

GCE

Further Mathematics B (MEI)

Y421/01: Mechanics major

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
√ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
E	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
ВР	Blank page
Highlighting	
Other abbreviations in	Maaning
	meaning
mark scheme	Meaning
mark scheme E1	Mark for explaining a result or establishing a given result
mark scheme E1 dep*	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
mark scheme E1 dep* cao	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only
mark scheme E1 dep* cao oe	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent
mark schemeE1dep*caooerot	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent Rounded or truncated
mark scheme E1 dep* cao oe rot soi	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent Rounded or truncated Seen or implied
mark scheme E1 dep* cao oe rot soi www	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working
mark scheme E1 dep* cao oe rot soi www AG	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given
mark scheme E1 dep* cao oe rot soi www AG awrt	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given Anything which rounds to
mark schemeE1dep*caooerotsoiwwwAGawrtBC	Meaning Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark. Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given Anything which rounds to By Calculator

Q	uestio	1 Answer	Marks	AOs	Guidance	
1		J = 0.25 (4.2 - (-5))	M1	3.3	Use of Impulse = change in momentum	
		J = 0.02F	M1	3.3	Use of Impulse = Ft	
		$F = {}^{2.3} = 115$ (N)	A1	1.1	cao	
		$\frac{1}{0.02}$ $\frac{1}{0.02}$				
			[3]			
2		$10mx^{-} = 1(3m) + 2(5m) + 5(2m)$	M1	1.1	Use of $\overline{x} \sum m_i = \sum x_i m_i$	
		x = 2.3	A1	1.1	cao	
		10mr = 2(3m) + (-2)(5m) + 3(2m)	M1	1.1	Use of $\overline{y} \sum m_i = \sum y_i m_i$	
		$\overline{y} = 0.2$	A1	1.1	cao	
			[4]			
3	(a)	T = 4g	B1	1.1	Resolve vertically (possibly implied by subsequent working)	
		$\frac{\lambda(0.02)}{0.3} = 4g$	M1	3.3	Use of Hooke's law with their $4g$	
		$\lambda = 588(N)$	A1	1.1	cao oe e.g. 60g	
			[3]			
3	(b)	e.g. spring stretched beyond its elastic limit	B1	2.2b	oe (any correct equivalent statement for	
		e.g. Hooke's law no longer applies			why the extension of the spring may not	
			[1]		be 0.1 m)	
			[1]			

Y421/01

Question	Answer	Marks	AOs	Guidance	
4	$DR = \int_{1} \left(4 - x_{2} \right) - 3 \int_{1}^{x} dx = \left[4x - \frac{1}{3} x^{3} - 2x^{\frac{3}{2}} \right]^{1}$	M1*	2.1	Correct integral expression for the area and attempt to integrate (at least two terms correct)	Ignore limits for first two M marks
	$A = 4 - \frac{1}{3} - 2 = \frac{5}{3}$	A1	1.1		SC M1 A0 if correct integral and value seen but with no intermediate working
	$A\overline{x} = \int_{0}^{1} 4x - x^{3} - 3x^{2} dx = \begin{bmatrix} 2x^{2} - \frac{1}{4}x^{4} - \frac{6}{5}x^{2} \end{bmatrix}_{0}^{1}$	M1*	1.1	Correct integral expression for $A\overline{x}$ and attempt to integrate (at least two terms correct)	
	$A\pi = 2 - \frac{1}{4} - \frac{6}{5} = \frac{11}{20}$	A1	1.1		SC M1 A0 if correct integral and value seen but with no intermediate working
	$x = \frac{Ax}{A} = \frac{\frac{11}{20}}{\frac{5}{5}}$	M1dep*	1.1	Correct use of $x = \frac{Ax}{A}$	Dependent on both previous M marks
	$=\frac{33}{100}$	A1	2.2a	oe	This mark can be awarded even if the two previous A marks were not awarded
		[6]			

Quest	tion	Answer	Marks	AOs	Guidance	
5		Let w_A and w_B be the horizontal components of the				
		velocity of A and B after collision				
		$w_{\rm B} = 2.5$	B1	1.2		
			M1	3.3	Use of conservation of linear momentum (parallel to the line of centres) – correct number of terms	
		$2(6) + 4(0) = 2w_{\rm A} + 4(2.5)$	AI	1.1	Allow with $w_{\rm B}$ instead of 2.5	For reference: $w_A = 1$
			M1	3.3	Use of Newton's experimental law (parallel to the line of centres) – correct number of terms	
		$w_{\rm A} - 2.5 = -e(6 - 0)$	A1	1.1	Use of NEL must be consistent with	
					CLM – allow with $w_{\rm B}$ instead of 2.5 and	
					possibly their w_A	
		<i>e</i> = 0.25	A1	1.1		
			[6]			

Mark Scheme

Q	uestio	n Answer	Marks	AOs	Guidance	
6	(a)	$[F] = MLT^{-2}$	B1	1.2		
			[1]			
6	(b)	$[G] = M^{-1}L^{3}T^{-2}$	B1		May use $F = \frac{Gm_1m_2}{2}$ to obtain the	
					$\frac{d^2}{d^2}$ to obtain the	
					dimensions of G	
			[1]			
6	(c)	$G = (6.67 \times 10^{-11}) \times 0.454 \times \frac{1}{10^{-11}}$	M1	3.1a	SC B1 for	
		$(0.305)^3$			$G = (6.67 \times 10^{-11}) \times \frac{1}{1000} \times (0.305)^3$	
					0.454	
					$=4.17 \times 10^{-12}$	
		$G = 1.07 \times 10^{-9} (lb^{-1} ft^3 s^{-2})$	A1	1.1	awrt 1.07×10 ⁻⁹	
			[2]			
6	(d)	$\begin{bmatrix} \underline{kGM} \end{bmatrix} (M^{-1}L^3T^{-2})M$	M1	2.1	Attempt to calculate the dimension of	
		$\left[\left[\begin{array}{c} r \end{array} \right] \right] = \frac{r}{L}$			either <u>kGM</u> or its square root with	
					r Frank and a second second	
					$\begin{bmatrix} k \end{bmatrix} = 1$ and two other terms correct	
		$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	A1	1.1	$\operatorname{Or}\left[\frac{kGM}{kGM}\right] = L^2 T^{-2}$	
		$\left \sqrt{r} \right ^{21}$				
		$\begin{bmatrix} v \end{bmatrix} = LT^{-1}$ so the formula is dimensionally consistent	A1	2.2a	Or allow showing consistency for	
					$v^2 = kGM$	
					r	
			[3]			

Q	uestio	Answer	Marks	AOs	Guidance	
6	(e)	$11186 = \sqrt{\frac{k\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{6\ 371000}}$	M1	3.4		
		$k \approx 2$	A1	1.1		<i>k</i> = 2.0019677
		$v = \sqrt{\frac{2(6.67 \times 10^{-11})(6.39 \times 10^{23})}{3389500}}$	MI	1.1		
		$v = 5015 ({\rm ms^{-1}})$	A1	2.2a	Allow to 3 sf or better (allow 5015 to 5017 inclusive)	If using k = 2.0019677 expect to see 5017 346122
			[4]			5017.510122
7	(a)	Driving force of engine is $\frac{kmg}{v}$	B1	1.1		
		$\frac{kmg}{v} - mg = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	M1	3.3	Use of N2L, correct number of terms, allow D (oe) for $\frac{kmg}{v}$ and a (oe) for the acceleration	
		$kg - gv = v^2 \frac{dv}{dx} \Rightarrow v^2 \frac{dv}{dx} = (k - v)g$	A1	2.2a	AG – sufficient working must be shown as answer given	
			[3]			

Mark Scheme

Questio	Answer	Marks	AOs	Guidance	
7 (b)	$gx = k^{2} \ln \left(\frac{k}{k-v}\right) - kv - \frac{1}{2}v^{2}$ $x = 0, v = 0 \Rightarrow g(0) = k^{2} \ln \left(\frac{k}{k-0}\right) - k(0) - \frac{1}{2}(0)^{2} \text{ so}$	B1	1.1		
	initial conditions are consistent with given equation	3.614			
	$\int dx = k^2$ $1 = k(-1)^{-2} = k = v$	MI*	2.1	Attempt to differentiate using chain rule	Or equivalent (e.g.
	$\begin{bmatrix} g & -k \\ \frac{k}{dv} & \left[\frac{k}{(k-v)} & \int \right]^{-k-v} \end{bmatrix}$	A1	1.1	cao oe e.g. $\int_{-k}^{2} \left(\frac{k-v}{dx}\right) \left(-k\left(-\frac{dv}{dx}\right)\right) = L\frac{dv}{dx} = \frac{dv}{dx}$	separation of variables)
	$g\frac{dx}{dv} = \frac{-kv + v^2 - k^2 + kv + k^2}{(k - v)}$	M1dep*	1.1	$g = k \left(k \int \frac{1}{(k-v)^2} \right)^{-k} dx^{-v} dx$ Correct method to obtain an expression for $\frac{dx}{dv}$ as a single fraction or as a single	
	$v^2 = g(k - v) \frac{dx}{dv} \Rightarrow v^2 \frac{dv}{dx} = (k - v) g$	A1 [5]	2.2a	fraction with $\frac{dv}{dx}$ e.g. $g = \left(\frac{k^2 - k^2 + kv - kv + v^2}{k - v}\right) \frac{dv}{dx}$ AG – sufficient working required as answer given	

Q	Question		Answer	Marks	AOs	Guidance	
7	(c)		Work done by engine is <i>kmgt</i>	B1	1.1		
			$kgmt = \frac{1}{2}mV^2 + mgx$	M1*	3.3	Use work-energy principle – correct number of terms	
			$kgt = \frac{1}{2}V^{2} + k^{2}\ln\left(\frac{k}{k-V}\right) - kV - \frac{1}{2}V^{2}$	M1dep*	3.4	Use given result from (b) in work-energy equation to eliminate <i>x</i>	
			$kgt = k^2 \ln \left(\frac{k}{k-V}\right) - kV \Longrightarrow t = \frac{k}{g} \ln \left(\frac{k}{k-V}\right) - \frac{V}{g}$	A1	2.2a	\mathbf{AG} – sufficient working required as answer given	
				[4]		SC if correctly found by solving $\frac{kmg}{v} - mg = m\frac{dv}{dt}$ this can score 3/4 max.	
8	(a)			B1	1.2	All remaining forces adding on correctly	
						(with arrows to indicate directions) to the	
				[1]		figure in the Printed Answer Booklet	
0	(b)	-		[1] M1*	2.2	Descly a homizontally and yout cally	
0	(0)			IVI I "	5.5	(correct number of terms in both	
						equations)	
			$F_{\rm D} + R_{\rm C} = W$	A1	1.1	Where R_c is the normal contact force at	
			$R_{\rm D} = F_{\rm C}$			C, etc.	
			$F_{\rm D} = \frac{1}{3} \frac{R}{R}_{\rm D}$ and $F_{\rm C} = \frac{1}{3} \frac{R}{R}_{\rm C}$	B1	3.4	Correct use of $F = \mu R$ at C and D	
			$^{1}F + R = W \Longrightarrow ^{1}R + R = W$	M1dep*	3.4	Combine results to get an equation in $R_{\rm C}$	
			$\overline{3}$ c c $\overline{9}$ c c	_		only	
			$R_{\rm c} = \frac{9}{10}W$	A1	1.1		
				[5]			

	Qu	estio	n	Answer	Marks	AOs	Guidance	
1	8	(c)			M1*	3.1b	Taking moments about D (or any other	
							equivalent point) – correct number of	
							terms	
				$(r + h\sin\theta)W + (r + 2h\cos\theta)F_{\rm C} = (r + 2h\sin\theta)R_{\rm C}$	Al	1.1	oe	
				$ (r + h\sin\theta)W + (r + 2h\cos\theta) \left(\frac{3}{10}W\right) $ $= (r + 2h\sin\theta) \left(\frac{9}{10}W\right) $	M1dep*	3.4	Substitute expressions for $F_{\rm C}$ and $R_{\rm C}$	
				$r = h(2\sin\theta - 1.5\cos\theta)$	A1	1.1		
				$2h\sin\theta - 1.5h\cos\theta > 0$	M1	2.3	Setting their expression for $r > 0$	
				$4\sin\theta - 3\cos\theta > 0 \Longrightarrow \tan\theta > 3$	A1	2.2a	AG	
				$\overline{4}$				
					[6]			

Q	uestio	Answer	Marks	AOs	Guidance	
9	(a)	$\ddot{x} = -g\sinlpha, \dot{y} = -g\coslpha$	B1	2.1		
			M1*	3.4	Attempt to integrate (twice) and use of	
					initial conditions	
		$\dot{x} = 5\cos\theta - gt\sin\alpha$, $\dot{y} = 5\sin\theta - gt\cos\alpha$	A1	1.1		
		$x = 5t\cos\theta - 0.5gt^2\sin\alpha$	A1	1.1	Or M1 for use of $s = ut + \frac{1}{2}at^2$ parallel	Similarly M1 A1 for
		$y = 5t\sin\theta - 0.5gt^2\cos\alpha$			2	correct expression for
		, , , , , , , , , , , , , , , , , , , ,			to line of greatest slope and then A1 for	y (following SUVAT
					correct expression for <i>x</i>	perpendicular to
		$v = 0 \rightarrow t =$	M1den*	3.3	Sets $v = 0$ and solve for t	stope)
		$y = 0 \Rightarrow r = \dots$ 10sin θ	Al	11		
		$t = \frac{105110}{90000}$		1.1		
		$(10 \cdot 2) \qquad (10 \cdot 2)^2$	M1	21	Substitute expression for tinte equation	Dependent on both
		$r = 5 \frac{10 \sin \theta}{\cos \theta} \cos \theta - 0.5 \alpha \frac{10 \sin \theta}{\cos \theta} \sin \alpha$	IVII	5.4	for r	previous M marks
		$x = 5\left(g\cos\alpha\right)^{\cos\alpha} = 0.5g\left(g\cos\alpha\right)^{\sin\alpha}$				previous ivi marks
		$x = \frac{50 \sin \theta}{\cos \theta} \left(\cos \theta \cos \alpha - \sin \theta \sin \alpha \right)$	A1	2.2a	AG	
		$g\cos^2 \alpha$				
		$\rightarrow OR - \frac{50\sin\theta \cos(\theta + \alpha)}{2}$				
		$= g \cos^2 \alpha$				
			[8]			

Q	uestio	n	Answer	Marks	AOs	Guidance	
9	(b)		$\sin\theta\cos(\theta + \alpha) = \frac{1}{2}(\sin(2\theta + \alpha) - \sin\alpha)$	M1	1.1	Use of given identity to re-write	
			2			numerator from (a) as a difference of two	
			25			sines	
			$OR = \underline{\qquad} (\sin(2\theta + \alpha) - \sin\alpha)$	Al	1.1		
			$g\cos^2\alpha$				
			$R = \frac{25}{(1-\sin\alpha)}$	A1	3.1a	Use of correct trig. identity and setting	$R_{\rm max}$ occurs when
			$\max \frac{s(1-\sin 2\alpha)}{2}$			$\sin(2\theta + \alpha)$ equal to 1 – oe e.g.	$\sin(2\theta + \alpha) = 1$
						$R = \frac{25}{25}$	
						$\max_{\max} \frac{g(1 + \sin \alpha)}{g(1 + \sin \alpha)}$	
				[3]			
9	(c)		25 $25(1 \sin \alpha)$	[J] M1*	34	Setting their expression equal to 1.8	Expression must only
ĺ	(0)		$\frac{25}{1.8} = 1.8 \text{ or} \frac{25(1-\sin \alpha)}{1.8} = 1.8$	1711	5.4	Setting their expression equal to 1.8	contain sin a terms
			$g(1+\sin\alpha)$ $g(1-\sin^2\alpha)$				contain sind terms
			$25 = 1.8 \Rightarrow \sin \alpha = \dots$	M1dep*	1.1	Attempting to solve for $\sin \alpha$ or α - for	If solving a 3TQ in
			$\frac{1}{g(1+\sin\alpha)}$	_		reference $\sin \alpha = \frac{184}{100}$ or $\alpha = 24.660053$	sine then must solve
						441 (or 0.430300 in radians)	using a correct method
			$\theta = 45 - 0.5 \alpha$	M1	3 19	Follow through their α	
			A = 32.7		1 1		32 6600733 or
			0 - 52.7	AI	1.1		0.5701986 (in
							radians)
				[4]			Tudiuns)
				[.]			

Question	Answer	Marks	AOs	Guidance	
10 (a)	$[At B,] KE = {}^{1} mu^{2}, PE = 0$	B1	1.1		Note that the reference
	$\frac{1}{2}$				level for zero GPE
	1				might be taken at C
	[At θ ,] KE = $\frac{1}{mv^2}$, PE = $mga(1 - \cos\theta)$	B1	1.1		
	2				
		MI*	3.3	Use of conservation of energy – correct	
		A 1	11	number of terms	
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mga\left(1 - \cos\theta\right)$		1.1	cau	
	2 2 mv^2	M1*	33	N21 radially with correct number of	
	$R - mg\cos\theta = \frac{mv}{m}$	1711	0.0	terms and weight resolved	
		M1den*	31		
	$R - mg\cos\theta = \frac{m}{2} \left(u^2 - 2ga\left(1 - \cos\theta\right) \right)$	wittucp	5.4	Substitute an expression for v^2	
	$\begin{pmatrix} u \\ (u^2) \end{pmatrix}$	A1	1.1		
	$R = m \int 3g\cos\theta - 2g + \frac{\pi}{m}$				
		[7]			

Q	Question		Answer	Marks	AOs	Guidance	
10	(b)		Before collision at C, $\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mga$	M1	3.4	Substituting $\theta = \frac{\pi}{2}$ into their	
						conservation of energy equation from (a)	
			After collision at C, speed of P is $e\sqrt{u^2 - 2ga}$	A1	1.1		
			$\frac{1}{2}mv^{B}{}^{2} = mga + \frac{1}{2}m(e\sqrt{u - 2ga})^{2}$	M1	3.1b	Conservation of energy to find an expression for the speed of P at B	Where $v_{\rm B}$ is the speed of P at B
			$v_{\rm B}^2 = 2ga + e^2\left(u^2 - 2ga\right)$				
			$\frac{1}{2}mv^{2} - \frac{1}{2}mv^{2} = Fb$	M1	3.1b	Work-energy principle for motion between B and A	
				M1	2.5	Set $v_A \ge 0$ and substitute for v_B^2	
			$m\left(2ga + e^2\left(u^2 - 2ga\right)\right) - 2bF \ge 0$	A1	2.29	k need not be stated explicitly	
			$Fb \le mga + \frac{1}{2}me^2u^2 - me^2ga$		2.24	wheel not be stated explicitly	
			$\Rightarrow Fb \leq \frac{1}{2}m\left[e^{2}u^{2} + 2(1-e^{2})ga\right], \text{ so } k = 2$				
				[6]			
11	(a)			M1*	3.3	Conservation of linear momentum with correct number of terms	Where v_A is the speed of A after 1 st impact and similarly for v_B
			$4V = 4v_{\rm A} + 3v_{\rm B}$	A1	1.1	cao	,
				M1*	3.3	Newton's experimental law with correct number of terms	
			$v_{\rm A} - v_{\rm B} = -eV$	A1	1.1	Must be consistent with CLM	
				M1dep*	1.1	Solve the simultaneous equations to find both speeds	
			$v_{\rm A} = \frac{V(4-3e)}{7}$ and $v_{\rm B} = \frac{4V(1+e)}{7}$	A1	1.1		
				[6]			

Question		1 Answer	Marks	AOs	Guidance	
11	(b)	Let θ be the angle subtended by A in time t For A, $t = \frac{r\theta}{V(4-3e)}$	M1	3.1b	Use of $s = ut$ with their v_A and $s = r\theta$	Where <i>r</i> is the radius of the circular groove
		For B, $t = \frac{2\pi r + r\theta}{\frac{4V(1+e)}{7}}$	M1	1.1	Use of $s = ut$ with their $v_{\rm B}$ and $s = 2\pi r + r\theta$	
		$\frac{2\pi + \theta}{4V(1+e)} = \frac{\theta}{V(4-3e)}$	M1	3.4	Equate expressions for <i>t</i> to form an equation in terms of θ , <i>V</i> and <i>e</i>	
		$2\pi (4-3e)$	A1	2.2a	AG	
		$\theta = \frac{1}{7\rho}$				
			[4]			
		Alternative method				
		ALT: $v_{\rm B} - v_{\rm A} = \frac{4V(1+e)}{7} - \frac{V(4-3e)}{7} = eV$	M1*		Difference in speeds calculated	
		Time for B to catch up to A is $\frac{2\pi r}{eV}$	M1dep*		Using their <i>eV</i>	Where <i>r</i> is the radius of the circular groove
		$d_{\rm A} = \frac{2\pi r}{eV} \binom{V(4-3e)}{7} = \frac{2\pi r}{7e} (4-3e)$	M1		Where d_A is the distance travelled by A	
		$\theta = \frac{2\pi r \left(4 - 3e\right)}{7er} = \frac{2\pi \left(4 - 3e\right)}{7e}$	A1		AG	

Question		n Answer	Marks	AOs	Guidance	
11	(c)	$3w + 4w = {}^{12}V(1+e) + {}^{4}V(4-3e)$	M1*	3.3	CLM correct number of terms using their	Where w_A is the
	(i)	$B \qquad A \qquad \overline{7} \qquad$			expressions from (a)	speed of A after the
						second collision
		$w - w = -e^{\left[\frac{4}{4}V(1+e) - \frac{1}{4}V(4-3e)\right]}$	M1*	3.3	NEL correct number of terms	
		\mathbf{B} A $\left(\frac{7}{7}, \frac{7}{7}, \frac{7}{7}\right)$				
		$2 \rightarrow 4$ All and $\omega = \omega = c^2 V$	A1	1.1	0e	
		$3w_{\rm B} + 4w_{\rm A} = 4V$ and $w_{\rm B} - w_{\rm A} = -e^{2}V$				
			Mldep*	1.1	Solve simultaneously for $w_{\rm B}$	
		$w = \frac{4}{V}(1-e^2)$	A1	1.1	cao	For reference:
		^B 7				$w_{\rm A} = \frac{1}{7} V \left(4 + 3e^2 \right)$
			[5]			1
11	(c)	If the collision is perfectly elastic $(e = 1)$ B is brought to	B1	3.5a	oe correct statement	
	(ii)	rest by the second collision and A is moving with speed				
		V (which is the situation before the first collision)				
			[1]			
12	(a)	PE = -mg(l + e) (while P is at rest)	B1	1.1	Where e is the extension in the string	Taking the horizontal
						through O as the
						reference level for
						zero GPE
		$EDE = \frac{12mge^2}{1}$	B 1	1.1		
		$EFE = \frac{1}{2l}$				
		6mgp ²	M1*	3.3	Conservation of energy with correct	
		$\frac{dmge}{l} - mg(l+e) = 0$			number of terms	
		$6a^2 - a^2 - 0$	M1dep*	1.1a	Solving three-term quadratic in e	
		(3e + 1)(2e + 1) = 0	· ··· I		G	
		(3e+i)(2e-i)=0				
		$e = \stackrel{l}{_} \Rightarrow$ length of string is $\stackrel{l}{_} l + l = \stackrel{3}{_} l$	A1	2.2a	AG	
		2 2 2				
			[5]			

Question		n	Answer	Marks	AOs	Guidance	
12	(b)		$mg - T = m\ddot{x}$	M1	3.3	N2L vertically with correct number of	
						terms	
			$mg - \frac{12mgx}{mg} = m\ddot{x}$	M1	3.4	Use of Hooke's law and substitute for T	
						in N2L	
			$\ddot{x} + \frac{12g}{x} = g$ so $\ddot{x} + \omega^2 x = g$ where $\omega^2 = \frac{12g}{x}$	A1	2.2a	AG	
			l l l				
			~	[3]			
12	(c)		$x = y + \frac{g}{2} \Rightarrow y + \omega^2 y = 0$	M1	1.1	Use given substitution to form	
			ω^2			differential equation in y	
			$y = A\cos\omega t + B\sin\omega t$	A1ft	1.2	Correctly solves their differential	
						equation in y	
			$x = A\cos\omega t + B\sin\omega t + \frac{g}{2}$	Al	1.1	oe e.g. $x = A\cos\omega t + B\sin\omega t + \frac{l}{2}$	
			ω^2			12	
			$t = 0, x = 0 \Longrightarrow A = -\frac{g}{2}$	M1	3.4	Use correct initial conditions in their	
			ω^2			expression for <i>x</i>	
			$\frac{1}{\pi}mv^2 = mgl$	M1*	3.1b	Use conservation of energy to find speed	
			Z P			$v_{\rm P}$ of P at time $t = 0$	
			$v_{\rm P} = \sqrt{2gl}$	A1	1.1		
			$r = \frac{1}{2} r = $	M1dep*	3.4	Use initial speed in an expression for \dot{x}	
			$t=0, x=\sqrt{2gt} \Rightarrow B=\frac{\sqrt{2gt}}{\omega}$				
			g Izgi g	Al	1.1		
			$x = -\frac{1}{\cos \omega t} + \frac{\sqrt{2}}{\cos \omega t} \sin \omega t + \frac{1}{2}$			oe e.g. $x = \frac{1}{12} \left(1 - \cos \omega t + 24 \sin \omega t \right)$	
				M1	3 1h	12	Dependent on all
			$\frac{1}{12}\left(1 - \cos \omega t + 2\mathbf{A} \sin \omega t\right) = 0$	TAT T	5.10	Sets $x = 0$ and replaces $\omega^2 = \frac{-\infty}{l}$	previous M marks
			12°	A1	2 20	k need not be stated explicitly	
			$\cos\omega t - \sqrt{24} \sin\omega t = 1$ SO $\kappa = 24$		2.2d	A need not be stated explicitly	
				[10]			

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

