GCE

Further Mathematics B (MEI)

Y421/01: Mechanics major

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	lgnore subsequent working
M0, M1	Method mark awarded0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded0, 1
E	Explanation mark 1
SC	Special case
A	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by ${ }^{*}$. The ${ }^{*}$ may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
a wrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Question		Answer	Marks	AOs	Guidance	
1		$\begin{aligned} & J=0.25(4.2-(-5)) \\ & J=0.02 F \\ & F=\frac{2.3}{0.02}=115(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \hline[3] \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \text { Use of Impulse }=\text { change in momentum } \\ & \text { Use of Impulse }=F t \\ & \text { cao } \end{aligned}$	
2		$\begin{aligned} & 10 m \bar{x}=1(3 m)+2(5 m)+5(2 m) \\ & \bar{x}=2.3 \\ & 10 m \bar{y}=2(3 m)+(-2)(5 m)+3(2 m) \\ & \bar{y}=0.2 \end{aligned}$	M1 A1 M1 A1 [4]	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	Use of $\bar{x} \sum m_{i}=\sum x_{i} m_{i}$ cao Use of $\bar{y} \sum m_{i}=\sum y_{i} m_{i}$ cao	
3	(a)	$\begin{aligned} & T=4 g \\ & \frac{\lambda(0.02)}{0.3}=4 g \\ & \lambda=588(\mathrm{~N}) \end{aligned}$	B1 M1 A1 [3]	$\begin{aligned} & 1.1 \\ & 3.3 \\ & 1.1 \end{aligned}$	Resolve vertically (possibly implied by subsequent working) Use of Hooke's law with their $4 g$ cao oe e.g. $60 g$	
3	(b)	e.g. spring stretched beyond its elastic limit e.g. Hooke's law no longer applies	B1 $[1]$	2.2b	oe (any correct equivalent statement for why the extension of the spring may not be 0.1 m)	

	Question	Answer	Marks	AOs	Guidance	
5		Let w_{A} and w_{B} be the horizontal components of the velocity of A and B after collision $w_{\mathrm{B}}=2.5$	$\begin{gathered} \text { B1 } \\ \text { M1 } \end{gathered}$	$\begin{aligned} & 1.2 \\ & 3.3 \end{aligned}$	Use of conservation of linear momentum (parallel to the line of centres) - correct number of terms	
		$2(6)+4(0)=2 w_{\mathrm{A}}+4(2.5)$	A1	1.1	Allow with w_{B} instead of 2.5	For reference: $w_{\mathrm{A}}=1$
			M1	3.3	Use of Newton's experimental law (parallel to the line of centres) - correct number of terms	
		$w_{\mathrm{A}}-2.5=-e(6-0)$	A1	1.1	Use of NEL must be consistent with CLM - allow with w_{B} instead of 2.5 and possibly their w_{A}	
		$e=0.25$	$\begin{aligned} & \text { A1 } \\ & {[6]} \end{aligned}$	1.1		

Question		Answer	Marks	AOs	Guidance	
6	(a)	$[F]=\mathrm{MLT}^{-2}$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	1.2		
6	(b)	$[G]=\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$	B1 [1]		May use $F=\frac{G m_{1} m_{2}}{d^{2}}$ to obtain the dimensions of G	
6	(c)	$\begin{aligned} & G=\left(6.67 \times 10^{-11}\right) \times 0.454 \times \frac{1}{(0.305)^{3}} \\ & G=1.07 \times 10^{-9}\left(\mathrm{lb}^{-1} \mathrm{ft}^{3} \mathrm{~s}^{-2}\right) \end{aligned}$	M1 A1 [2]	3.1a 1.1	SC B1 for $\begin{aligned} & G=\left(6.67 \times 10^{-11}\right) \times \frac{1}{0.454} \times(0.305)^{3} \\ &=4.17 \times 10^{-12} \\ & \text { awrt } 1.07 \times 10^{-9} \end{aligned}$	
6	(d)	$\begin{aligned} & \left\lceil\frac{k G M}{r}\right\rceil_{\rfloor}=\frac{\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right) \mathrm{M}}{\mathrm{~L}} \\ & \left\lceil\sqrt{\frac{G M}{r}}{ }_{\square}=\mathrm{LT}^{-1}\right. \end{aligned}$ $[v]=\mathrm{LT}^{-1}$ so the formula is dimensionally consistent	M1 A1 A1 [3]	2.1 1.1 2.2a	Attempt to calculate the dimension of either \qquad $\frac{k G M}{r}$ or its square root with $[k]=1$ and two other terms correct Or $\left\lceil\frac{k G M}{r}\right\rceil=\mathrm{L}^{2} \mathrm{~T}^{-2}$ Or allow showing consistency for $v^{2}=\frac{k G M}{r}$	

	estion	Answer	Marks	AOs	Guidance	
6	(e)	$\begin{aligned} & 11186=\sqrt{\frac{k\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{6371000}} \\ & k \approx 2 \\ & v=\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(6.39 \times 10^{23}\right)}{3389500}} \\ & v=5015\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 A1 M1 A1 [4]	3.4 1.1 1.1 $2.2 \mathrm{a}$	Allow to 3 sf or better (allow 5015 to 5017 inclusive)	$k=2.0019677 \ldots$ If using $k=2.0019677 \ldots$ expect to see 5017.346122...
7	(a)	Driving force of engine is $\frac{k m g}{v}$ $\begin{aligned} & \frac{k m g}{v}-m g=m v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & k g-g v=v^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x} \Rightarrow v^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}=(k-v) g \end{aligned}$	B1 M1 A1 [3]	1.1 3.3 2.2a	Use of N2L, correct number of terms, allow D (oe) for $\frac{k m g}{v}$ and a (oe) for the acceleration AG - sufficient working must be shown as answer given	

	Question	Answer	Marks	AOs	Guidance	
7		$\begin{aligned} & g x=k^{2} \ln \binom{k}{k-v}-k v-{ }_{2}^{1} v^{2} \\ & x=0, v=0 \Rightarrow g(0)=k^{2} \ln \binom{k}{k-0}-k(0)-\frac{1}{2}(0)^{2} \text { so } \end{aligned}$ initial conditions are consistent with given equation $g_{\overline{\mathrm{d} v}}^{\mathrm{d} x}=k^{2}\left\lfloor\left.\frac{1}{\left(\frac{k}{k-v}\right)} k(k-v)^{-2}\right\|^{-k-v}\right.$ $g \frac{\mathrm{~d} x}{\mathrm{~d} v}=\frac{-k v+v^{2}-k^{2}+k v+k^{2}}{(k-v)}$ $v^{2}=g(k-v) \frac{\mathrm{d} x}{\mathrm{~d} v} \Rightarrow v^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}=(k-v) g$	B1	1.1		
			M1* A1	2.1 1.1	Attempt to differentiate using chain rule cao oe e.g. $g=k^{2}\left(\frac{k-v}{k}\right)\left(\frac{-k\left(-\frac{\mathrm{d} v}{\mathrm{~d} x}\right)}{(k-v)^{2}}\right)-k \frac{\mathrm{~d} v}{\mathrm{~d} x}-v \frac{\mathrm{~d} v}{\mathrm{~d} x}$	Or equivalent (e.g. solving using separation of variables)
			M1dep*	1.1	Correct method to obtain an expression for $\frac{\mathrm{d} x}{}$ as a single fraction or as a single $\mathrm{d} v$ fraction with $\frac{\mathrm{d} v}{\mathrm{~d} x}$ e.g. $g=\left(\frac{\left(k^{2}-k^{2}+k v-k v+v^{2}\right) \mathrm{d} v}{k-v}\right) \overline{\mathrm{d} x}$	
			A1 [5]	2.2a	AG - sufficient working required as answer given	

Question		Answer	Marks	AOs	Guidance	
7	(c)	Work done by engine is kmgt $\begin{aligned} & k g m t=\frac{1}{2} m V^{2}+m g x \\ & k g t={ }_{2}^{1} V^{2}+k^{2} \ln \binom{k}{k-V}-k V-\frac{1}{2} V^{2} \\ & k g t=k^{2} \ln \binom{k}{k-V}-k V \Rightarrow t=\frac{k}{g} \ln \binom{k}{k-V}-\bar{g} \end{aligned}$	B1 M1* M1dep* A1 [4]	1.1 3.3 3.4 2.2a	Use work-energy principle - correct number of terms Use given result from (b) in work-energy equation to eliminate x AG - sufficient working required as answer given SC if correctly found by solving $\frac{k m g}{v}-m g=m \frac{\mathrm{~d} v}{\mathrm{~d} t}$ this can score $3 / 4$ max.	
8	(a)		B1 [1]	1.2	All remaining forces adding on correctly (with arrows to indicate directions) to the figure in the Printed Answer Booklet	
8	(b)	$\begin{aligned} & F_{\mathrm{D}}+R_{\mathrm{C}}=W \\ & R_{\mathrm{D}}=F_{\mathrm{C}} \\ & F_{\mathrm{D}}={ }_{\overline{\mathrm{C}}} R_{\mathrm{D}} \text { and } F_{\mathrm{C}}={ }^{1} R^{1}{ }_{\mathrm{C}} \\ & 1_{\overline{3}}^{F_{\mathrm{C}}}+R_{\mathrm{C}}=W \Rightarrow{ }_{9}^{1} R{ }_{\mathrm{C}}+R_{\mathrm{C}}=W \\ & R=\frac{9}{10} W \end{aligned}$	M1* A1 B1 M1dep* A1 [5]	3.3 1.1 3.4 3.4 1.1	Resolve horizontally and vertically (correct number of terms in both equations) Where R_{C} is the normal contact force at C, etc. Correct use of $F=\mu R$ at C and D Combine results to get an equation in R_{C} only	

Question		Answer	Marks	AOs	Guidance	
10	(b)		M1	3.4	Substituting $\theta=\frac{\pi}{2}$ into their conservation of energy equation from (a)	
			A1 M1	1.1	Conservation of energy to find an expression for the speed of P at B	Where v_{B} is the speed of P at B
			M1	3.1b	Work-energy principle for motion between B and A	
				2.5	Set $v_{\mathrm{A}} \geq 0$ and substitute for $v_{\mathrm{B}}{ }^{2}$	
			A1 [6]	2.2a	k need not be stated explicitly	
11	(a)	$4 V=4 v_{\mathrm{A}}+3 v_{\mathrm{B}}$$v_{\mathrm{A}}-v_{\mathrm{B}}=-e V$$v_{\mathrm{A}}=\frac{V(4-3 e)}{7} \text { and } v_{\mathrm{B}}=\frac{4 V(1+e)}{7}$	M1*	3.3	Conservation of linear momentum with correct number of terms	Where v_{A} is the speed of A after $1^{\text {st }}$ impact and similarly for v_{B}
			A1	1.1	cao	
			M1*	3.3	Newton's experimental law with correct number of terms	
			A1	1.1	Must be consistent with CLM	
			M1dep*	1.1	Solve the simultaneous equations to find both speeds	
			A1	1.1		
			[6]			

	estion	Answer	Marks	AOs	Guidance	
11	(b)	Let θ be the angle subtended by A in time t For A, $t=\frac{r \theta}{\frac{V(4-3 e)}{7}}$ For B, $t=\frac{2 \pi r+r \theta}{\frac{4 V(1+e)}{7}}$ $\begin{aligned} & \frac{2 \pi+\theta}{4 V(1+e)}=\frac{\theta}{V(4-3 e)} \\ & \theta=\frac{2 \pi(4-3 e)}{7 e} \end{aligned}$	M1 M1 M1 A1 [4]	3.1b 1.1 3.4 2.2a	Use of $s=u t$ with their v_{A} and $s=r \theta$ Use of $s=u t$ with their v_{B} and $s=2 \pi r+r \theta$ Equate expressions for t to form an equation in terms of θ, V and e AG	Where r is the radius of the circular groove
		AIternative method ALT: $\quad v_{\mathrm{B}}-v_{\mathrm{A}}=\frac{4 V(1+e)}{7}-\frac{V(4-3 e)}{7}=\mathrm{eV}$ Time for B to catch up to A is $\frac{2 \pi r}{\mathrm{eV}}$ $\begin{aligned} & d_{\mathrm{A}}=2 \pi r\binom{V(4-3 e)}{7}={ }_{7}{ }^{2 \pi r}(4-3 e) \\ & \theta=\frac{2 \pi r(4-3 e)}{7 e r}=\frac{2 \pi(4-3 e)}{7 e} \end{aligned}$	M1* M1dep* M1 A1		Difference in speeds calculated Using their eV Where d_{A} is the distance travelled by A AG	Where r is the radius of the circular groove

Question		Answer	Marks	AOs	Guidance	
11	(c) (i)	$\begin{aligned} & 3 w_{\mathrm{B}}+4 w_{\mathrm{A}}=\frac{12}{7}(1+e)+\frac{4}{7}(4-3 e) \\ & w_{\mathrm{B}}-w_{\mathrm{A}}=-e^{1} \frac{4}{7} V(1+e)-{ }_{7}^{1} V(4-3 e)^{\prime} \\ & 3 w_{\mathrm{B}}+4 w_{\mathrm{A}}=4 V \text { and } w_{\mathrm{B}}-w_{\mathrm{A}}=-e^{2} V \\ & w_{\mathrm{B}}=\underline{4}_{V}\left(1-e^{2}\right) \end{aligned}$	M1* M1* A1 M1dep* A1 $[5]$	3.3 3.3 1.1 1.1 1.1	CLM correct number of terms using their expressions from (a) NEL correct number of terms oe Solve simultaneously for w_{B} cao	Where w_{A} is the speed of A after the second collision For reference: $w_{\mathrm{A}}=\frac{1}{7}\left(4+3 e^{2}\right)$
11	(c) (ii)	If the collision is perfectly elastic $(e=1) \mathrm{B}$ is brought to rest by the second collision and A is moving with speed V (which is the situation before the first collision)	B1 [1]	3.5a	oe correct statement	
12	(a)	$\mathrm{PE}=-m g(l+e) \quad \text { (while } \mathrm{P} \text { is at rest) }$ $\begin{aligned} & \mathrm{EPE}=\frac{12 m g e^{2}}{2 l} \\ & \frac{6 m g e^{2}}{l}-m g(l+e)=0 \\ & 6 e^{2}-e l-l^{2}=0 \\ & (3 e+l)(2 e-l)=0 \\ & e=\frac{l}{2} \Rightarrow \text { length of string is } \frac{1}{2} l+l=\frac{3}{2} l \end{aligned}$	B1 B1 M1* M1dep* A1 [5]	1.1 1.1 3.3 1.1a 2.2a	Where e is the extension in the string Conservation of energy with correct number of terms Solving three-term quadratic in e AG	Taking the horizontal through O as the reference level for zero GPE

	estion	Answer	Marks	AOs	Guidance	
12	(b)	$\begin{aligned} & m g-T=m \ddot{x} \\ & m g-\frac{12 m g x}{l}=m \ddot{x} \\ & x+\frac{12 g}{l} x=g \text { so } \ddot{x}+\omega^{2} x=g \text { where } \omega^{2}=\frac{12 g}{l} \end{aligned}$	M1 M1 A1 [3]	3.3 3.4 2.2a	N2L vertically with correct number of terms Use of Hooke's law and substitute for T in N2L AG	
12	(c)	$\begin{aligned} & x=y+\frac{g}{m^{2}} \Rightarrow y+\omega^{2} y=0 \\ & y=A \cos \omega t+B \sin \omega t \\ & x=A \cos \omega t+B \sin \omega t+\frac{g}{\omega^{2}} \\ & t=0, x=0 \Rightarrow A=-\frac{g}{\omega^{2}} \\ & \frac{1}{2} m v^{2}=m g l \\ & v_{\mathrm{P}}=\sqrt{2 g l} \\ & t=0, x=\sqrt{2 g t} \Rightarrow B=\frac{\sqrt{2 g l}}{\omega} \\ & x=-\frac{g}{\omega^{2}} \cos \omega t+\frac{\sqrt{2 g t}}{\omega} \sin \omega t+\frac{g}{\omega^{2}} \\ & \frac{l}{12}(1-\cos \omega t+2 \sqrt{\sin } \omega t)=0 \\ & \cos \omega t-\sqrt{24} \sin \omega t=1 \text { so } k=24 \end{aligned}$	M1 A1ft A1 M1 M1* A1 M1dep* A1 M1 A1 [10]	$\begin{gathered} \hline 1.1 \\ 1.2 \\ 1.1 \\ 3.4 \\ 3.1 b \\ 1.1 \\ 3.4 \\ 1.1 \\ 3.1 b \\ 2.2 \mathrm{a} \end{gathered}$	Use given substitution to form differential equation in y Correctly solves their differential equation in y $\text { oe e.g. } x=A \cos \omega t+B \sin \omega t+\frac{l}{12}$ Use correct initial conditions in their expression for x Use conservation of energy to find speed v_{P} of P at time $t=0$ Use initial speed in an expression for \dot{x} $\text { oe e.g. } x=\frac{l}{12}(1-\cos \omega t+2 \sqrt{\sin } \omega t)$ Sets $x=0$ and replaces $\omega^{2}=\frac{12 g}{l}$ k need not be stated explicitly	Dependent on all previous M marks

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

