Cambridge Technicals Engineering

Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822-05825

Mark Scheme for January 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations

Annotation	Meaning
tick	Correct response worthy of a mark. Number of ticks = number of marks awarded.
cross	Incorrect response
Omission mark (carat)	Incomplete response
ECF	Error carried forward
BOD	Benefit of doubt
NBOD	No benefit of doubt
POT	Power of ten error
RE	Rounding error
SF	Significant figure error

If the data given in a question is to 2 sf, then allow to 2 or more significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Penalise a rounding error in the second significant figure once only in the paper.

Subject-specific marking instructions

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
M marks: These are method marks upon which A-marks (accuracy/answer marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.
A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Question			Answer/Indicative content	Mark	Guidance
	(b)	(i)	$\begin{aligned} & \text { Area }=\pi \times 0.006^{2}=1.131 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\ & \text { Stress }=60000 / \text { their area } \\ & =530 \mathrm{MPa} \text { or } 530,000,000 \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Calculation of cross-sectional area, in any unit Accept answers of 530,000,000 or 530 Unit must agree with their calculation, eg for 530 Pa award A1A0. Accept Nm^{-2} instead of Pa , or Nmm^{-2} instead of MPa.
				[3]	
		(ii)	$\begin{aligned} & \text { Strain }=0.006 / 1.2 \\ & =0.005 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Award if 6 used instead of 0.006
				[2]	
		(iii)	$\text { Young's modulus }=\text { Stress } / \text { Strain }=530,000,000 / 0.005=106$ GPa Yes, this test agrees as the value calculate for E is in the range $105-120 \mathrm{GPa} .$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Calculation of E with their values from (i) and (ii) Do not award unless E found
				[2]	
		(iv)	The stress caused by the tensile force is within the elastic region of the material ($530 \mathrm{Mpa}<800 \mathrm{MPa}$). So yes, the test is consistent with an elastic limit of 800 MPa .	A1	Conclusion of test results being consistent required.
				[2]	
4	(i)		Use of suvat with $u=0, s=120, v=18$ and equation $v^{2}=u^{2}+2$ as $\begin{aligned} & 18^{2}=0+2 \times 120 \mathrm{a} \\ & \mathrm{a}=1.35\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	C1 A1	
				[2]	
	(ii)		$\begin{aligned} & \text { Driving force = work/distance }=360,000 / 120 \\ & \mathrm{D}=3000(\mathrm{~N}) \\ & \qquad \begin{array}{l} 3000-\mathrm{R}=1800 \times 1.35 \\ \mathrm{R}=570(\mathrm{~N}) \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \\ & \text { C1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of correct formula, award if 360 used instead of 360000 Use of $\mathrm{F}=\mathrm{ma}$ All terms and signs correct Allow FT of their D for last 3 marks.
				[5]	
5	(i)		$\begin{aligned} & \text { Volume }=4.5 \times 1 \times 0.08 \\ & =0.36\left(\mathrm{~m}^{3}\right) \\ & \text { Mass }=\text { Volume } \times \text { density }=0.36 \times 740 \\ & =266.4 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	volume $=1 \times \mathrm{w} \mathrm{x} \mathrm{d}$, award if 8 used instead of 0.08 ecf their volume
				[4]	

Question			Answer/Indicative content	Mark	Guidance
	(ii)	(A)	$\begin{aligned} & \text { Total downward force }=(266.4+100) \times 9.8 \\ & 3590.72(\mathrm{~N}) \\ & \text { Reaction force at each support }=3590.72 / 2=1795.36(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Recognition of need to multiply loads in kg by 9.8 Total load. Allow load in kg. Half total load since symmetric. Ecf their total load in N. 183.2 scores 2 marks
				[3]	
		(B)	$\begin{aligned} & 1795.36 \times 2.25-(266.4 \times 9.8 / 2) \times 1.125 \\ & =2571(\mathrm{Nm}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Allow very close attempt
				[2]	
6	(a)	(i)	$\begin{array}{r} 20000 \times 3+40000 x=28000 \times 2.5 \\ x=0.25(\mathrm{~m}) \end{array}$	$\begin{aligned} & \mathrm{C} 1 \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Attempt to set up an equation for moments about tower All terms present and correct
				[3]	
		(ii)	Load x $8+28000 \times 2.5=20000 \times 3+40000 \times 2.6$ $\text { Load }=11750(\mathrm{~N})$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Equation set up with at least one term correct or total moment from counterweights calculated but not as part of equation All terms present and correct
				[3]	
	(b)		$\begin{aligned} & \text { Work done }=\text { Change in energy } \\ & 20000=200 \times 9.8 \times \mathrm{h} \\ & \mathrm{~h}=10.2(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Attempt to use work-energy principle Correct equation
				[3]	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

