

# **GCE**

# **Physics B (Advancing Physics)**

H157/01: Foundations of physics

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

### Annotations

| Annotation | Meaning                                                                                       |
|------------|-----------------------------------------------------------------------------------------------|
| BOD        | Benefit of doubt given                                                                        |
| CON        | Contradiction                                                                                 |
| ×          | Incorrect response                                                                            |
| ECF        | Error carried forward                                                                         |
| NBOD       | Benefit of doubt not given                                                                    |
| POT        | Power of 10 error                                                                             |
| ^          | Omission mark                                                                                 |
| TE         | Technical error (includes rounding & arithmetic errors)                                       |
| SF         | Error in number of significant figures                                                        |
| <b>✓</b>   | Correct response                                                                              |
| X          | Incorrect response                                                                            |
| ?          | Wrong physics or equation                                                                     |
| L1 L2 L3   | Indicates level of response in extended response questions indicated * by the question number |

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation | Meaning                                                       |  |
|------------|---------------------------------------------------------------|--|
| 1          | alternative and acceptable answers for the same marking point |  |
| (1)        | Separates marking points                                      |  |
| reject     | Answers which are not worthy of credit                        |  |
| not        | Answers which are not worthy of credit                        |  |
| IGNORE     | Statements which are irrelevant                               |  |
| ALLOW      | Answers that can be accepted                                  |  |
| ()         | Words which are not essential to gain credit                  |  |
| _          | Underlined words must be present in answer to score a mark    |  |
| ecf        | Error carried forward                                         |  |
| AW         | Alternative wording                                           |  |
| ORA        | Or reverse argument                                           |  |

# **MARKING INSTRUCTIONS**

### **Section A: MCQs**

| Question | Answer | Marks | Guidance |
|----------|--------|-------|----------|
| 1        | С      | 1     |          |
| 2        | Α      | 1     |          |
| 3        | В      | 1     |          |
| 4        | С      | 1     |          |
| 5        | С      | 1     |          |
| 6        | D      | 1     |          |
| 7        | Α      | 1     |          |
| 8        | D      | 1     |          |
| 9        | В      | 1     |          |
| 10       | В      | 1     |          |
| 11       | В      | 1     |          |
| 12       | В      | 1     |          |
| 13       | В      | 1     |          |
| 14       | Α      | 1     |          |
| 15       | С      | 1     |          |
| 16       | В      | 1     |          |
| 17       | С      | 1     |          |
| 18       | Α      | 1     |          |
| 19       | D      | 1     |          |
| 20       | D      | 1     |          |
|          | Total  | 20    |          |

# **SECTION B**

| Que | estio | n | Expected Answer                  | Mark | Rationale/Additional Guidance                |
|-----|-------|---|----------------------------------|------|----------------------------------------------|
| 21  | а     |   | $(b = log_2 256) = 8 \checkmark$ | 1    | Bare answer scores mark                      |
|     | b     |   | 457 x 353 / 1024 ✓               | 1    | Method                                       |
|     |       |   | = 158 (kilobytes) ✓              | 1    | Evaluation. ALLOW 161 kB (using 1000B = 1kB) |
|     |       |   | Total                            | 3    |                                              |

| Que | estio | า  | Expected Answer | Mark | Rationale/Additional Guidance                                                        |
|-----|-------|----|-----------------|------|--------------------------------------------------------------------------------------|
| 22  | а     |    | C<br>B<br>A ✓✓  | 2    | Answers in the order shown 2 marks if all three correct ALLOW 1 mark for one correct |
|     | b     | i  | A ✓             | 1    |                                                                                      |
|     | b     | ii | A ✓             | 1    |                                                                                      |
|     |       |    | Total           | 4    |                                                                                      |

| Que | estio | n | Expected Answer                            | Mark | Rationale/Additional Guidance                           |
|-----|-------|---|--------------------------------------------|------|---------------------------------------------------------|
| 23  | а     |   | (P = VI) = 12 x 2.4 ✓                      | 1    |                                                         |
|     |       |   | = 28.8 ✓                                   | 1    | ALLOW 29                                                |
|     |       |   | w ✓                                        | 1    | <b>ALLOW</b> Js <sup>-1</sup> but no other alternatives |
|     | b     |   | t = 2 x 60 = 120 (s) ✓                     | 1    | Conversion to seconds anywhere seen in solution         |
|     |       |   | $(E = V^2 t/R) = 12^2 \times 120 / 4$      | 1    | ALLOW other equivalent e.g. E=VIt if correct            |
|     |       |   | = 4320 (J) ✓                               | 1    | ALLOW 72 (J) for 2 marks                                |
|     | С     |   | Energy dissipated/lost to surroundings ✓   | 1    | DO NOT ALLOW just "energy lost"                         |
|     |       |   | so less energy goes to heating the block ✓ | 1    |                                                         |
|     |       |   | Total                                      | 8    |                                                         |

| Que | estion | Expected Answer                                                                                              | Mark | Rationale/Additional Guidance                                                                                                                                                                                                   |
|-----|--------|--------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24  | а      | Light dependent resistor ✓                                                                                   | 1    | <b>ALLOW</b> LDR                                                                                                                                                                                                                |
|     | b      | $(V1/V2 = R1/R2) = 2/6 = R/18000 \checkmark$ $R = 6000 (\Omega)$                                             | 1    | Valid method and correct substitution. <b>ALLOW</b> alternative methods e.g. potential divider equation and substitution. <b>ALLOW</b> one mark for calculation of current in circuit (3.3 x 10 <sup>-4</sup> A as part method) |
|     | С      | Adjust lighting to the required level (on/off point) ✓ Adjust variable resistor until reading on V is 6.0V ✓ | 1    | ALLOW until light just turns on                                                                                                                                                                                                 |
|     |        | Total                                                                                                        | 5    |                                                                                                                                                                                                                                 |
|     |        | Total Section B                                                                                              | 20   |                                                                                                                                                                                                                                 |

# **SECTION C**

| Que | estio | n | Expected Answer                                                        | Mark | Rationale/Additional Guidance                                                                                                        |
|-----|-------|---|------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| 25  | а     |   | Distance travelled = 2 mm AND Time taken = 800ms√                      | 1    | Identification of <i>both</i> values                                                                                                 |
|     |       |   | (Speed = $2/800$ ) = $0.0025$ (ms <sup>-1</sup> ) $\checkmark$         | 1    | Evaluation                                                                                                                           |
|     | b     |   | The ball is accelerating ✓                                             | 1    |                                                                                                                                      |
|     |       |   | 1s (1000 ms) is less than halfway between n = 2 and n = 3 ✓            | 1    | Second mark for some idea that the instantaneous speed varies between n = 2 and n = 3 but that at 1s it is closer to the n = 2 frame |
|     | С     |   | The distance travelled between frames is constant ✓                    | 1    |                                                                                                                                      |
|     |       |   | And remains constant for all subsequent frames ✓                       | 1    | Second mark must be clear that the distance travelled is constant for <b>every</b> frame past n = 5                                  |
|     | d     |   | $(3 \times 10^{-3} / 0.8) = 0.00375 \text{ (ms}^{-1})$                 | 1    |                                                                                                                                      |
|     |       |   | uses all four frames to get values (e.g. 9 x 10 <sup>-3</sup> / 2.4) ✓ | 1    | <b>ALLOW</b> statement that as the distance between all four frames is the same then (3 x 10 <sup>-3</sup> / 0.8) is valid.          |
|     |       |   | Total                                                                  | 8    |                                                                                                                                      |

| Que | estion | Expected Answer                                        | Mark | Rationale/Additional Guidance                               |
|-----|--------|--------------------------------------------------------|------|-------------------------------------------------------------|
| 26  | а      | No variation (in brightness) ✓                         | 1    | ALLOW stays the same brightness                             |
|     | b      | Decreases <u>to zero</u> ✓                             | 1    |                                                             |
|     |        | Then increases (rapidly) ✓                             | 1    |                                                             |
|     | С      | 56 ✓                                                   | 1    | Only this value                                             |
|     | d      | (Completely plane) polarised ✓                         | 1    |                                                             |
|     |        | Perpendicular (to the axis of the polarising filter) ✓ | 1    | ALLOW horizontally                                          |
|     | е      | (±) 1 degree ✓                                         | 1    | Insist on unit                                              |
|     | f      | (Yes) – a curve with minimum at 58 ✓                   | 1    | REJECT 'the point at 58 has an error bar that touches zero' |
|     |        | Would pass through all the error bars ✓                | 1    |                                                             |
|     |        | Total                                                  | 9    |                                                             |

| Que | estio | n  | Expected Answer                                                                                                                                          | Mark        | Rationale/Additional Guidance                                             |
|-----|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|
| 27  | а     |    | 2.05 ✓                                                                                                                                                   | 1           | Check in table and on answer space                                        |
|     | b     | i  | Points at (5.00, 2.05) and (5.83,2.40) ✓                                                                                                                 | 1           | ECF from part a. <b>ALLOW</b> ½ square tolerance on plotting              |
|     |       |    | Line of best fit drawn ✓                                                                                                                                 | 1           |                                                                           |
|     | b     | ii | Values read or triangle marked where $\Delta x > 1.5 \times 10^{14} \checkmark$                                                                          | 1           | Method mark for large range being used. <b>ALLOW</b> max ½ square misread |
|     |       |    | = 4.3 x 10 <sup>-15</sup> (Vs) ✓                                                                                                                         | 1           | <b>ALLOW</b> ecf from ½ square misreads only                              |
|     | С     |    | E (= 2.40 x 1.60 x 10 <sup>-19</sup> ) = 3.84 x 10 <sup>-19</sup> (J) $\checkmark$                                                                       | 1           | 3sf answer only.                                                          |
|     | d     |    | 1 Vs = 1.6 x 10 <sup>-19</sup> (Js) $\checkmark$ h = gradient x 1.6 x 10 <sup>-19</sup> $\checkmark$ = 6.9 (6.856) x 10 <sup>-34</sup> (Js) $\checkmark$ | 1<br>1<br>1 | Must use gradient in calculation, or zero marks.                          |
|     | е     |    | They may not be identical ✓                                                                                                                              | 1           | ALLOW check the one in use wasn't somehow anomalous                       |
|     |       |    | This improves accuracy/precision ✓                                                                                                                       | 1           | ALLOW find an average p.d.                                                |

| f | Any <b>one pair</b> from:  Darken the room / shield the LED / view through black paper tube  ✓                                                                                                                           | 1  | 1 for suggestion                                             |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------|
|   | To improve contrast ✓                                                                                                                                                                                                    | 1  | 1 for explanation                                            |
|   | To go from unlit to lit and back again to find turn on point Sometimes get flickering at turn-on point  Any suggestion to get finer control of p.d. e.g. to use potential divider  Because the LVU control is too coarse |    | ALLOW any other reasonable pairs of suggestion / explanation |
|   | Total                                                                                                                                                                                                                    | 13 |                                                              |
|   | Total Section C                                                                                                                                                                                                          | 30 |                                                              |
|   | Total Sections B & C                                                                                                                                                                                                     | 50 |                                                              |

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

#### **OCR Customer Contact Centre**

### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

