

Tuesday 12 January 2021 – Afternoon

Level 3 Cambridge Technical in Applied Science

05847/05848/05849/05874/05879 Unit 1: Science fundamentals

Time allowed: 2 hours

C340/2101

You must have:

- · the Data Sheet
- a ruler (cm/mm)

You can use:

- · a scientific or graphical calculator
- · an HB pencil

Please write clea	arly in black ink.				
Centre number	tre number Candidate number				
First name(s)					
Last name					
Date of birth	D D M M Y Y Y				

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.

INFORMATION

- The total mark for this paper is **90**.
- The marks for each question are shown in brackets [].
- The Periodic Table is on the back page.
- This document has 24 pages.

ADVICE

• Read each question carefully before you start your answer.

	AMINER ONLY
Question No	Mark
1	/14
2	/14
3	/12
4	/15
5	/11
6	/6
7	/9
8	/9
Total	/90

© OCR 2021 [D/507/6148]

OCR is an exempt Charity

C340/2101/7 Turn over

Answer **all** the questions.

1 Elements can be identified by their atomic structure.

Table 1.1 shows the atomic structure of some elements, **V**, **W**, **X** and **Y**.

The letters **V**, **W**, **X** and **Y** are not the chemical symbols of the elements.

Element	Electronic structure	Neutron number	Nucleon number (atomic mass number)	Proton number
V		10	19	
W	2,8,2	12		12
X	2,8,4		28	14
Υ		18	35	17

Table 1.1

(a)	(i)	Complete Table 1.1 .	[4]
	(ii)	Which two elements, V , W , X or Y are in the same Group of the Periodic Table?	
		and	[1]
	(iii)	Use the information in Table 1.1 and the Periodic Table to deduce the chemical symbols of W and Y .	
		w	
		Υ	[1]
	(iv)	What is the formula of the compound formed by elements ${\bf W}$ and ${\bf Y}$?	
			[1]

	(v)	State the type of be completing the se			charges on their ions b	y
		You may use each	n word once, mo	re than once, or not	at all.	
		attraction	ionic	negative	positive	sharing
		The type of bonding	ng between W a	nd Y is		
		In the compound t	that is formed, V	<i>I</i> is a	ion and	
		Y is a		ion.		[2]
(b)	(i)	Use nuclear notat number.	ion to indicate th	e symbol of X , and	its atomic number and	
	(ii)	The nucleus of V	has more proton	s and neutrons than	the puclous of V	[2]
	(11)		•		rces within the nuclei o	of Y and V .
		Explain why both				

- **2** Carbon compounds containing chlorine have many uses, but they are also known to cause problems for the environment.
 - (a) Chlorofluorocarbons (CFCs) in the upper atmosphere can destroy the ozone (O_3) layer. The first two reaction steps in the breakdown of O_3 are outlined in **Table 2.1**.

Step	Reaction
1	$CF_3Cl \rightarrow CF_3 + Cl$
2	$Cl + O_3 \rightarrow ClO + O_2$

Table 2.1

(i) Step 1 and Step 2 involve free radicals.

Identify three formulae in Table 2.2 that are free radicals.

Tick (✓) **three** boxes.

Formula	Free radical
CF ₃ C <i>l</i>	
CF ₃	
Cl	
O ₃	
CIO	
O ₂	

Table 2.2

(ii)	Ultraviolet radiation from the Sun is needed to start Step 1 in Table 2.1 .	
	Suggest how ultraviolet radiation can increase the rate of reaction in Step 1 .	

[3]

(b)	Chlo	oroeth	hene is a useful organic compound and has the formula $CHC_l = CH_2$.	
	Chlo	hene is made from ethane in two reaction steps.		
	Ste	p 1	$CH_3CH_3 + 2Cl_2 \rightarrow CH_2ClCH_2Cl + 2HCl$	
	Ste	o 2	$CH_2ClCH_2Cl \rightarrow CHCl = CH_2 + HCl$	
	(i)	lden	tify the type of reaction shown in Step 1 .	
		Tick	(√) one box.	
		Add	ition	
		Sub	stitution	
		Oxio	dation	
		Red	uction	
				[1]
	(ii)	CH ₂	C/CH₂C/ has a structural isomer.	
		Drav	w the structural formula for the isomer of CH ₂ ClCH ₂ Cl.	
				[1]
	(iii)	CH ₂	$ClCH_2Cl$ and $CHCl = CH_2$ do not have geometrical isomers.	
		Give	e one reason why each molecule does not have geometrical isomers.	
		CH ₂	C/CH ₂ C/	
		CHC	$Cl = CH_2$	
				[2]

(c)		yvinyl chloride is a polymer that can be made by the addition of many monomers of $Cl = CH_2$.	f
	(i)	What is the empirical formula of polyvinyl chloride?	
		Tick (✓) one box.	
		CHC/	
		CH₂C <i>l</i>	
		C ₂ H ₂ C <i>l</i>	
		C ₂ H ₃ C <i>l</i>	[1]
	(ii)	Draw a section of polyvinyl chloride which contains three repeat units.	

[1]

(iii) Polylactate is a different type of polymer compared to polyvinyl chloride.

The structural formula for the repeat unit of polylactate is shown in Fig. 2.1.

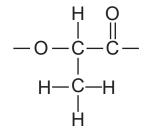


Fig. 2.1

Explain how the monomer and the polymerisation reaction that forms polylactate are **different** to those of polyvinyl chloride.

	[3]
Difference in monomers	

- **3** Bone is a type of tissue found in the human body.
 - (a) An osteocyte is a specialised cell which is found in bone tissue.

Fig. 3.1 shows a diagram of an osteocyte.

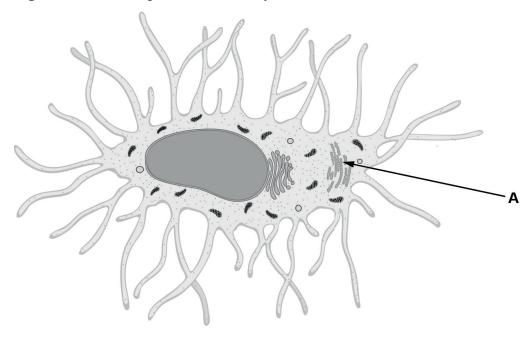


Fig. 3.1

(1)	Give the name of the organelle labelled A in Fig. 3.1.
	[1

(ii) Organelle A can either appear as rough or smooth when observed on an electron micrograph.

Complete the following sentences.

carbohydrate

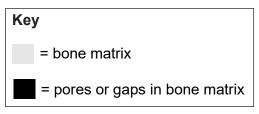
You may use each word once, more than once, or not at all.

chloroplasts

mitochondria	protein	RNA	ribosomes		
The rough type of or	ganelle A has		attached.		
This means that the rough type is involved in synthesis.					
However, the smooth type of organelle A is the site of					
synthesis.					

DNA

lipid


(b) A key luliculou of bothe dissue is illilleral lott storag	(b)	key function of bone tissue is mineral io	n storage
---	-----	---	-----------

(i)	Which minera	al ion is store	ed and used to	form the matrix in bone tissue?
	Put a ring a	around the co	orrect answer.	
	Ca²⁺	K⁺	Na [⁺]	Ni ²⁺

(ii) Osteoporosis is a condition that affects bones.

The images in Fig. 3.2 show normal bone and bone with osteoporosis.

[1]

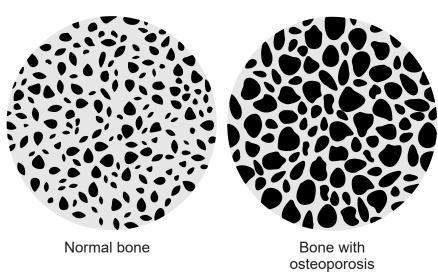


Fig. 3.2

Use **Fig. 3.2** to suggest the link between osteoporosis and the mineral ion identified in **(b)(i)**, and the effect of osteoporosis on bone function.

_ink	•••
Effect	
	•••
	3]

(c) Magnesium is another mineral ion needed for healthy bones.

It can be taken into the body via magnesium oxide supplements or in foods with a high amount of magnesium.

Table 3.1 shows some foods and the amount of magnesium that they contain.

Food	Amount of magnesium (mg per 100 g portion)
Almonds	300
Banana	29
Brazil nuts	225
Pumpkin seeds	532
Spinach	80

	Banana	29					
	Brazil nuts	225					
	Pumpkin seeds	532					
	Spinach	80					
	Table	3.1					
(i)	The recommended daily	amount of magnesium is 320	mg for women.				
	A woman eats four 100 g	portions of one of the foods	in Table 3.1 .				
	Using the information in Table 3.1 , identify which food she would need to eat to meet her recommended daily amount of magnesium.						
		Food =	[1]				
(ii)	The recommended daily	amount of magnesium is 420	mg for men.				
	A man eats a 50 g portion of almonds.						
	Using the information in Table 3.1 , calculate how much more magnesium a man would need to reach his recommended daily amount.						

	Amount of magnesium needed = mg	g [2]
(d)	Some enzymes need metal ions, such as magnesium, so that they can function. What is the role of metal ions in enzyme function?	
		[4]

4	Car	boxylic acids are a family of organic compounds with the functional group –COOH.	
	(a)	Butanoic acid $(C_4H_8O_2)$ has a hydrocarbon chain and a $-COOH$ group.	
		Draw the structural formula for butanoic acid, showing all the bonds.	
			[1]
	(b)	Ethanoic acid, CH ₃ COOH, reacts with sodium hydroxide to form a salt and water.	
		Complete the equation for this reaction.	
		$CH_3COOH + NaOH \rightarrow \dots + \dots + \dots$	
			[2]
	(c)	Ethanoic acid can be reduced to other organic compounds.	
		$CH_3COOH + 4[H] \rightarrow CH_3CH_2OH + H_2O$	
		What type of organic compound is formed?	
		Tick (✓) one box.	
		Alcohol	
		Aldehyde	
		Alkyne	
		Ketone	
			[1]

(d) Fatty acids are carboxylic acids with a long hydrocarbon chain.

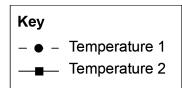
Fatty acids are found in the human body.

Fatty acids react with glycerol to form a lipid. A lipid contains one or more ester groups.

Fig. 4.1

(i) Draw the structural formula of a lipid that forms from the reaction of glycerol and **one** molecule of the fatty acid shown in **Fig. 4.1**.

Clearly show the structure of the ester group.


		[4]
(ii)	The lipid drawn in (d)(i) is also known as a monoglyceride.	
	State how a triglyceride is different from a monoglyceride.	
		.[1]
(iii)	State what is released when lipids are broken down to reform glycerol and fatty acids.	
		.[1]
(iv)	Explain the importance of lipids for nerve transmission in the human body.	
		.[2]
(v)	Give one other function of lipids in the human body.	
		F43

(e) Sundip is a science student. She is studying the effect of temperature on the rate of reaction between a fatty acid and glycerol.

She chooses two temperatures: Temperature 1 and Temperature 2.

She plots a graph of her results for both temperatures.

The graph is shown in **Fig 4.2**.

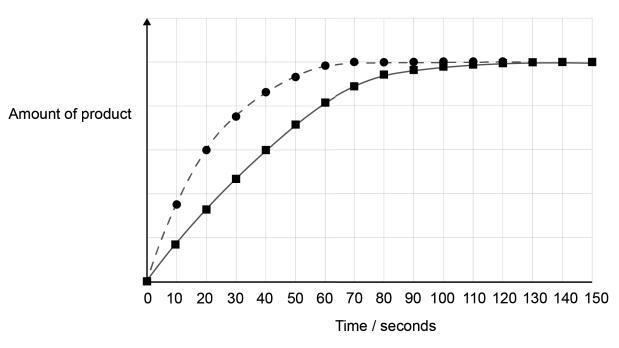


Fig. 4.2

(i)	Use the graph to deduce which temperature is higher, giving reasons for your answer.
	[2]
(ii)	Explain the effect of temperature on the rate of reaction.
	[2]

Phosphate is a component of phospholipids DNA and RNA.

5

(a)		Phospholipids are an essential part of the membranes found around organelles in cells, such as the nuclear envelope.					
	Complete the following sentences.						
	Use the words from the list. You may use each word once, more than once, or not at all.						
	doı	ıble	eukaryotic	flexible	photosynthetic		
	por	ous	prokaryotic	single	triple	thin	
	The	The nuclear envelope surrounds the nucleus and consists of a					
	membrane.						
	The membrane is to allow protein molecules to be						
	tran	transported across the nuclear envelope.					
	The	The presence of a nuclear envelope indicates that the type of cell is					
	[3]						
(b)	Nar	Name one membrane-bound organelle found in cells, other than the nucleus.					
						[4]	
						[1]	
(c)	DN	A and RNA a	are nucleic acids.				
	The	y are made	of nucleotides.				
	Each nucleotide contains a phosphate, a sugar and a base.						
	(i) Identify the correct phosphate link between nucleotides.						
	Tick (✓) one box.						
	Base – Phosphate – Base						
		Base – Ph	osphate – Sugar				
		Sugar – P	hosphate – Base				
		Sugar – Pl	hosphate – Sugar				
						[1]	

(ii) The bases found in some nucleotides can pair with other bas	es.
--	-----

Draw a line to link **Base 1** with its complementary **Base 2**.

Base 1	Base 2
	Adenine
Guanine	Cytosine
Thymine	Guanine
	Thymine

(iii) Although the phosphate group is always the same, the sugars and bases are different in DNA compared to RNA.

Complete the table to compare the sugars and bases found in **DNA** and **RNA**.

Feature	DNA	RNA
Type of sugar found		
Four bases found		

[4]

[2]

6 Copper and its ions have uses in metallic structures such as bronze, and in biological molecules such as haemocyanin.

Bronze is an alloy of copper and tin, and is used to make coins and statues.

Haemocyanin is a protein found in the bodies of invertebrates such as insects. Its function is to carry oxygen in a similar way to haemoglobin in vertebrates such as humans.

The structure of bronze and the oxygenated form of haemocyanin are shown in Fig. 6.1.

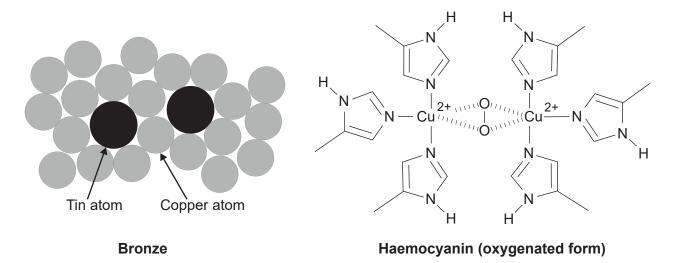


Fig. 6.1

Describe the structures of bronze and haemocyanin as shown in Fig 6.1 and how these

determine their properties and function or uses.
[6]

- 7 Different metals have different physical properties such as strength, hardness and density.
 - (a) The Vickers Hardness Test is used to determine the hardness of materials such as metals.

In this test, a diamond pyramid is pressed into the surface of a sample of the material.

Fig. 7.1 shows the laboratory instrument that is used, and a diagram of the test.

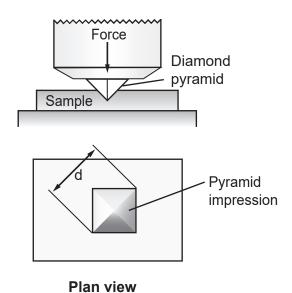


Fig. 7.1

(1)	compare the hardness of different metals.	Ю
		[3]
(ii)	Suggest why a diamond pyramid is used in the machine.	
		[1]

(b) An important property of a metal is its strength to weight ratio.

This is a number which can be calculated by dividing the strength (in MPa) of the metal by its density in g cm⁻³.

Table 7.1 shows the strength and density of four metal alloys.

(i) Use the information to calculate the strength to weight ratio for each alloy. Write down the values in the table.

Give your answers to 3 significant figures.

Metal	Strength / MPa	Density / g cm ⁻³	Strength to weight ratio
Aluminium alloy	310	2.70	
Stainless steel	505	8.00	
Titanium alloy	1250	4.81	
Low-carbon steel	365	7.87	

Table 7.1 [2]

(ii)	Which metal alloy in Table 7.1 would be most s	uitable for constructing a racing bike?
	Tick (✓) one box.	
	Aluminium	
	Stainless steel	
	Titanium	
	Low-carbon steel	
	Explain why you have chosen this metal alloy.	
		[1]
(iii)	Suggest two other factors which you would nee material for a racing bike.	ed to consider when selecting the best
	1	
	2	

© OCR 2021 [2]

8	The potential difference across a resistor X is 5.0 V.
	The current in the resistor is 0.5 A.
	(a) Calculate the resistance R_x of resistor X .

$$R_x$$
 = Ω [2]

(b) Resistor **Y** is placed in series with resistor **X**. The potential difference across both resistors is 5.0 V.

The current in the resistors is 0.087 A.

Calculate the resistance R_y of resistor **Y**.

$$R_{\rm y}$$
 = Ω [2]

(c) Resistor X is now placed in parallel with resistor Y.

Calculate the combined resistance R_t of **X** and **Y** in parallel.

Use the equation: potential difference = current x resistance

Use the equation: $\frac{1}{R_t} = \frac{1}{R_x} + \frac{1}{R_y}$

$$R_t = \dots \Omega$$
 [2]

(d) A lamp is placed in the circuit so that resistor \boldsymbol{X} , resistor \boldsymbol{Y} and the lamp are all in parallel.

The total current in the circuit is 0.75 A.

Show that the charge Q transferred through the lamp in one minute is about 8.6 C.

ADDITIONAL ANSWER SPACE

If additional answer space is required, you should use the following lined pages. The question numbers must be clearly shown in the margins – for example, 1(b)(ii) or 2(b)(iii).

••
 • •
•
••
••
••
• • •
••
••

(0)	18	2 He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	첫	krypton 83.8	54	Xe	xenon 131.3	98	R	radon			
(7)			17	6	ш	fluorine 19.0	17	CI	chlorine 35.5	35	Ā	bromine 79.9	53	Ι	iodine 126.9	85	Αŧ	astatine			
(9)			16	8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Ъ	polonium	116	۲	livermorium
(2)			15	7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ā	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	S	silicon 28.1	32	g	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	Εl	flerovium
(3)			13	2	ω	boron 10.8	13	ΝI	aluminium 27.0	31	Ga	gallium 69.7	49	I	indium 114.8	81	11	thallium 204.4			
			•						12	30	Zu	zinc 65.4	48	ဦ	cadmium 112.4	80	Hg	mercury 200.6	112	ပ်	copernicium
									11	59	Cn	copper 63.5	47	Ag	silver 107.9	62	Αn	gold 197.0	111	Rg	roentgenium
									10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	₹	platinum 195.1	110	Ds	darmstadtium
									6	27	ပိ	cobalt 58.9	45	牊	rhodium 102.9	27	ı	iridium 192.2	109	¥	meitnerium
									80	56	Fe	iron 55.8	44	Ru	ruthenium 101.1	9/	So	osmium 190.2	108	Hs	hassium
									7	25	Mn	manganese 54.9	43	ည	technetium	75	Re	rhenium 186.2	107	В	pohrium
		er	mass						9	24	ပ်	chromium 52.0	42	Wo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium
	Key	atomic number Symbol	name elative atomic mass						2	23	>	vanadium 50.9	41	9 N	niobium 92.9	73	Та	tantalum 180.9	105	음	dubnium
		atc	relativ						4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	¥	rutherfordium
•									3	21	လွ	scandium 45.0	39	>	yttrium 88.9		27-71	lanthanoids		89-103	actinoids
(2)			2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	99	Ba	_{barium} 137.3	88	Ra	radium
(1)	1	- ≖	hydrogen 1.0	3	=	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	22	S	caesium 132.9	87	ቴ	francium

71 Lu lutetium 175.0	103 Lr wrencium
70 Yb ytterbium 173.0	102 No
69 Tm thullum 168.9	101 Md
68 Er erbium 167.3	100 Fm fermium m
67 Ho holmium 164.9	99 Es einsteinium
66 Dy dysprosium 162.5	98 Cf californium
65 Tb terbium 158.9	97 Bk berkelium
64 Gd gadolinium 157.2	96 Cm curium
63 Eu europium 152.0	95 Am americium
62 Sm samarium 150.4	94 Pu plutonium
61 Pm promethium 144.9	93 Np neptunium
60 Nd neodymium 144.2	92 U uranium 238.1
59 Pr praseodymium 140.9	91 Pa protactinium
58 Ce cerium 140.1	90 Th thorium 232.0
57 La lanthanum 138.9	89 Ac

Oxford Cambridge and RSA

Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge

CB2 8EA.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a