Cambridge Technicals Engineering

Unit 4: Principles of electrical and electronic engineering
Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822-05825

Mark Scheme for January 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations

Annotation	Meaning
tick	Correct response
cross	Incorrect response
Omission mark (carat)	Incomplete response
ECF	Error carried forward
BOD	Benefit of doubt
NBOD	No benefit of doubt
RE	Rounding error

Subject-specific marking instructions

- In all numerical calculation questions a correct response will gain all marks unless specified otherwise.
- Rounding of answers should be to the same number of significant figures as the data in the question, or, otherwise, an answer will be correct provided it rounds to the correct answer.
- Symbols used in circuit diagrams must identify relevant components uniquely and unambiguously.

Question			Answer	Marks	Guidance
1	(a)	(i)	Ohmmeter connected in parallel with R1	1	Accept any unambiguous symbol for ohmmeter
1	(a)	(ii)		1	

Question			Answer	Marks	Guidance
1	(a)	(iii)	Up to a maximum of 2 marks from the following: Reason SW1 is off - To prevent damage to meter - To stop power supply interfering with reading Reason SW2 is not pressed - To stop the meter reading 0Ω - To prevent the resistor being shorted out of the circuit - The meter would measure the resistance of the switch if SW2 was pressed Reason both switches are off - The resistance would change - There is greater accuracy in the reading - There is no interference from other components	2	
1	(b)	(i)	$6-3.6=\underline{2.4} \mathrm{~V}$	1	
1	(b)	(ii)	$\begin{aligned} & \mathrm{RT}=\mathrm{R} 1+\mathrm{R} 2=75+240=315 \Omega \\ & \mathrm{I}=2.4 / 315=\underline{0.0076} \mathrm{~A}(\text { ecf from } 1 \mathrm{bi}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Evidence of correctly calculating total resistance Voltage from 1bi divided by resistance
1	(b)	(iii)	$\mathrm{I}=2.4 / 75=\underline{0.032} \mathrm{~A}($ ecf from 1 bi$)$	1	

Question			Answer	Marks	Guidance
1	(b)	(iv)	$\mathrm{P}=\mathrm{IV}=0.032 \times 2.4=0.0768 \mathrm{~W}=\underline{0.077} \underline{\mathrm{~W}}(2 \text { s.f. })$ Calculation (ecf from 1biii and/or 1bi) Units	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{2.4^{2}}{75}=0.0768 \\ & \mathrm{P}=\mathrm{I}^{2} \mathrm{R}=0.032^{2} \times 75=0.0768 \end{aligned}$ Accept answer in mW $\mathrm{P}=77 \mathrm{~mW}$ Synoptic mark from Unit 2: 1.1
2	(a)		Current changes direction periodically/moves one way then the other/keeps changing direction (owtte)	1	Do not accept 'flows in both directions'. Answer must express the idea that the change in direction of current flow changes with time.
2	(b)	(i)	$\mathrm{f}=250 \times 1000=250000 \mathrm{~Hz}$ $\mathrm{T}=1 / 250000=0.000004 \mathrm{~s}=0.000004 \times 1000000=4 \mu \mathrm{~s}$		Evidence of correct conversion to Hz or other route to $\mu \mathrm{s}$ Synoptic mark from Unit 2: 1.1 Evidence of correct use of $1 / T$
2	(b)	(ii)	20 on voltage axis Voltage axis labelled -20, $-10,10,20$ 4 on time axis (ecf from bi) Time axis labelled 2, 4, 6 (ecf)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
2	(b)	(iii)	Correct conversion from 250 kHz to 250000 Hz $\omega=2 \times \pi \times 250000=1570000=1.6 \times 10^{6} \mathrm{rad} \mathrm{s}^{-1}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Synoptic marks from Unit 1:4.1

Question			Answer	Marks	Guidance
2	(b)	(iv)	Correct values substituted into equation Correct calculation $\mathrm{v}=20 \sin \left(1.6 \times 10^{6} \times 2.2 \times 10^{-6}\right)=-6.1 / .15 / .147 / .18 / .2,7.389 \mathrm{~V}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept: $20 \sin \left(2 \times \pi \times 250000 \times 2.2 \times 10^{-6}\right)=-6.180 \mathrm{~V}$ Beware, incorrect calculation of sin in degrees leads to incorrect answer of 1.2 V
3	(a)		A motor converts electrical energy into mechanical energy A generator converts mechanical energy into electrical energy	1 1	
3	(b)	(i)	Diagram consists of only armature and field winding Field winding and armature labelled (accept labels of 18Ω and 0.12Ω) Field winding and armature in parallel Two labelled output terminals from armature (accept if through other components thus losing marks from previous points)	1 1 1 1	Accept any unambiguous symbols for field winding and armature.
3	(b)	(ii)	$\mathrm{I}_{\mathrm{f}}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{f}}}=\frac{16}{18}=0.889 \mathrm{~A}$	1	

Question			Answer	Marks	Guidance
3	(b)	(iii)	$\begin{aligned} I_{a} & =\frac{E-V}{R_{a}} \\ & =\frac{18.8-16.0}{0.12}=23.3 \mathrm{~A} \end{aligned}$	1 1	Correct rearrangement of equation Synoptic marks from Unit 1: 1.4 Correct values substituted into equation
3	(b)	(iv)	Because the field winding is in parallel with the output and some of the current goes through the field winding.	1	Reference to current in the field winding
4	(a)		Neutral wire correctly identified One wire labelled neutral and three wires labelled phase (ecf)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Ignore any additional labelling of phase wire. Accept L1, L2, L3 for phase labels. Other acceptable labels for phase wires e.g. colours (brown, black, grey or $\mathrm{Br}, \mathrm{Bl}, \mathrm{G}$) or the old colour scheme (red, yellow, blue or R, Y, B). N allowed for neutral

| Question | | Answer | Marks | Guidance |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 4 | (b) | star | 1 | |

Question

Question			Answer	Marks	Guidance
4	(c)	(ii)	All voltages on one side of zero volts line (t-axis) Graph shows full wave rectification	1 1	Ignore polarity (give marks for either positive or negative) Ignore amplitude and any time at zero
5	(a)		Correctly rearrange formula $V_{\text {out }}=\text { Voltage Gain } \times V_{\text {in }}$ Correct substitution of values and calculation $V_{\text {out }}=-12 \times 0.3=-3.6 \mathrm{~V}$	1 1	Synoptic marks from Unit 1: 4.1
5	(b)		Resistors in ratio 12:1 R_{F} larger than $R_{\text {in }}$	1 1	

Question		Answer	Marks	Guidance
5	(c)	Resistor connected from inverting input to output of op-amp [1] Labelled $\mathbf{R}_{\mathbf{F}}$ (dependent upon previous mark) [1] Resistor connected from input connection to inverting input of op-amp / Input connection labelled "input" [1] Resistor Labelled $\mathbf{R}_{\mathbf{i n}}$ (dependent upon previous mark) [1] Output of op-amp connected output connection [1] Output connection labelled "output" [1] Non-inverting input connected to 0 V only [1]	7	$7 \times 1 \text { marks }$
6	(a)		1	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

