been reduced as (oxidation number has decreased from) F = 0 to F = −1 ✓ | 2 | IGNORE references to oxygen in any incorrect products
DO NOT ALLOW O₂ = −2 → O = 0 but ALLOW F₂ = 0 → F = −1
ALLOW ‘F is reduced from 0 to −1’ regardless of product (or no product) in 5d(i) except ALLOW ECF for F = −2 if H₂F is seen
ALLOW one mark for O = −2 and O₂ = 0 AND F₂ = 0 and F = −1 if no reference OR incorrect reference to oxidation / reduction is seen
Look at equation in 5d(i) for oxidation numbers if not seen in 5d(ii)
IGNORE reference to electron loss / gain if correct
DO NOT ALLOW incorrect reference to electron loss / gain |
| (e) (i) | (1s²) 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p¹ ✓ | 1 | IGNORE 1s² twice
ALLOW 4s² before 3d¹⁰
ALLOW ‘3D’ |
| (ii) | GaF₃ ✓ | 1 | |
| | Total | 19 | |
OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored