

Tuesday 06 October 2020 – Afternoon AS Level Chemistry A

H032/01 Breadth in chemistry

Time allowed: 1 hour 30 minutes

You must have:

• the Data Sheet for Chemistry A

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write clearly in black ink. Do not write in the barcodes.									
Centre number						Candidate number			
First name(s)									
Last name									

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- This document has 20 pages.

ADVICE

· Read each question carefully before you start your answer.

SECTION A

You should spend a maximum of 25 minutes on this section.

Answer **all** the questions.

Write your answer to each question in the box provided.

1	Which substance contains polar molecules?					
	Α	C_2H_4				
	В	CO ₂				
	С	NCl_3				
	D	SF ₆				
	You	ur answer	[1]			
2	Wh	at is the formula of silver carbonate?				
	A	AgCO ₃				
	В	$Ag(CO_3)_2$				
	С	Ag_2CO_3				
	D	Ag_3CO_3				
	You	ur answer	[1]			
3	Wh	ich statement explains why ice is less dense than water?				
	Α	Hydrogen bonds are stronger in ice than in water.				
	В	Hydrogen bonds hold H ₂ O molecules apart in ice.				
	С	Ice is a solid but water is a liquid.				
	D	Ice contains hydrogen bonds, but water does not contain hydrogen bonds.				
	You	ir answer	[1]			

		· · · · · · · · · · · · · · · · · · ·						
4	Sor	ne Group 2 compounds can be used to neutralise acid soils and to treat acid indigestion.						
	Wh	ich Group 2 compound would not be suitable for either use?						
	A BaSO ₄							
	В	CaCO ₃						
	С	Ca(OH) ₂						
	D	$Mg(OH)_2$						
	You	or answer	[1]					
5	Wh	ich p-block element contains atoms with one unpaired electron?						
	Α	Al						
	В	Si						
	С	P						
	D	S						
	You	er answer	[1]					
6	The	equation for a redox reaction is shown below.						
	2H($ClO_3 + 2HCl \rightarrow 2ClO_2 + Cl_2 + 2H_2O$						
	Wh	ich statement is correct?						
	Α	$C\mathit{l}$ is both oxidised and reduced.						
	В	Cl is oxidised and O is reduced.						
	С	O is both oxidised and reduced.						
	D	O is oxidised and Cl is reduced.						
	You	er answer	[1]					

1	POL	assium terrate(v1) contains two potassium ions for every terrate(v1) ion.	
	Wh	at is the formula of the ferrate(VI) ion?	
	Α	FeO ₃ ²⁻	
	В	FeO ₄ ²⁻	
	С	FeO ₅ ²⁻	
	D	FeO ₆ ²⁻	
	You	ur answer	[1]
8	The	e unbalanced equation for the reaction of copper with concentrated nitric acid is shown below	W.
		Cu + $HNO_3 \rightarrowCu(NO_3)_2 +NO_2 +H_2O$	
	Wh	at is the number of moles of HNO ₃ that react with 1 mole of Cu?	
	Α	2	
	В	3	
	С	4	
	D	6	
	Υοι	ır answer	[1]
9	The	${\rm dm^3~of~C}l_2$ gas reacts with 2.0 ${\rm dm^3~of~C}l{\rm F_3}$ gas to form 6.0 ${\rm dm^3~of~a}$ gaseous compound. e reaction has 100% atom economy and all volumes are measured at the same temperated pressure.	ure
	Wh	at is the molecular formula of the compound formed?	
	Α	C1F	
	В	Cl_2F_3	
	С	Cl_3F_2	
	D	Cl_3F_3	
	Υοι	ır answer	[1]

10	Wh	ich sample cor	ntains the great	est number of mole
	Α	1g of methan	nol, CH ₃ OH	
	В	2g of nitroger	n dioxide, NO ₂	
	С	3g of phosph	orus, P ₄	
	D	4g of iodine,	I_2	
	You	ur answer		
11	Нус	drogen and oxy	/gen react as sl	nown below.
	2H ₂	$_{2}(g) + O_{2}(g) \rightarrow$	2H ₂ O(g)	$\Delta_r H = -486 \mathrm{kJmc}$
	Bor	nd enthalpies a	are shown in the	e table.
		Bond	H-H	O=O
	В	ond enthalpy /kJ mol ⁻¹	+436	+498
	Wh	at is the bond	enthalpy, in kJ n	nol ⁻¹ , for the O-H b
	Α	+221		
	В	+355		
	С	+464		
	D	+928		
	Υοι	ır answer		

12	Hydrogen gas ca	n he	nroduced	as shown	helow
14	riyuruy u ri yas ca	มาย	produc e a	as shown	DEIOW.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$
 $\Delta H = +206 \text{ kJ mol}^{-1}$

Which conditions produce the greatest equilibrium yield of hydrogen?

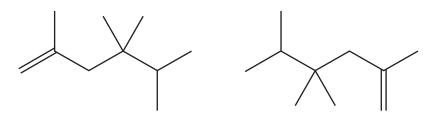
- A Low temperature and high pressure
- **B** Low temperature and low pressure
- **C** High temperature and high pressure
- **D** High temperature and low pressure

Your answer		[1]
-------------	--	-----

13 The reversible reaction below is in equilibrium.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The equilibrium concentrations are shown in the table.


Substance	SO ₂ (g)	O ₂ (g)	SO ₃ (g)
Equilibrium concentration / mol dm ⁻³	4.00	2.40	1.44

What is the numerical value of K_c ?

- **A** 0.0375
- **B** 0.0540
- **C** 0.150
- **D** 18.5

Your answer [1]

14 Which statement is correct for the two structures below?

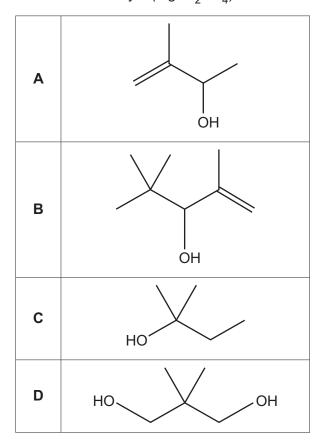
- A They have the same empirical formula.
- **B** They have different relative molecular masses.
- **C** They are structural isomers.
- **D** They have different functional groups.

Your answer		[1
-------------	--	----

- 15 Which property explains the low reactivity of alkanes?
 - **A** Electron pair repulsion between σ -bonds
 - **B** Free rotation about σ -bonds
 - **C** High C–C bond enthalpy
 - **D** High polarity of the C–H bonds

[1]

16 What are the correct reagents for the conversion below?


 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CHOHCH}_3 \to \mathsf{CH}_3\mathsf{CH}_2\mathsf{CHBrCH}_3$

- **A** Br_2 and H_2SO_4
- **B** Br₂ and NaOH
- C NaBr and H₂SO₄
- D NaBr and NaOH

- Which compound could react with both

 - $K_2Cr_2O_7/H_2SO_4$ in an oxidation reaction **and** an acid catalyst (e.g. H_2SO_4) in an elimination reaction?

Your answer [1]

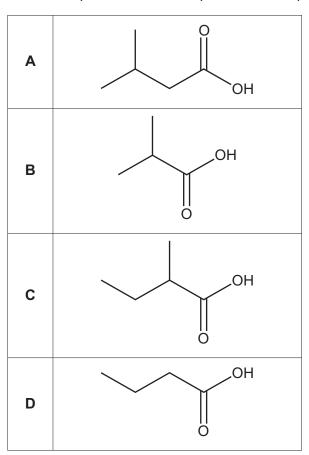
18 A student reacts 24.24 g of 2-bromobutane in the reaction below.

$$\label{eq:charge_charge} \begin{aligned} \mathsf{CH_3CH_2CHBrCH_3} + \mathsf{NaOH} &\rightarrow \mathsf{CH_3CH_2CHOHCH_3} + \mathsf{NaBr} \\ M_\mathsf{r} &= 136.9 & M_\mathsf{r} &= 74.0 \end{aligned}$$

The reaction produces $4.81\,\mathrm{g}$ of $\mathrm{CH_3CH_2CHOHCH_3}$.

What is the percentage yield of CH₃CH₂CHOHCH₃?

- 10.7% Α
- В 19.8%
- C 36.7%
- D 54.1%


Your answer [1] 19 Which row describes a nucleophile?

Α	electron pair donor	attracted to high electron density
В	electron pair donor	attracted to low electron density
С	electron pair acceptor	attracted to high electron density
D	electron pair acceptor	attracted to low electron density

Your answer		[1]
-------------	--	-----

20 The mass spectrum of a carboxylic acid contains peaks at m/z = 29 and m/z = 102.

Which compound could have produced the spectrum?

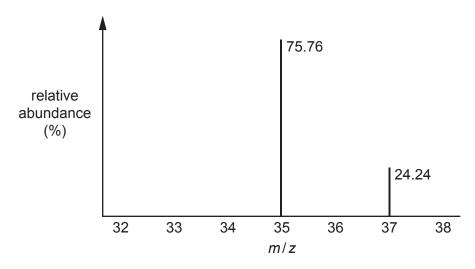
Your answer [1]

10

SECTION B

Answer **all** the questions.

- 21 This question is about atoms, isotopes and mass spectrometry.
 - (a) Complete the table to show the number of electrons that can fill the first four shells.


Shell	1st shell	2nd shell	3rd shell	4th shell
Number of electrons				

[1]

(b)	Most elements contain atoms of different isotopes.
	State any differences and similarities between the atomic structures of isotopes of the same element.
	Differences
	Similarities
	[~]

(c) Mass spectrometry can be used to identify the isotopes of chlorine.

Part of the mass spectrum of chlorine is shown below.

(i) Calculate the relative atomic mass of chlorine.

Give your answer to 2 decimal places.

rolativo atomic mass =	ro:
raiativa atomic mace =	1.7

[2]

(ii) The mass spectrum of chlorine, Cl_2 , also contains three molecular ion, M^+ , peaks. One of the M^+ peaks has an m/z value of 72.

Suggest why an M^+ peak at m/z = 72 is observed and predict the m/z values of the other two M^+ peaks.

Peak at $m/z = 72$	 	

m/z values of the other two M⁺ peaks

22	Thi	s que	estion is about o	compounds of bromine.	
	(a) Bromine reacts with phosphorus, P ₄ , to form phosphorus tribromide, PBr ₃ .				
		(i)	Complete the	electron configuration of a b	romine atom.
			1s ²		[1]
		(ii)	•	ation for the reaction of phos	
					[1]
	(b)			omine is a solid at room to ent physical states is shown	emperature. The electrical conductivity of the in the table.
		P	hysical state	Electrical conductivity	
			solid	poor	
			liquid	good	
		eled Nar	etrical conduction of lattice	erent conductivities	room temperature and explain the different
					[2]

(c)	Bromine reacts with fluorine to form compound A .
	Compound A is a liquid at room temperature and pressure but can easily be vaporised.
	When vaporised, $0.428\mathrm{g}$ of A produces $76.0\mathrm{cm}^3$ of gas at $1.00\times10^5\mathrm{Pa}$ and $100^\circ\mathrm{C}$.
	Determine the molar mass and molecular formula of compound A .

molar mass of $A = \dots g \text{mol}^{-1}$ molecular formula of $A = \dots$ [5]

23	This question is about barium hydroxide.	
	(a)	Barium hydroxide is an alkali which releases hydroxide ions, OH ⁻ , in aqueous solution.
		A barium hydroxide solution contains 3.89 g of Ba(OH) ₂ in 100 cm ³ at 20 °C.
		Calculate the concentration of hydroxide ions, OH ⁻ , in mol dm ⁻³ , of this solution at 20 °C
		Give your answer to 3 significant figures.

	concentration of OH ⁻ ions = mol dm ⁻³ [3]
. ,	A student carries out a titration to determine the concentration of an aqueous solution of ${\rm Ba(OH)}_2$.
T T	The student adds $25.0\mathrm{cm}^3$ of the Ba(OH) $_2$ (aq) solution to a conical flask. The student titrates this solution by adding $0.160\mathrm{moldm}^{-3}$ HNO $_3$ (aq) from the burette.
٦	Γhe equation is shown below.
E	$Ba(OH)_2(aq) + 2HNO_3(aq) \to Ba(NO_3)_2(aq) + 2H_2O(l)$
٦	The student repeats the titration until concordant titres are obtained.
٦	The mean titre of $0.160 \text{mol dm}^{-3} \text{HNO}_3(\text{aq})$ is 26.75cm^3 .
((i) What is meant by concordant titres?
	[1]

(ii) Calculate the concentration, in $\operatorname{mol}\operatorname{dm}^{-3}$, of the $\operatorname{Ba}(\operatorname{OH})_2(\operatorname{aq})$ solution.

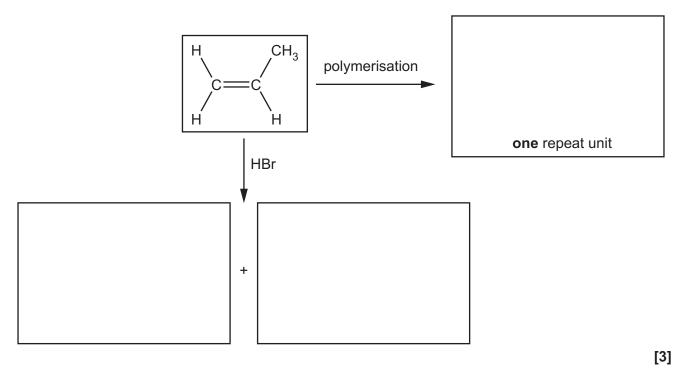
	concentration of Ba(OH) ₂ (aq) = mol dm ⁻³ [3]
(c)	A student plans to prepare a solution of Ba(OH) ₂ from barium by two different reaction routes.
	Outline 2 reaction routes for preparing a solution of Ba(OH) ₂ from barium in the laboratory.
	Include relevant equations.
	[4]

- 24 This question is about making ammonia, NH₃.
 - (a) Ammonia is manufactured by reacting nitrogen with hydrogen:

$$\mathsf{N_2}(\mathsf{g}) + 3\mathsf{H_2}(\mathsf{g}) \to 2\mathsf{NH_3}(\mathsf{g})$$

Standard enthalpy changes of combustion, $\Delta_{\rm c} H^{\rm e},$ are given in the table.

Substance	Δ _c H ^e /kJ mol ^{−1}
N ₂ (g)	+180
H ₂ (g)	-286
NH ₃ (g)	-293


Calculate the standard enthalpy change of formation, $\Delta_{\rm f} H^{\rm e},$ for ${\rm NH_3(g)}.$

$$\Delta_{\mathbf{f}}H^{\Theta}$$
 for $\mathrm{NH_3}(\mathbf{g})$ = kJ mol⁻¹ [3]

(D)	and in the presence of a catalyst.
	Explain, using Boltzmann distributions, why increasing the temperature and using a catalyst both increase the reaction rate.
	[5]

- **25** This question is about unsaturated hydrocarbons.
 - (a) Two reactions of propene are shown below.

In the boxes, show the structures of the organic products of the reactions.

(b) Propene also reacts with bromine.

Outline the mechanism for the reaction of propene with bromine, ${\rm Br}_2$. The structure of propene has been provided.

Show curly arrows, relevant dipoles and product(s).

[4]

(c) The 'alkynes' is a homologous series of hydrocarbons.

The table shows three alkynes.

Alkyne	Structural formula	Molecular formula
ethyne	HC≡CH	C ₂ H ₂
propyne	CH ₃ C≡CH	C ₃ H ₄
but-1-yne	CH ₃ CH ₂ C≡CH	C ₄ H ₆

(i)	Explain what is meant by the term: homologous series .	
(ii)	Suggest the general formula of the alkynes.	
/:::\	Dranung regate with broming to form a geturated compaund	[1]
(iii)	Propyne reacts with bromine to form a saturated compound.	
	Write an equation for the reaction, showing the structure of the organic product.	
		[2]
(iv)	But-1-yne is a structural isomer of C ₄ H ₆ .	[2]
	Draw the structures of 2 other structural isomers of C ₄ H ₆ .	
		[0]
(v)	Draw the structure of 2,5-dimethylhept-3-yne.	[2]

[1]

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s must be clearly shown in the margin(s).			
•••••			

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.