

GCE

Further Mathematics A

Y540/01: Pure Core 1

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
✓ and ¥	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0,M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations in	Meaning
mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
AG	Answergiven
a wrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

	Question		Answer	Marks	AO	Guidance	
1	(a)	(i)	Circle	B1	1.1	Be generous over circles drawn freehand	
			Centre 1–2i, Radius 3	B1	2.2a	If the axes are scaled then a mark at $(1, -2)$ will do.	
						For radius, an indication that the radius is 3 will do	
						(e.g. passing through (4, -2) etc if marked will do.)	
				[2]			
		(ii)	Straight vertical line	B1	1.1		
			<u> </u>	B1	2.2a	Can be seen by $x = \frac{1}{2}$ being labelled on the axis and	
			$x = \frac{1}{2}$			vertical line through it	
				[2]			
	(b)		Inside circle	B1	1.1		
	, í						
			And to the left of $x = \frac{1}{x}$	B1	2.2a	Or their line if it is vertical.	
			And to the left of $x = \frac{1}{2}$				
				[2]			

	Quest	ion	Answer	Marks	AO	Guidance
2	(a)	(i)	$f(0) = \frac{\pi}{4}$	B1	1.1	Not for 45 ⁰
				[1]		
		(ii)	$f'(w) = 1 \longrightarrow f'(0) = 1$	M1	2.1	Diffn – Must be seen
			$f'(x) = \frac{1}{1 + (1 + x)^2} \Longrightarrow f'(0) = \frac{1}{2}$	A1	1.1	$f'(x) = \frac{1}{1+x^2}$ is M0
				[2]		
		(iii)	$f'(x) = \frac{1}{1 + (1 + x)^2} = \frac{1}{2 + 2x + x^2}$			
			\Rightarrow f''(r) = $\frac{1}{\sqrt{-1}} \times (-1) \times (2+2r)$	M1	2.1	Diffn <i>their</i> $f'(x)$
			$\Rightarrow f''(x) = \frac{1}{\left(2+2x+x^2\right)^2} \times \left(-1\right) \times \left(2+2x\right)$			2(1+x)
			$=\frac{-(2+2x)}{(2+2x+x^2)^2}$	A1	2.1	oe , e.g. $f''(x) = -\frac{2(1+x)}{(1+(1+x)^2)^2}$
			$\Rightarrow f''(0) = \left(\frac{-2}{4}\right) = -\frac{1}{2}$	A1	2.1	f"(0) must be seen. The substitution must be seen
						(implied by $-\frac{2}{4}$)
						AG
	(b)		.2	[3]		
			$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2}$	M1	1.1	Using the formula and substituting <i>their</i> value for f;(0)
			$=\frac{\pi}{4} + \frac{1}{2}x - \frac{1}{2} \times \frac{x^2}{2}$			
			$=\frac{\pi}{4}+\frac{x}{2}-\frac{x^2}{4}$	A1	2.2a	ft their values from (a)
				[2]		

C	Question		Answer	Marks	AO	Guidance
3	(a)		e.g. $\alpha^2 + \beta^2 + \gamma^2 = -5$ means that at least one root is complex But complex roots come in complex pairs so there are 2 complex roots. Given that there are 3 roots and 2 are complex one is	B1 B1 B1	2.4 2.4 2.4	
			real.	[2]		
	(b)		$\alpha + \beta + \gamma = 3$ $(\alpha + \beta + \gamma)^{2} = \alpha^{2} + \beta^{2} + \gamma^{2} + 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $9 = -5 + 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ But $k = \alpha\beta + \beta\gamma + \gamma\alpha$	[3] B1 M1	1.1 3.1a	Attempt to obtain identity and substitute Condone missing 2 and sign errors
			But $k = \alpha \rho + \rho \gamma + \gamma \alpha$ $\Rightarrow k = 7$	A1	1.1	
				[3]		
	(c)		$\left(\frac{1}{u}\right)^3 - 3\left(\frac{1}{u}\right)^2 + 7\left(\frac{1}{u}\right) - 5 = 0$	M1	1.1	For the substitution "=0" not necessary here but needed for A1
			$\Rightarrow -5u^3 + 7u^2 - 3u + 1 = 0 \qquad \mathbf{oe}$	A1	1.1	Allow in terms of z Allow ft from <i>their</i> k in (b)
			Alternate method $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{7}{5}, \frac{1}{\alpha} \frac{1}{\beta} + \frac{1}{\beta} \frac{1}{\gamma} + \frac{1}{\gamma} \frac{1}{\alpha} = \frac{3}{5}, \frac{1}{\alpha} \frac{1}{\beta} \frac{1}{\gamma} = \frac{1}{5}$ Answer as above	M1 A1		For calculating the sum, product and sum of product of pairs of reciprocals of α , β , γ
				[2]		

Q	Question		Answer	Marks	AO	Guidance
4	(a)		$AB = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix} \text{oe}$	B1	1.1	soi
			Equation of <i>AB</i> is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$ oe	M1	1.1	their $\begin{pmatrix} -3\\ 3\\ 3 \end{pmatrix}$ soi $\mathbf{r} = $ or $\begin{pmatrix} x\\ y\\ z \end{pmatrix} =$ is not required for M1
			$\Rightarrow 4 - x = y - 2 = z$	A1	1.1	Allow equivalent equations e.g. $\Rightarrow 1-x = y-5 = z-3$ from using B
				[3]		

(Questic	on	Answer	Marks	AO	Guidance
4	(b)		$\mathbf{un}_{AB} = \begin{pmatrix} -3\\3\\3 \end{pmatrix}, \mathbf{unr}_{OM} \text{ is } \begin{pmatrix} 4\\2\\0 \end{pmatrix} + \lambda \begin{pmatrix} -3\\3\\3 \end{pmatrix} = \begin{pmatrix} 4-3\lambda\\2+3\lambda\\3\lambda \end{pmatrix}$	M1	3.1a	Attempt to find general point on AB to get vector CM. Can use $(1, 5, 3)$
			$\mathbf{U}\mathbf{U}\mathbf{r} = \begin{pmatrix} 4-3\lambda \\ 2+3\lambda \\ 3\lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 3-3\lambda \\ 3\lambda-2 \\ 3\lambda+2 \end{pmatrix}$	A1	1.1	Allow working throughout that uses e.g. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ft <i>their</i> vector from (i).
			Perpendicular to $AB \Rightarrow \begin{pmatrix} 3-3\lambda \\ 3\lambda-2 \\ 3\lambda+2 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 3 \\ 3 \\ 3 \end{pmatrix} = 0$ $\Rightarrow -9 + 9\lambda + 9\lambda - 6 + 9\lambda + 6 = 0$	M1	1.1	Use of dot product to solve
			$\Rightarrow 27\lambda = 9 \Rightarrow \lambda = \frac{1}{3}.$ \Rightarrow Coordinates of <i>M</i> are (3, 3, 1)	A1	1.1	Do not accept a vector answer
			Alternative method for last two marks			
			Minimise $\left \frac{\mathbf{U}\mathbf{U}\mathbf{r}}{CM} \right ^2 = \left \begin{pmatrix} 3-3\lambda \\ 3\lambda-2 \\ 3\lambda+2 \end{pmatrix} \right ^2$	M1		Express as a function of λ and minimise the quadratic in λ
			$= (3-3\lambda)^{2} + (3\lambda-2)^{2} + (3\lambda+2)^{2}$ $\Rightarrow \lambda = \frac{1}{3} \Rightarrow \text{Coordinates of } M \text{ are } (3, 3, 1)$	A1 [4]		

(Questio	n Answer	Marks	AO	Guidance	
4	(c)	$CM^{2} = 2^{2} + 1^{2} + 3^{2} = 14$ $AB^{2} = 3^{2} + 3^{2} + 3^{2} = 27$	B1 B1	1.1 1.1	B1 for each distance ft <i>their</i> M ft <i>their</i> AB	
		$\Rightarrow \text{Area} = \frac{1}{2} \begin{vmatrix} \textbf{u}\textbf{u} \\ \textbf{AB} \end{vmatrix} \begin{vmatrix} \textbf{u}\textbf{u} \\ \textbf{CM} \end{vmatrix}$	M1	3.1a	Formula for area ft <i>their</i> M	
		$=\frac{3}{2}\sqrt{42}$	A1	1.1		
		Alternative method 1 Area = $\frac{1}{2} \begin{vmatrix} uun \\ AB \times BC \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 3 \\ -3 \\ -3 \end{vmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 5 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -12 \\ -15 \\ 3 \end{vmatrix}$ $= \frac{1}{2} \sqrt{12^2 + 15^2 + 3^2} = \frac{1}{2} \sqrt{378} = \frac{3}{2} \sqrt{42}$	M1 M1 A1 A1		Formula for area Cross product	
		Alternative method 2 Area = $\frac{1}{2} \begin{vmatrix} uun \\ BC \end{vmatrix} \sin \theta$ where $AB.BC = \begin{vmatrix} uun \\ AB \end{vmatrix} \begin{vmatrix} uun \\ BC \end{vmatrix} \cos \theta$	M1		For use of dot product, formula for area	
		$\Rightarrow \cos\theta = \frac{-12}{\sqrt{27}\sqrt{26}} = \frac{-4}{\sqrt{78}}$	A1			
		$\Rightarrow \sin \theta = \sqrt{1 - \frac{8}{39}} = \frac{\sqrt{31}}{\sqrt{39}}$	M1		Pythagoras to find $\sin\theta$	
		$\Rightarrow \text{Area} = \frac{1}{2}\sqrt{27}\sqrt{26}\frac{\sqrt{31}}{\sqrt{39}} = \frac{3}{2}\sqrt{42}$	A1			
			[4]			

Q	uestic	n	Answer	Marks	AO	Guidance
5			Take $z = \cos \theta + i \sin \theta \Longrightarrow z^{-1} = \cos \theta - i \sin \theta$	M1	2.1	Use of z and de Moivre Sight of i is necessary
			$\Rightarrow z - \frac{1}{z} = 2i\sin\theta$ $\left(z - \frac{1}{z}\right)^5 = 32i\sin^5\theta = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$	A1	1.1	Both sides
			$\Rightarrow 32i\sin^5\theta = \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$ $= 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin \theta$	M1	1.1	Attempt conversion into sin soi
			$\Rightarrow \sin^5 \theta = \frac{5}{8} \sin \theta - \frac{5}{16} \sin 3\theta + \frac{1}{16} \sin 5\theta.$			
			i.e. $A = \frac{5}{8}, B = -\frac{5}{16}, C = \frac{1}{16}$	A1	2.2a	All three stated
			Alternative method 1 $(\sin \theta)^5 = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^5$	M1		Sight of i in the denominator is necessary
			$ (5110)^{5} (2i)^{5} = \frac{1}{(2i)^{5}} \left(e^{5i\theta} - 5e^{3i\theta} + 10e^{i\theta} - 10e^{-i\theta} + 5e^{-3i\theta} - e^{-5i\theta} \right) $	A1		
			$=\frac{1}{32i}\left(\left(e^{5i\theta}-e^{-5i\theta}\right)-5\left(e^{3i\theta}-e^{-3i\theta}\right)+10\left(e^{i\theta}-e^{-i\theta}\right)\right)$	M1		Collection to convert back
			$= \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$ $\Rightarrow \sin^5 \theta = \frac{5}{8} \sin \theta - \frac{5}{16} \sin 3\theta + \frac{1}{16} \sin 5\theta$			
			$\Rightarrow A = \frac{5}{8}, B = -\frac{5}{16}, C = \frac{1}{16}$	A1		All three stated

Y540/01	
---------	--

	Alternative method 2 $z = \cos \theta + i \sin \theta$ $\Rightarrow z^{5} = \cos 5\theta + i \sin 5\theta$ $= (\cos \theta + i \sin \theta)^{5}$ $= \cos^{5} \theta + 5i \cos^{4} \theta \sin \theta - 10 \cos^{3} \theta \sin^{2} \theta - 10i \cos^{2} \theta \sin^{3} \theta + 5 \cos^{3} \theta \sin^{4} \theta + i \sin^{5} \theta$ $\Rightarrow \sin 5\theta = 5 \cos^{4} \theta \sin \theta - 10 \cos^{2} \theta \sin^{3} \theta + \sin^{5} \theta$ $= 5(1 - \sin^{2} \theta)^{2} \sin \theta - 10(1 - \sin^{2} \theta) \sin^{3} \theta + \sin^{5} \theta$ $= 5 \sin \theta - 10 \sin^{3} \theta + 5 \sin^{5} \theta - 10 \sin^{3} \theta + 10 \sin^{5} \theta + \sin^{5} \theta$ $= 5 \sin \theta - 20 \sin^{3} \theta + 16 \sin^{5} \theta$ $z^{3} = \cos 3\theta + i \sin 3\theta$ $= (\cos \theta + i \sin \theta)^{5} = \cos^{3} \theta + 3i \cos^{2} \theta \sin \theta - 3 \cos \theta \sin^{2} \theta - i \sin^{3} \theta$ $\Rightarrow \sin 3\theta = 3 \cos^{2} \theta \sin \theta - \sin^{3} \theta$ $\Rightarrow \sin 5\theta - 4 \sin^{3} \theta$ $\Rightarrow \sin 5\theta - 5 \sin 3\theta = -10 \sin \theta + 16 \sin^{5} \theta$	M1 A1	De Moivre for both
	$\Rightarrow \sin 5\theta - 5\sin 3\theta = -10\sin \theta + 16\sin^{\circ} \theta$ $\Rightarrow 16\sin^{\circ} \theta = 10\sin \theta - 5\sin 3\theta + \sin 5\theta$ $\Rightarrow A = \frac{10}{16} = \frac{5}{8}, B = -\frac{5}{8}, C = \frac{1}{16}$	M1	Eliminate $\sin^3\theta$
		A1	All three stated
		[4]	

Q	uestion	Answer	Marks	AO	Guidance
6		For <i>AB</i> , $V = \pi \times 1^2 \times 4 = 12.566()$ For <i>BC</i> , $V = \int_a^b \pi x^2 dy = \pi \int_4^9 (37 - (y - 10)^2) dy$	M1	3.3	4π Split into two parts and use formulae An integral and an attempt at the volume of a cylinder must be seen
		= 356.05	A1	1.1	Integration – ignore limits BC $\frac{340}{3}\pi$
		$\Rightarrow \text{Total } V = 356.05 + 12.566 = 368.61$ $= 369 \text{ (cm}^3 \text{) to } 3.sf$	A1	3.4	Units are not required $\frac{352}{3}\pi$
			[3]		

Y540/01	
---------	--

Mark scheme

(Questio	on	Answer	Marks	AO	Guidance
7	(a)		$\begin{pmatrix} r=0 \Rightarrow \sin 3\theta = 0\\ \Rightarrow 3\theta = 0, \pi \end{pmatrix} \Rightarrow \theta = 0, \frac{\pi}{3}$	B1	1.1	Both required Don't give if any extras within range. Ignore values outside range
				[1]		
	(b)		$\left[\sin\frac{3\pi}{6},\frac{\pi}{6}\right]$ i.e. $\left[1,\frac{\pi}{6}\right]$	B1	1.1	For <i>r</i>
				B1	1.1	For θ
				[2]		
	(c)		DR Area = $\frac{1}{2} \int_{0}^{\frac{\pi}{3}} r^2 d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin^2 3\theta d\theta$	M1	1.1	Correct use of formula – ignore limits
			$=\frac{1}{4}\int_{0}^{\frac{\pi}{3}} (1-\cos 6\theta) d\theta$	M1*	3.1a	Attempt to use double angle formula (Could be wrong way round, 2 missing or sign wrong)
			$=\frac{1}{4}\left[\theta-\frac{1}{6}\sin 6\theta\right]_{0}^{\pi/3}$	DepM1	1.1	Integrate their integrand
			$=\frac{1}{4}\left(\frac{\pi}{3}-0\right)=\frac{1}{12}\pi$	A1	1.1	Use correct limits, must be seen
				[4]		
	(d)		$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$ $\Rightarrow r = \frac{3y}{r} - 4\left(\frac{y}{r}\right)^3$ $\Rightarrow r^4 = 3r^2y - 4y^3$	M1	1.1	Using triple angle formula and $y = r \sin \theta$
			$(x^{2} + y^{2})^{2} = 3y(x^{2} + y^{2}) - 4y^{3}$ oe e.g. $(x^{2} + y^{2})^{2} = 3x^{2}y - y^{3}$	A1	1.1	isw
				[2]		

Q	Juesti	on	Answer	Marks	AO	Guidance
8	(a)		$y = 4 \sinh x + 3 \cosh x$ $\Rightarrow \frac{dy}{dx} = 4 \cosh x + 3 \sinh x$	M1	1.1	Diffn (Hyperbolics or exponentials)
			$= 0$ when $4 \cosh x + 3 \sinh x = 0$			
			$\Rightarrow 4\left(\frac{e^{x}+e^{-x}}{2}\right)+3\left(\frac{e^{x}-e^{-x}}{2}\right)=0$	M1	2.1	Set = 0 and use exponential forms – can change to exponentials before diffn.
			$\Rightarrow e^{2x} = -\frac{1}{7}$ which is not possible as $e^{2x} > 0$ so no turning points	A1	2.4	Conclusion with justification
			Alternative method			
			$y = 4 \sinh x + 3 \cosh x$			
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 4\cosh x + 3\sinh x$	M1		Differentiate
			= 0 when $\tanh x = -\frac{4}{3}$	M1		Set = 0 and use formula for tanh
			But $ \tanh x < 1$ for all x. So there are no values of x for which $\frac{dy}{dx} = 0$	A1		Conclusion with justification
			So there are no values of x for which $\frac{d}{dx} = 0$ So no turning points			
				[3]		

Mark scheme

(b	b)	$y = 4\sinh x + 3\cosh x = 5$			
		$\Rightarrow 4\left(\frac{e^{x}-e^{-x}}{2}\right)+3\left(\frac{e^{x}+e^{-x}}{2}\right)=5$	M1	3.1a	Use of exponentials
		$\Rightarrow 7e^{x} - e^{-x} = 10 \Rightarrow 7e^{2x} - 10e^{x} - 1 = 0$	M1	3.1a	equation of the form $ae^{2x} + be^{x} + c = 0$ (for non-zero <i>a</i> , <i>b</i>
		$e^{x} = \frac{10 \pm \sqrt{100 + 28}}{14} = \frac{5 + \sqrt{32}}{7}$ or $\frac{5 - \sqrt{32}}{7}$	A1	1.1	and <i>c</i>) Two roots for e ^x
		But $e^x > 0$ so cannot $=\frac{5-\sqrt{32}}{7}$	A1	2.3	One rejected plus reason
		So the only root is $e^x = \frac{5 + \sqrt{32}}{7}$		1 1	
		$\Rightarrow x = \ln\left(\frac{5+4\sqrt{2}}{7}\right)$	A1	1.1	Ignore inclusion of 2 nd root
		Alternative method (see appendix for full working)			
		$4\sinh x + 3\cosh x = 5 \Rightarrow 4\sinh x = 5 - 3\cosh x$	M1		Use Pythagoras
		$\therefore 16\sinh^2 x = 16(\cosh^2 x - 1) = 25 - 30\cosh x + 9\cosh^2 x$			
		$7\cosh^2 x + 30\cosh x - 41 = 0$	M1		Quadratic in cosh (or sinh)
		$\cosh x \ge 1 \Longrightarrow \cosh x = \frac{-15 + 16\sqrt{2}}{7}$	A1		Two roots
		$\Rightarrow x = \cosh^{-1} \frac{-15 + 16\sqrt{2}}{7} = \pm \ln \left(\frac{-15 + 16\sqrt{2} + 4\sqrt{43 - 30\sqrt{2}}}{7} \right)$ But the negative root does not work in the original	A1		One rejected plus reason
		equation since LHS would be negative while RHS			
		would be positive (but equal when squared).			
		$\therefore x = \ln\left(\frac{-15 + 16\sqrt{2} + 4\sqrt{43 - 30\sqrt{2}}}{7}\right)$	A1		
			[5]		

Q	uesti	on	Answer	Marks	AO	Guidance
9	(a)		$ \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} 2x + kx \\ -x \end{pmatrix} $	M1	3.1a	
			$\begin{pmatrix} -1 & 0 \end{pmatrix} \begin{pmatrix} kx \end{pmatrix}^{-} \begin{pmatrix} -x \end{pmatrix}$	A1	1.1	
			same line $\Rightarrow -x = k(2x + kx)$ for all $x \neq 0$	M1	2.1	
			$\Rightarrow -1 = k(2+k) \Rightarrow k^{2} + 2k + 1 = 0$ $\Rightarrow k = -1$ (i.e. $y = -x$)	A1	1.1	Value of k can be implied by the correct equation
				[4]		
	(b)		$\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ -x \end{pmatrix} = \begin{pmatrix} 2x - x \\ -x \end{pmatrix} = \begin{pmatrix} x \\ -x \end{pmatrix}$ so each point maps to itself and it is a line of invariant points	B1	2.4	Must have a reason e.g. it is sufficient to test one point other than $(0, 0)$
				[1]		

Q	uestion	Answer	Marks	AO	Guidance
10		$\frac{1}{A} = \frac{A}{A} + \frac{B}{A}$	M1	3.1a	partial fractions
		$\frac{1}{(2r-1)(2r+1)} = \frac{1}{2r-1} + \frac{1}{2r+1}$	141	1 1	
		$\Rightarrow A(2r+1) + B(2r-1) = 1$	M1	1.1	Allow any method to determine A and B
		$\Rightarrow A - B = 1, \ A + B = 0$	A1	1.1	Both values
		$\Rightarrow A = \frac{1}{2}, B = -\frac{1}{2}$	AI	1.1	bour values
		$((1 \ 1) \ (1 \ 1))$	M1	3.1a	Use of differences
		$\prod_{n=1}^{n} 1 \qquad 1 \left\lfloor \left(\frac{1}{1}, \frac{3}{3}\right)^{+} \left(\frac{3}{3}, \frac{5}{5}\right)^{+} \cdots \right\rfloor$			
		$\Rightarrow \sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{1}{2} \begin{pmatrix} \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots \\ + \left(\frac{1}{2n-3} - \frac{1}{2n-1}\right) + \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right) \end{pmatrix}$	M1	2.1	Deal with subtraction
		$\left(+\left(\frac{1}{2n-3}-\frac{1}{2n-1}\right)+\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\right)$			
		$=\frac{1}{2}\left(1-\frac{1}{2n+1}\right)$ oe	A1	1.1	
		$-\frac{1}{2}\left(1-\frac{1}{2n+1}\right)$	AI	1.1	
		$1\begin{pmatrix} 1 & 1 \end{pmatrix} > 0.40$			
		$\frac{1}{2}\left(1-\frac{1}{2n+1}\right) \ge 0.49$	M1	3.1a	Use of inequality on <i>their</i> formula
		\Rightarrow $n \ge 0.98n + 0.49$			
		0.49			
		$\Rightarrow n \ge \frac{0.49}{0.02} = 24.5$			
		$\Rightarrow n = 25$	A1	3.2a	
					No marks for a purely numerical solution.
			[8]		

Q	Question		Answer		AO	Guidance
11	(a)	(i)	For SHM $\lambda = 0$	B1	3.3	
	(a)	(ii)	The door should close, but in SHM the motion continues	[1] B1	3.5b	
	(a)	(11)	indefinitely		5.50	
				[1]		
	(b)		Over- or critical- damping implies $\lambda^2 - 12 \ge 0$	M1	3.3	Consider discriminant with \geq or $>$
			So $\lambda \ge 2\sqrt{3}$	A1	3.4	Ignore $\lambda \leq -2\sqrt{3}$
				[2]		
	(c)		e.g.	B1	3.4	Graph of under-damped system. Start anywhere non-zero on θ -axis with zero gradient. Each peak must be lower than before At least two peaks (not including start point) The graph must look as though it is approaching the <i>t</i> axis
				[1]		

Appendix

8(b) Alternate solution

 $4 \sinh x + 3 \cosh x = 5 \Rightarrow 4 \sinh x = 5 - 3 \cosh x$ $\therefore 16 \sinh^{2} x = 16(\cosh^{2} x - 1) = 25 - 30 \cosh x + 9 \cosh^{2} x$ $7 \cosh^{2} x + 30 \cosh x - 41 = 0$ $\cosh x = \frac{-30 \pm \sqrt{30^{2} - 4 \times 7 \times -41}}{2 \times 7} = \frac{-30 \pm \sqrt{2048}}{14}$ $\cosh x \ge 1 \Rightarrow \cosh x = \frac{-30 + 32\sqrt{2}}{14} = \frac{-15 + 16\sqrt{2}}{7}$ $\Rightarrow x = \cosh^{-1} \frac{-15 + 16\sqrt{2}}{7} = \pm \ln \left(\frac{-15 + 16\sqrt{2}}{7} + \sqrt{\left(\frac{-15 + 16\sqrt{2}}{7}\right)^{2} - 1} \right)$ $= \pm \ln \left(\frac{-15 + 16\sqrt{2}}{7} + \sqrt{\frac{225 + 512 - 480\sqrt{2}}{49}} - \frac{49}{49} \right)$ $= \pm \ln \left(\frac{-15 + 16\sqrt{2}}{7} + \sqrt{\frac{688 - 480\sqrt{2}}{49}} \right) = \pm \ln \left(\frac{-15 + 16\sqrt{2} + 4\sqrt{43 - 30\sqrt{2}}}{7} \right)$

But the negative root does not work in the original equation since LHS would be negative while RHS would be positive (but equal when squared).

$$\therefore x = \ln\left(\frac{-15 + 16\sqrt{2} + 4\sqrt{43 - 30\sqrt{2}}}{7}\right)$$

NB $\left(5 - 3\sqrt{2}\right)^2 = 25 + 18 - 30\sqrt{2}$
= $43 - 30\sqrt{2}$ and $5 - 3\sqrt{2} > 0$
 $\therefore x = \ln\left(\frac{-15 + 16\sqrt{2} + 4\left(5 - 3\sqrt{2}\right)}{7}\right) = \ln\left(\frac{5 + 4\sqrt{2}}{7}\right)$

Question 2(a)(ii) Alternative solution

$$y = \tan^{-1}(1+x) \Longrightarrow 1 + x = \tan y$$
$$\Longrightarrow 1 = \sec^2 y \cdot \frac{dy}{dx}$$
$$\Longrightarrow \frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1+\tan^2 y} = \frac{1}{1+(1+x)^2}$$

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

