

Cambridge Technicals Engineering

Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822 - 05825

Mark Scheme for January 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations

Annotation	Meaning
tick	Correct response worthy of a mark. Number of ticks = number of marks awarded.
cross	Incorrect response
Omission mark (carat)	Incomplete response
ECF	Error carried forward
BOD	Benefit of doubt
NBOD	No benefit of doubt
POT	Power of ten error
RE	Rounding error
SF	Significant figure error

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper.

Penalise a rounding error in the second significant figure once only in the paper.

Subject-specific marking instructions

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy/answer marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored. **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given. **A** marks: These are accuracy or answer marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Question		on	Answer/Indicative content	Mark	Guidance	
1	(i)		Weight = $mg= 2 \times 9.8 = 19.6$ (N)	A1		
				[1]		
	(ii)		Horizontal component = $25(N)$	C1		
	l (Magnitude = $\sqrt{25^2 + 19.6^2}$	C1	Pythagoras step with their components	
			= 31.8 (N)	A1	ecf (i)	
				[3]		
	(iii)		Acceleration = Resultant force/mass = $31.8/2$		ecf their (ii)	
			= 15.9	A1		
			ms ⁻²	A1		
				[2]		
	(iv)		Momentum = mass x velocity			
			speed = $15/2 = 7.5 \text{ (ms}^{-1}\text{)}$	A1		
				[1]		
	(v)		K.E. = $\frac{1}{2}$ mv ² = 0.5 x 2 x 7.5 ² = 56.25 (J)	A1	ecf their (v)	
				[1]		
	(vi)		The forces are concurrent	A1	Accept 'all the forces meet at a single point' if term concurrent not used	
				[1]		
2	(a)	(i)	Compound spur gear system	A1	Must include 'compound' term	
_	()	(-)		[1]		
		(ii)	Wormgear and wormwheel	A1	Accept just wormgear	
		()		[1]		
		(iii)	Chain-driven sprocket	A1	Allow chain drive or similar but not just "chain".	
		()		[1]		
	(b)	(i)	MA = 105/150 = 0.7	A1		
	(~)	(-)		[1]		
		(ii)	$a = MA \times b = 0.7 \times 1.2 = 0.84(m)$	A1	ecf their (i)	
		()		[1]		
	(c)	(i)	teeth on output = teeth input/VR = $48/2.5$ (= 19.2)	M1	Use of VR formula to calculate number of teeth in output	
			It is not possible to have 19.2 teeth on a gear so the VR cannot be achieved exactly	A1	Conclusion regarding integer number of teeth	
				[2]		
		(ii)	diameter of input = VR x diameter of output = $2.5 \times 22 = 550 \text{ (mm)}$	A1	Accept 55 cm or 0.55 m.	
				[1]		

Question		Answer/Indicative content						Mark	Guidance	
		(iii)	The belt and pulley system can slip (while the spur gears will not) OR The belt and pulley system will wear out more quickly/is less durable/will need replacing more often							If no direct reference made to property of belt and pulley or spur gears assume response refers to belt and pulley Not "more slip" or "more likely to slip" because spur gears do not slip.
									[1]	
	(d)		The stee	ring mech	anism	/system			A1	Any sensible reference to car steering. Not steering wheel.
3	(a)	(i)	Use of moment of area formula, may be seen in table form, vector form, or separate calculations.						[1] C1 C1	Area and co-ordinates of centroid found for first shape. Award if 2/3 correct. Area and co-ordinates of centroid found for second or third shape.
			Shape	Area	Xi	yi	a _i x _i	a _i y _i		Award if 2/3 correct.
			1	8000	20	100	160000	800000		Note candidates may have split into different shapes than the 2
			2	2400	70	20	168000	48000	-	examples given here.
			3	4000	120	50	480000	200000		
				14400			808000	1048000		
				OR						
			Shape	Area	Xi	yi	a _i X _i	$a_i y_i$		
			1	5600	70	20	392000	112000	<u>C1</u>	
			2	6400	20	120	128000	768000	C1	The sum of their $a_i x_i$ (or $a_i y_i$) found and divided by their total area.
			3	2400	120	70	288000	168000	-	(Using $\bar{x} = \frac{\sum a_i x_i}{total \ area}$ oe for \bar{y})
				14400			808000	1048000	_	
				2	$\bar{x} = \frac{80}{1}$ $\bar{y} = \frac{1}{1}$	$\frac{08000}{4400} = \frac{1}{14400}$	= 56.1 (<i>mm</i>) = 72.8 (mm)		A1 A1	Correct answers for \bar{x} and \bar{y} , rounded correctly to 2 sf or better.
									[5]	
		(ii)	$\tan^{-1}\left(\frac{140}{100}\right)$ = 72.0°	$\left(\frac{0-56.1}{0-72.8}\right)$					C1 A1	Ecf part (ii). Award for any attempt using arctan and their x/y values.
									[2]	

Question		on	Answer/Indicative content	Mark	Guidance Calculation of cross-sectional area, in any unit	
	(b)	(i)) Area = $\pi \times 0.006^2$ = 1.131 x 10 ⁻⁴ (m ²)			
			Stress = 60000 /their area	C1	Accept answers of 530,000,000 or 530	
			= 530 MPa or 530,000,000 Pa	A1	Unit must agree with their calculation, eg for 530 Pa award A1A0.	
					Accept Nm ⁻² instead of Pa, or Nmm ⁻² instead of MPa.	
				[3]		
		(ii)	Strain = 0.006/1.2	C1	Award if 6 used instead of 0.006	
		, í	= 0.005	A1		
				[2]		
		(iii)	Young's modulus = Stress/Strain = 530,000,000/0.005 = 106	M1	Calculation of E with their values from (i) and (ii)	
		, í	GPa	A1	Do not award unless E found	
			Yes, this test agrees as the value calculate for E is in the range			
			105 - 120GPa.	[2]		
		(iv)	The stress caused by the tensile force is within the elastic region	A1	Conclusion of test results being consistent required.	
		(1)	of the material (530 Mpa $<$ 800 MPa). So yes, the test is	AI	Conclusion of test results being consistent required.	
			consistent with an elastic limit of 800 MPa.			
				[2]		
4	(i)		Use of suvat with u=0, s=120, v=18 and equation $v^2=u^2 + 2as$ $18^2 = 0 + 2x120a$	C1		
			$a = 1.35 \text{ (ms}^{-2}\text{)}$	A1		
				[2]		
	(ii)		Driving force = work/distance = 360,000/120	C1	Use of correct formula, award if 360 used instead of 360000	
	、 <i>,</i>		D = 3000 (N)	A1		
			$\sum F = ma$			
				C1	Use of F=ma	
			3000 - R = 1800 x 1.35	A1	All terms and signs correct	
			R = 570 (N)	A1	Allow FT of their D for last 3 marks.	
				[5]		
5	(i)		Volume = $4.5 \times 1 \times 0.08$	C1	volume = $1 \times x \times d$, award if 8 used instead of 0.08	
			$= 0.36 (\mathrm{m}^3)$	C1		
			Mass = Volume x density $= 0.36 \times 740$	C1	ecf their volume	
			= 266.4 kg	A1		
				[4]		

(Question		Answer/Indicative content	Mark	Guidance
	(ii)	(<i>A</i>)	Total downward force = $(266.4 + 100) \times 9.8$	C1	Recognition of need to multiply loads in kg by 9.8
			3590.72 (N)	A1	Total load. Allow load in kg.
			Reaction force at each support = 3590.72/2 = 1795.36 (N)	A1	Half total load since symmetric. Ecf their total load in N. 183.2 scores 2 marks
				[3]	
		(B)	1795.36 x 2.25 - (266.4 x 9.8/2)x1.125	C1	Allow very close attempt
			= 2571 (Nm)	A1	
				[2]	
6	(a)	(i)	$20000 \ge 3 + 40000x = 28000 \ge 2.5$	C1	Attempt to set up an equation for moments about tower
				A1	All terms present and correct
			x = 0.25 (m)	A1	
				[3]	
		(ii)	Load x 8 + 28000 x 2.5= 20000x3 + 40000x2.6	C1	Equation set up with at least one term correct or total moment from counterweights calculated but not as part of equation
				A1	All terms present and correct
			Load = 11750 (N)	A1	
				[3]	
	(b)		Work done = Change in energy	C1	Attempt to use work-energy principle
			20000 = 200 x 9.8 x h	C1	Correct equation
			h = 10.2 (m)	A1	
				[3]	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 Cambridge

© OCR 2021