Monday 18 January 2021 - Afternoon # Level 3 Cambridge Technical in Engineering **05822/05823/05824/05825/05873** Unit 4: Principles of electrical and electronic engineering Time allowed: 1 hour 30 minutes C304/2101 #### You must have: - the Formula Booklet for Level 3 Cambridge Technical in Engineering (inside this document) - a ruler (cm/mm) - · a scientific calculator | Please write clea | rly in black ink. | |-------------------|-------------------| | Centre number | Candidate number | | First name(s) | | | Last name | | | Date of birth | D D M M Y Y Y | #### **INSTRUCTIONS** - Use black ink. You can use an HB pencil, but only for graphs and diagrams. - Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown. - Answer all the questions. - Where appropriate, your answer should be supported with working. - Give your final answers to a degree of accuracy that is appropriate to the context. #### **INFORMATION** - The total mark for this paper is 60. - The marks for each question are shown in brackets []. - This document has 20 pages. #### **ADVICE** · Read each question carefully before you start your answer. | FOR EXAMINER USE ONLY | | | |-----------------------|------|--| | Question No | Mark | | | 1 | /10 | | | 2 | /11 | | | 3 | /10 | | | 4 | /10 | | | 5 | /11 | | | 6 | /8 | | | Total | /60 | | © OCR 2021 [D/506/7269] OCR is an exempt Charity C304/2101/9 Turn over #### Answer all the questions. 1 The circuit diagram of a torch designed by a student is shown in Fig. 1. Fig. 1 - (a) An ohmmeter is used to measure the resistance of R_1 . - (i) Draw on Fig. 1 to show an ohmmeter connected to measure the resistance of R_1 . [1] - (ii) A multimeter is used as an ohmmeter to measure the value of R_1 . Fig. 2a shows a multimeter with the dial in the off position. Draw an arrow **on** Fig. 2b showing the correct position of the dial to measure the resistance of R_1 precisely. Fig. 2a Fig. 2b [1] | | (iii) | Explain why switch SW_1 must be in the off position and switch SW_2 should not be pressed when the ohmmeter is being used to measure the resistance of R_1 . | |-----|-------|--| | | | | | | | | | | | | | | | [2] | | (b) | LEI | D_1 in Fig. 1 has a voltage of 3.6 V across it when it is glowing. | | ` / | | can assume that the battery has negligible internal resistance. | | | | | | | (i) | Calculate the voltage across the two resistors R_1 and R_2 when switch SW_1 is turned on and SW_2 is not pressed. | | | | 2 - 1 | voltage across R_1 and $R_2 = \dots V$ [1] | | | (ii) | Calculate the current through LED_1 when switch SW_1 is turned on and SW_2 is not pressed. | current through $LED_1 = \dots$ A [2] | | (iii) Calculate the current through the LED ₁ when switch SW ₁ is turned on and SW ₂ is pressed | |---| | | | | | | | | | | | current through LED ₁ with SW ₂ pressed = | | (iv) Calculate the power dissipated in resistor R_2 when SW_1 is turned on and SW_2 is pressed. Give the units for your answer. | | | | | | | | | | | | power dissipated in $R_2 = \dots$ [2] | | | | | | | | | | | | | #### **BLANK PAGE** ### PLEASE DO NOT WRITE ON THIS PAGE Turn over for the next question | 2 | (a) | State what | is meant by | 'alternating | current (| (AC) | ١. | |---|-----|------------|-------------|--------------|-----------|------|----| | | | | | | | | | | • • • • | |---------| | | | | | [1] | | | (b) An alternating current (AC) signal is a sine wave of frequency 250 kHz and amplitude 20 V. A graph of the alternating current signal is shown in Fig. 3. Fig. 3 (i) Calculate the period of the sine wave. T = μs [2] (ii) Complete the labelling of the axes **on** Fig. 3 by filling the boxes with the correct times and voltages. [4] | (i | iii) | Calculate the angular frequency, ω , using the formula $\omega = 2\pi f$. | |------------|------|--| $\omega = \dots \operatorname{rad} s^{-1} [2]$ | | (i | iv) | The sine wave has an amplitude $V = 20 \mathrm{V}$. | | | | Calculate the voltage, v , of the sine wave at $t = 2.2 \mu\text{s}$ using the formula $v = V \sin \omega t$. | v = V [2] | 3 | (a) | Describe the difference between a motor and a generator. | |---|-----|--| | | | | | | | | | | | [2] | | | (b) | A shunt-wound self-excited DC generator is used to charge a battery. | | | | (i) Draw a diagram of a shunt-wound self-excited DC generator. | Label all the parts and the output terminals. | (ii) | The shunt-wound self-excited DC generator has a field winding resistance of $R_f = 18 \Omega$ and armature resistance of $R_a = 0.12 \Omega$. | |-------|---| | | Calculate the current (I_f) in the field winding when the generator is producing an output voltage of $V = 16 \text{V}$. | | | | | | | | | | | | | | | $I_f = A [1]$ | | (iii) | Calculate the current in the armature, I_a , when the DC generator is producing an output voltage, V , of 16.0 V and an EMF, E , of 18.8 V. | | | | | | | | | | | | | | | $I_a = \dots A [2]$ | | (iv) | State why the output current from the generator is less than the armature current. | | | | | | | | | [1] | 4 (a) Fig. 4 shows a three phase 4-wire power supply. Add labels on Fig. 4 to identify the three phase wires and the neutral wire. Fig. 4 [2] (b) Complete the paragraph below using the most appropriate word in each gap.Choose words from the following list.Each word may be used once, more than once or not at all. | delta | line | phase | single | star | three | | |-------------|-----------------|------------------|-----------------|----------------|--------------------|-----| | Most local | electricity sup | pplies in the UK | use a three pha | ase 4-wire sys | tem with three pha | ase | | wires and a | neutral wire. | A three phase 4- | wire supply is | called a | | ••• | | connected s | ystem. The v | oltage between c | one of the phas | e wires and th | e neutral wire is | | | called the | | voltag | ge. The voltage | between two | phase wires is cal | led | | the | | voltage. | | | | [3] | © OCR 2021 - (c) Most electronic equipment requires a low voltage direct current supply. - (i) A transformer can produce a low voltage AC from the high voltage AC input. Complete Fig. 5 to show how a high voltage AC supply can be converted to a low voltage rectified output using four diodes to make a full wave bridge rectifier. Question 4 (c)(ii) begins on page 12 (ii) Fig. 6a shows the low voltage AC signal from the transformer. Show how the full wave bridge rectifier operates by drawing the low voltage rectified output **on** the axes in Fig. 6b. Fig. 6a Fig. 6b [2] | 5 | (a) | An operational amplifier (op amp) of Voltage Gain = -12 is used to amplify the voltage from a sensor attached to the input of the amplifier, producing an input voltage, $V_{in} = 0.3 \text{ V}$. Calculate the output voltage V_{out} . Use the formula: Voltage Gain = $\frac{V_{out}}{V_{in}}$ | |---|-----|---| | | | $V_{out} = \dots V [2]$ | | | (b) | An inverting op-amp amplifier is used to amplify the signal. Calculate suitable values for the input resistor $R_{\rm in}$ and the feedback resistor $R_{\rm F}$ to provide a Voltage Gain = -12 . Use the formula: Voltage Gain = $-\frac{R_{\rm F}}{R_{\rm in}}$ | | $R_F = \dots$ | Ω | |------------------|----------| | $R_{in} = \dots$ | Ω
[2] | (c) Complete the circuit diagram in Fig. 7 of an op-amp inverting amplifier. Label the resistors \mathbf{R}_F and \mathbf{R}_{in} and the **input** and **output** of the amplifier. 0 V _____ **Fig.** 7 [7] 6 (a) Draw the circuit symbol for a NAND gate.Label the inputs A and B and label the output Q. [1] **(b)** Complete the truth table for a NAND gate. | A | В | Q | |---|---|---| | | | | | | | | | | | | | | | | [2] (c) Put a ring around the correct Boolean expression for a NAND gate. Q = A + B $Q = \overline{A + B}$ $Q = A \cdot B$ $Q = \overline{A \cdot B}$ $Q = A \oplus B$ [1] (d) Fig. 8 shows a logic gate circuit. Complete the truth table for the circuit in Fig. 8. | D | E | F | G | Н | J | K | |---|---|---|---|---|---|---| | 0 | 0 | 0 | | | | | | 0 | 0 | 1 | | | | | | 0 | 1 | 0 | | | | | | 0 | 1 | 1 | | | | | | 1 | 0 | 0 | | | | | | 1 | 0 | 1 | | | | | | 1 | 1 | 0 | | | | | | 1 | 1 | 1 | | | | | [4] ## END OF QUESTION PAPER #### **ADDITIONAL ANSWER SPACE** If additional answer space is required, you should use the following lined pages. The question numbers must be clearly shown – for example, 1(b)(ii) or 3(a). Copyright Information: OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.