

GCE

Geology

H414/01: Fundamentals of geology

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

H414/01

Annotations

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore
BP	Blank page

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question	Answer	Marks	AO	Guidance
			element	
1	Α	1	1.1a	A – arkose
2	C	1	1.1a	C – rock 1 = metamorphic, rock 2 = igneous, rock 3 = sedimentary
3	С	1	1.1a	C – medium grade metamorphic
4	C	1	2.1b	C – sub-angular, 45, 35, 20
5	В	1	2.1a	B – greywacke
6	C	1	2.1a	C – melting point = 2446°C
7	C	1	1.1c	C – the density of the Earth
8	В	1	1.1c	B – the magnetic field is axial – aligned with the spin axis of the Earth
9	В	1	1.1a	B – the Great Oxidation Event
10	Α	1	1.1c	A – Chalk = aquifer; Gault Clay = aquiclude; silts and clays = aquitard
11	В	1	2.1a	B – +100m
12	Α	1	1.1a	A – formation and break up of major continents
13	C	1	2.1b	C – a measure of the spread of the data about the mean
14	С	1	1.1c	C – it calculates the ground motion caused by an earthquake at a given site.
15	C	1	2.1b	C – 6525 years
16	C	1	2.1b	C – 3.98 MPa
17	D	1	2.1a	D – slab pull at subduction zones
18	D	1	2.1b	D – plagioclase 45%, pyroxene 35%, olivine 20%
19	D	1	1.1c	D – magma << dense than the surrounding rock
20	В	1	1.1d	B – the Sun and chondrites are made from the same original material
21	Α	1	2.1b	A – 1445°C
22	В	1	1.1c	B – 70% An 30% Di
23	A	1	1.1c	A – partial melting of those minerals with higher melting points produces magma
24	D	1	2.1b	D – synsedimentary faulting
25	A	1	2.1b	A – anticline

H414/01 Question			Mark S		Novembei	
Q	uestic	on	Answer	Marks AO element		Guidance
26	(a)	(i)	sheets OR 3 oxygen atoms shared in one plane \checkmark	1	1.1a	
	(a)	(ii)	Any one from: the bonding between sheets is weak leading to one perfect cleavage✓	1	1.1c	
			the spaces between sheets contain hydroxyl (OH) ions which results in low density \checkmark			
	(b)	(i)	pyroxene / augite / any other correct named pyroxene OR amphibole / hornblende / any other correct named amphibole ✓	1	1.1a	
	(b)	(ii)	Any two from: chains of tetrahedra result in a negative charge \checkmark this is balanced by cations linking the chains together \checkmark	2	2.1a	
			bonds between chains are weaker resulting in cleavages ✓			
			in a single chain (pyroxene) there are 2 cleavages at $90^{\circ} \checkmark$			
			in a double chain (amphibole) there are 2 cleavages are at 60° / 120° to each other \checkmark			
	(c)	(i)	framework OR each of the 4 oxygens in the tetrahedron are shared with other Si atoms ✓	1	1.1a	
	(c)	(ii)	Any two from: frameworks are isotropic / have the same properties in all directions ✓	2	2.1a	

1414/01 Question		Mark S	Scheme						
Question		Answer		AO element	Guidance				
		only contains strong Si-O bonds \checkmark							
		there are no planes of weakness therefore no cleavage \checkmark							
		there are no planes of weakness so has conchoidal fracture \checkmark							
		this makes the mineral structure strong therefore hardness is 7 / high \checkmark							
(c)	(iii)	Any one from: each silicon atom is covalently bonded with 4 oxygen atoms (forming the silica tetrahedron) ✓	1	1.1a					
		each of the 4 oxygen atoms is shared with other silicon atoms in the framework \checkmark							
		Any one from: the silicon has a half share of each of the oxygen atoms giving the silica formula ✓	1	2.1a					
		there must be a ratio of 2:1 oxygen to silicon atoms to balance the overall charge \checkmark							
		silicon ions have a 4+ charge and oxygen ions have a 2- charge \checkmark							

Q	Question		Answer					Marks	AO element	Guidance
27	(a)	(i)	Experiment	Sand length L (m)	Head h ₂ – h ₁ (m)	Hydraulic gradient	Flow rate Q (m ³ s ⁻¹ x 10 ⁻³)	1	1.1b	Both hydraulic gradients calculated correctly and recorded in table to a maximum of 2 decimal places for 1 mark
			1	0.58	1.11	1.9	0.60			
			2	0.58	2.36	4.1	1.28			
			3	0.58	4.00	6.9	2.00			
			4	0.58	4.90	8.4	2.38			
			5	0.58	5.02	8.7	2.53			
			6	0.58	7.63	13.2	3.63			
27	(a)	(ii)	 axes plotted to AND axes labe Q ✓ 5 or more point line of best fit p approximately 	elled correct	ctly, includ correctly (ough zero	ding units for f within a mm) AND has	flow rate ✓	1 1 1	1.1a 1.1c 1.1d	5 - 6 (10 + 4 - 7) (10 + 4 - 7) (10 + 10 - 7) (10 + 10 - 7) (10 - 7) (
27	(a)	(iii)	the relationship OR there is a d hydraulic gradi OR there is a p OR the relation	lirect corre ent positive cor	rrelation b	etween Q and		1	3.1a	ALLOW description of relationship e.g. as the hydraulic gradient increases the flow rate increases

	414/0		Mark Sc	heme		November 202		
Q	uesti	ion	Answer	Marks	AO element	Guidance		
27	(a)	(iv)	k within range 2.84 x 10 ⁻³ to 3.24 x 10 ⁻³ ✓	1	2.1b	ALLOW positive or negative value for k.		
27	(a)	(v)	pressure in the water supply could change during measurement ✓	1	3.1f			
27	(a)	(vi)	Any one from: a constant head supply / reservoir would improve the accuracy / precision ✓ Maintaining a constant water pressure / flow rate would	1	3.1f	ALLOW AW		
			improve accuracy / precision ✓ Use a longer column of sand which would improve accuracy / precision ✓					
27	(b)		flow rates should increase (for the same gradient) OR permeability / k will be higher ✓	1	1.1c			
			finer grains fill up pore space / pore throats between coarser grains OR there is less resistance to flow around coarse grains OR there is less friction as water flows between coarse grains OR the pore spaces between coarse grains are larger allowing easier flow OR coarser grains increase the amount of interconnected pore space \checkmark	1	2.1a	ORA		
27	(c)	(i)	Any one from: lower permeability allows more time for grains to act as a natural filter√	1	1.1c	ORA		
			lower permeability / longer residence time allows time for bacteria to remove organic matter in suspension ✓					
			lower permeability / longer residence time allows time for clay minerals to remove organic matter in suspension \checkmark					

H414/01	Mark Sci	neme		November 2		
Question	Answer	Marks	AO element	Guidance		
(C) (ii)	 Any two from: calcium / Ca ²⁺ AND limescale problems OR soap lather difficulties OR may be beneficial for bone growth / teeth ✓ sulfate / SO₄²⁻ AND bad taste OR diarrhoea ✓ magnesium / Mg²⁺ AND describes a hard water problem ✓ hydrogen carbonate / HCO₃- AND describes a hard water problem ✓ chloride / Cl⁻ AND bad taste ✓ nitrate / NO₃- AND methaemoglobinemia / blue baby syndrome OR cancer risk (when reduced to nitrite) ✓ Fe²⁺ / Fe³⁺ / iron gives a discolouration to the water H⁺ / hydrogen could lead to acidic water F⁻ / fluoride can improve dental health / can be toxic 	2	1.1a x 1 1.1c x 1	MUST link correct stated ion to a correct affect for 1 mark ALLOW any correct named ion found in drinking water linked to a correct affect note: SiO ₂ and CaCO ₃ are not ions		

Q	uesti	on	Answer	Marks	s AO Guidance element 1.1a ALLOW ooze	Guidance
28	(a)	(i)	sediments OR calcareous ooze OR siliceous ooze OR fine clays OR chert ✓	1		ALLOW ooze
	(a)	(ii)	it is unconsolidated OR contains a high proportion of water OR the layers beneath are igneous / crystalline rock OR low incompressibility OR low rigidity ✓	1	3.1b	
	(a)	(iii)	 Any two from: ridges are spreading centres OR new oceanic crust forms at ridge ✓ oceanic crust increases in age with distance from the ridge ✓ older crust has more time to accumulate sediment ✓ sediment is deposited slowly as marine "snow" ✓ 	2	2.1a	ALLOW AW
	(a)	(iv)	formation of sheeted dykes Any one from: form in an extensional / tensional regime ✓ resulting from ridge push / gravity acting on the ridge flanks ✓ Any one from: magma moves towards the surface up long fissures ✓ fissures form parallel to the ridge axis / within the axial rift ✓ the original dyke has two chilled margins ✓ relatively quick cooling of magma forms dolerite / medium textured mafic rock ✓	1	2.1a 3.1b 3.1d	ALLOW joints and fractures

	14/01		Mark Sche		1	November
Q	Question		Answer	Marks	AO element	Guidance
			 as spreading continues new dykes follow the line of weakness of previous intrusions ✓ explanation of chilled margins Any one from: the previous dyke is split forming a half dyke with a single chilled margin ✓ one side of each dyke was in contact with hot magma, so each dyke only has one chilled margin ✓			
			statistical analysis of the sides the chills are on gives the direction of the ridge axis \checkmark			
28	(b)	(i)	EITHER arrow as shown 🗸	1	2.1a	 ALLOW +/- 20° 1 is the actual direction of younging 2 is the direction of younging using the most obvious 'neck' in the photograph
28	(b)	(ii)	formation of pillow lavas Any two from: lava is extruded onto the seafloor / lava erupts underwater√	2	2.1 a	
			rapid cooling by the water forms a glassy 'skin' ✓			

H414/01	Mark Sche	Mark Scheme Answer Marks AO						
Question	Answer		AO element	Guidance				
	 lava continues to be extruded inflating the pillow ✓ lava is extruded as a tube and may roll down slope ✓ settles onto previous pillows but is still plastic ✓ explanation of younging direction fills space between previous pillows to make a 'neck' downwards / dome upwards / convex upwards ✓ 	1	1.1c	DO NOT ALLOW vesicles as a way-up indicator as they are not visible in the photograph AW "pinched" for "neck"				
28 (c)	 Any one from: radioactive decay within the Earth√ decay of heat producing elements / K / U / Th√ unstable parent atoms / isotopes changing to stable daughter atoms / isotopes release heat√ Any one from: heat left over / residual / primordial from formation of the Earth √ gravitational potential energy of formation of the Earth√ (kinetic energy from) early bombardment / collisions during formation of the proto-Earth√ (potential energy from) the process of differentiation of the core, mantle and crust√ the change in state at the outer – inner core boundary from liquid to solid√ latent heat of crystallisation as inner core crystallises √ 	1	1.1a 2.1a					
28 (d)	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question.	6	1.1a x 2 1.1c x 2	Indicative points may include:				

Question	Answer	ne Marks	AO	November Guidance
Question	Allswei	IVIAI NS	element	Guidance
	Level 3 (5 – 6 marks) Gives a detailed description and explanation of how hydrothermal processes result in the formation of sulfide ores, including the principles of convective circulation of seawater within the fractures of the upper oceanic crust. AND Describes how the discharge of fluids / brines and the precipitation of sulfide ore minerals are the final stage in the concentration of metals from low crustal abundance. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3 – 4 marks) Gives a description and explanation of how hydrothermal processes result in the formation of sulfide ores, including the principles of convective circulation of seawater within the fractures of the upper oceanic crust. OR Describes ow the discharge of fluids / brines and the precipitation of sulfide ore minerals are the final stage in the concentration of metals from low crustal abundance. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1 – 2 marks) There is an attempt at a description and/or explanation of how hydrothermal processes result in the formation of sulfide ores. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		2.1a x 2	 reasons why upper oceanic crust is fractured temperatures attributed to the hot brine, e.g. 380°C water heated by the presence of magma at high crustal levels depths to which fluids circulate or volume of crust involved in the circulation may be estimated the fluids / brines are extremely reactive at high temperatures, e.g. have a low pH there is evidence of metasomatism of crustal rocks the fluids / brines circulate becoming increasingly charged / concentrated and escape at the sea floor. occurs at black smokers reduction in temperature when the fluid meets cold seawater results in the formation / precipitation of sulfide ores changes in chemistry (combining with H₂S) may result in the formation / precipitation of sulfide ores dense sulfide minerals are deposited local to the vent correct named examples of ore minerals may be given – galena, sphalerite, chalcopyrite, pyrite may form chimneys if the minerals are subsequently buried (by lavas or sediments) they will not dissolve into the seawater

H414/	01	Mark Sch	November	[.] 2021		
Ques	tion	Answer	Marks	AO	Guidance	
				element		
		0 marks				
		No response or no response worthy of credit.				

Question		Answer		AO element	Guidance
29 (a)	(i)	Any three from: choose height of building so natural frequency does not match seismic wave frequencies ✓ avoid irregular designs which are susceptible to twisting forces ✓ avoid ornamentation and fascias which may be dislodged ✓ avoid large open spaces, such as atria ✓ use steel-framed buildings (more ductile and able to deform without collapse) ✓ resist shear forces by using diagonal beams / cross bracing / cables ✓ isolate foundations / base isolation systems – able to distort or slide in response to horizontal forces ✓ absorb sway, e.g. with active mass damping, hydraulic systems ✓ use of flexible structures / flexible pipes✓ use a building code to prevent building on unsuitable ground✓	3	element 1.1a x 1 2.1a x 2	ALLOW construction of deep foundations / piles to solid geology ALLOW any other correct civil engineering strategy that can reduce the impact of seismic events

H4	14/01		Mark Sche	me		November 20		
Qı	uestion		Answer	Marks	AO element	Guidance		
29	(a)	(ii)	liquefaction ✓ Any two from: vibrations / shaking cause the sediment to behave as a (viscous) liquid ✓	1 2	1.1a 1.1c	ALLOW AW		
			 (pressure builds and) water forces the grains apart to liquefy the sediment / water separates from the grains and rises to the surface ✓ P-wave / seismic wave pulses / vibrations raise the pore pressure of water between the sediment grains ✓ the pores are small so there is insufficient opportunity for the pressure to drop between pulses / vibrations ✓ 					
29	(a)	(iii)	 3 closed, concentric isolines drawn ✓ isolines have realistic intensity values labelled, e.g., highest between 5 and 8 ✓ highest isoline encloses epicentre ✓ isolines drop away more quickly to the south (over the granite) ✓ isolines are 'squeezed' by competent buildings in the CBD OR by lack of apparent damage in the agricultural areas ✓ 	5	3.1a x 1 3.1b x 2 3.1d x 1 3.1e x 1	ALLOW labelling in roman or arabic numerals e.g., of possible answer		
29	(b)		First check answer on answer line	3	2.1b			

	14/01		Mark Sche	me Marks	r	Noven	nber 2
Question		on	Answer		AO element	Guidance	
			If answer = 1.41×10^{18} award 3 marks				
			correct rearranging of equation, e.g., Log $E = 3/2 Mw + 3/2$ 6.1 \checkmark				
			use of logarithms to calculate correct answer of 1.41 x10 ¹⁸ Joules / J \checkmark				
			answer given to no more than 3 sig figs \checkmark				
29	(c)	(i)	Any two from: as waves spread from the focus the energy is spread over a larger area / dissipated \checkmark	2	2.1a	ALLOW AW	
			energy is absorbed as seismic waves travel through rocks \checkmark				
			waves are scattered as they pass through the rock \checkmark				
			imperfect elastic response leads to attenuation \checkmark				
			some energy is converted to heat \checkmark				
29	(c)	(ii)	Any two from: ground conditions may amplify movement / amplitude OR ground movement / amplitude depends on competence of (bed)rock / soil ✓	2	1.1c	ORA	
			faults may not be visible at the surface / blind faults \checkmark				
			fault failure may occur infrequently OR many faults move frequently with little energy released \checkmark				
			sections of faults may be locked increasing risk OR sections of faults may creep reducing risk ✓				

H414/01	Mark Sche	November	2021		
Question	Answer	Marks	AO element	Guidance	
	risk depends on magnitude OR magnitude is poorly predictable OR earthquake magnitude varies for individual faults ✓				
	risk may be affected by tsunami or landslide potential \checkmark				

Q	uestio	n	Answer	Marks	AO	Guidance
30	(a)	(i)	degree to which repeated measurements under unchanged conditions are the same OR how close repeated measurements are to each other ✓	1	element 3.1d	ALLOW AW DO NOT ALLOW how accurate the measurements are
30	(a)	(ii)	eastward = -10.5 (mm y ⁻¹) \checkmark northward = 21.0 (mm y ⁻¹) \checkmark	2	3.1b	ALLOW 9.0 to 12.0 (mm y ⁻¹) for eastward ALLOW 19.5 to 22.5 (mm y ⁻¹) for northward
30	(a)	(iii)	 Any one from: divergent plate boundary passes through Iceland OR Mid- Atlantic Ridge / mid-ocean ridge passes through Iceland ✓ Any one from: North American plate separates from Eurasian plate OR relative overall separation is approximately West – East ✓ western Iceland is on North American plate OR is moving NW away from the ridge axis ✓ Mid-Atlantic Ridge in western Iceland is NE- SW so separation of NW – SE is expected ✓ 	1	3.1a 3.1b	
30	(b)		 correctly named example of a fossil used as evidence for continental drift / plate movements, e.g. <i>Mesosaurus / Lystrosaurus / Cynognathus / Glossopteris /</i> land plants / corals / trilobites ✓ Any two from: matching fossils of the same type and age are found on different continents ✓ the organisms could not have swum / moved / spread across former oceans suggesting the continents were joined at the time ✓ 	3	2.1a	ALLOW any correct named fossil example explanation MUST match named fossil(s)

H414/01	Mark Sche	November	2021		
Question	Answer	Marks	AO element	Guidance	
	(the same species) suggests different continents were joined at the time and have moved apart due to plate movements ✓				
	(different species) suggests different continents were separated at the time and have moved together due to plate movements \checkmark				
	(assuming uniformitarianism) fossils are found in different climatic zones / latitudes to where they were alive \checkmark				
	suggests the continents were in a different climatic zone / latitude than they are today so must have moved to present day positions \checkmark				

H414/01	Mark Scheme			November 2
Question	Answer	Marks	AO	Guidance
31 (a)	Any five from: dipping beds are correctly drawn using ornament / rock names in key \checkmark dipping beds have dip of approx. 50° east (less than 60°) \checkmark concordant dolerite sill is drawn in correct position \checkmark fault is drawn at correct position below river \checkmark fluvio-glacial drift deposits with steep sides and flat base / u-shaped valley are correctly drawn OR base of fluvio-glacial drift deposits is above the tunnel profile \checkmark river drawn with an asymmetric profile to correct approx. max depth of 10 m \checkmark steep margin to granite intrusion correctly drawn \checkmark metamorphic aureole correctly drawn parallel to the granite contact \checkmark	5	element 1.1d x 1 2.1a x 2 2.1b x 1 3.1a x 1	

H414/01	Mark S	cheme		November 2
Question	Answer	Marks	AO element	Guidance
(b)	 Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5–6 marks) There is a coherent and logical account of the effects of rocks and structures encountered in locations 1 to 6 which cover properties important to tunnel construction such as permeability and rock strength. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) The effect of some of the rock types and structures are recognised and some relevant properties are explained. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) The geology at some of the locations 1 to 6 is correctly identified and some relevant properties for each stated. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. 	6	element 1.1a x 2 1.1c x 1 2.1a x 2 2.1b x 1	 Indicative points may include: location 1 shales are weak / fissile so overbreak / collapse of roof and walls may occur impermeable so water flow should not be a problem will require roof support and ground improvement Iocation 2 desert sandstones are very well sorted and have well rounded grains the sandstone could be (relatively) easy to cut through if uncemented OR could be hard to cut through if cemented likely to be porous and permeable forming an aquifer OR problems may arise with water flowing into the tunnel as it is contained between impermeable strata it could be a confined aquifer with the water under pressure may require roof support and ground improvement and drainage Iocation 3 there is a sill / concordant intrusion / minor intrusion / hypabyssal intrusion surrounding rocks will be baked / indurated / metamorphosed rocks at this location will be less permeable hard rock will require a change of excavation method / slow progress explosives may be needed, requires less support and drainage competent and easier to drill location 4 limestone is characterised by joints and bedding planes

		1				
H414/01 Question	Mark S	Marks	AO element	Sovember 2 Guidance • limestone is a soft rock so easily cut / bored • could encounter high flow rates of groundwater • could be karstic / have voids and caves creating weaknesses OR may have joints / bedding planes enlarged by solution • glacial erosion above may lead to weaknesses and changes in rock strength • may require added roof support		
				 may require drainage location 5 fault encountered may allow passage of water / pressurised flows may cause local weakness sudden change of rock type may slow tunnelling progress fault may become active / reactivate causing damage to tunnel / threatening life will require roof support and drainage location 6 granite is hard / crystalline rock so tunnelling will have to be by drilling and blasting this is a slow / expensive / dangerous process rockbursts should not be a problem as at a shallow depth impermeable and so should not require drainage overall many changes in geology which will require changes in the tunnelling methods which is slower 		
(c)	 Any two from: the major intrusion has created a metamorphic aureole in the country rock / contact metamorphism ✓ fluids from the magma may have escaped into the country rock causing the mineralisation ✓ 	2	1.1c			

H414/01	Mark S		r	November
Question	Answer	Marks	AO element	Guidance
	hydrothermal processes / circulating groundwater can dissolve metals and concentrate / precipitate ore minerals ✓		element	
	precipitation occurs as fluids / brines cool / chemistry changes \checkmark			
	this may occur in fractures / joints resulting in veins OR the ore may be disseminated through the rock \checkmark			
	fault may have acted as a conduit for fluids / brines \checkmark			
	secondary enrichment may have acted on the ores \checkmark			
	placer deposits may form within the river deposits \checkmark			
	minerals precipitate as acidic fluids react with the alkaline limestone \checkmark			
(d) (i) First check answer on answer line If answer = 67366 (m ³) award 2 marks	2	1.1b	
	correct recall and use of formula to calculate volume of spoil removed ($V = \pi r^2 l$) \checkmark			
	$3.14 \times 5.7^2 \times 660 = 67366 \text{ (m}^3) \checkmark$			
(i	 Any two from: cannot be used in the construction of a tunnel ✓ 	2	1.1c	
	cannot be moved any distance / too expensive to transport \checkmark			
	liable to be disposed as spoil heaps OR used as infill to local topographic lows OR used as landfill in abandoned quarries ✓			

Mark S	November 2021			
Answer	Marks		Guidance	
some could be used as foundations for (tunnel approach) roads ✓				
spoil heaps may be unstable \checkmark				
spoil heaps create visual / air pollution \checkmark				
spoil will be a mixture of rock types / chemistry of dump site will vary \checkmark				
will affect surface water / groundwater quality / chemistry / flow \checkmark				
-	Answer some could be used as foundations for (tunnel approach) roads ✓ spoil heaps may be unstable ✓ spoil heaps create visual / air pollution ✓ spoil will be a mixture of rock types / chemistry of dump site will vary ✓ will affect surface water / groundwater quality / chemistry /	some could be used as foundations for (tunnel approach) roads ✓ spoil heaps may be unstable ✓ spoil heaps create visual / air pollution ✓ spoil will be a mixture of rock types / chemistry of dump site will vary ✓ will affect surface water / groundwater quality / chemistry /	AnswerMarksAO elementsome could be used as foundations for (tunnel approach) roads ✓spoil heaps may be unstable ✓Image: spoil heaps create visual / air pollution ✓spoil heaps create visual / air pollution ✓spoil will be a mixture of rock types / chemistry of dump site will vary ✓Image: spoil will be a mixture of rock types / chemistry of dump	Answer Marks AO element Guidance some could be used as foundations for (tunnel approach) roads ✓ spoil heaps may be unstable ✓ spoil heaps may be unstable ✓ spoil heaps create visual / air pollution ✓ spoil will be a mixture of rock types / chemistry of dump site will vary ✓ will affect surface water / groundwater quality / chemistry /

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

