GCE

Further Mathematics B (MEI)

Y422/01: Statistics major

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
E	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Question		Answer	Marks	AOs	Guidance	
1	(a)	$\begin{aligned} & 34.711 \\ & \quad \pm 1.96 \\ & \quad \times \frac{1.53}{\sqrt{50}} \\ & =34.711 \pm 0.424 \text { or }(34.287,35.135) \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.1 \\ & 3.3 \\ & 1.1 \\ & 3.4 \end{aligned}$	Allow 34.29 to 35.13 or 35.14	
1	(b)	50 is a sufficiently large sample to apply the CLT which states that for large samples the distribution of the sample mean is approximately Normal	$\begin{aligned} & \mathrm{B} 1 * \\ & * \mathbf{B 1} \\ & {[2]} \end{aligned}$	$\begin{gathered} \hline 2.2 b \\ 2.4 \end{gathered}$	For mention of central limit theorem For full statement (including CLT)	No credit if CLT not mentioned

Question		Answer	Marks	AOs	Guidance	
2	(a)	$\begin{aligned} \mathrm{P}(X=0) & =\frac{6}{6} \times \frac{1}{6} \times \frac{1}{6} \\ & =\frac{1}{36} \end{aligned}$	M1 A1 [2]	$\begin{gathered} 3.1 \mathrm{a} \\ 1.1 \end{gathered}$	AG	Allow M1 for $\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}$
2	(b)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	For heights For axes and labels	Roughly correct but must have linear scale Do not allow just P on vertical axis
2	(c)	The distribution has (slight) negative skew	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	1.1	Allow 'roughly symmetrical' or 'unimodal'	Not 'Normal distribution'
2	(d)	DR $\begin{aligned} \mathrm{E}(X) & =0 \times \frac{1}{36}+1 \times \frac{5}{36}+2 \times \frac{2}{9}+3 \times \frac{1}{4}+4 \times \frac{2}{9}+5 \times \frac{5}{36} \\ & =\frac{105}{36}=\frac{35}{12}=2.9166 \ldots \\ \mathrm{E}\left(X^{2}\right) & =0^{2} \times \frac{1}{36}+1^{2} \times \frac{5}{36}+2^{2} \times \frac{2}{9}+3^{2} \times \frac{1}{4}+4^{2} \times \frac{2}{9}+5^{2} \times \frac{5}{36} \\ & =\frac{371}{36}=10.3055 \ldots \end{aligned}$ $\begin{aligned} \operatorname{Var}(X) & =10.3055 \ldots-(2.9166 \ldots)^{2} \\ & =\frac{259}{144}=1.80 \quad(1.7986 \ldots) \end{aligned}$	M1 A1 M1 M1 A1 [5]	$\begin{gathered} 1.1 \mathrm{a} \\ 1.1 \\ 1.1 \\ 1.2 \\ 1.1 \end{gathered}$	Allow fraction or decimal form	
2	(e)	Variance $=30^{2} \times 1.7986 \ldots=1619\left(\right.$ pence $\left.{ }^{2}\right)$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	1.1		
2	(f)	Average amount received $=30 \times 2.916 \ldots=87.5$ $k-87.5=12.5 \Rightarrow k=100$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 1.1 \end{gathered}$		

Question		Answer	Marks	AOs	Guidance	
3	(a)	$\begin{aligned} & \text { Using } \mathrm{B}(50,0.04) \\ & \mathrm{P}(X=2)=0.276 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 1.1 \end{aligned}$	BC	
3	(b)	$0.96^{9} \times 0.04=0.0277$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1		Allow 0.028
3	(c)	$0.96{ }^{20}=0.442$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1		
3	(d)	Expected value for one misunderstood $=\frac{1}{0.04}=25$ Because geometric For 3 misunderstood expected number $=25+25+25$ $=75$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & \text { E1 } \\ & {[3]} \end{aligned}$	2.1 2.4 1.1		Must quote probabilities to get full marks
3	(e)	Require $\mathrm{P}(2$ misunderstood in first 59) $\times 0.04$ so using $\mathrm{B}(59,0.04)$ gives $\mathrm{P}(X=2)=0.267$ $0.267 \times 0.04=0.0107$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{gathered} \hline \text { 3.1a } \\ \text { 2.2a } \\ 1.1 \end{gathered}$	For identifying required probability Use of correct binomial BC	

Question		Answer	Marks	AOs	Guidance	
5	(a)	$\begin{aligned} & \text { Two A and one } \mathrm{B} \sim \mathrm{~N}\left(2 \times 3.9+7.8,2 \times 0.32^{2}+0.41^{2}\right) \\ & \mathrm{N}(15.6,0.3729) \\ & \mathrm{P}(\geq 16)=0.256 \quad(0.25622 \ldots) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & \\ & 1.1 \\ & 3.4 \end{aligned}$	For N and mean For variance BC	Allow if N stated anywhere in answer SOI
5	(b)	$\begin{aligned} & \text { Four } \mathrm{B}-\text { one } \mathrm{C} \sim \mathrm{~N}\left(4 \times 7.8-30.2,4 \times 0.41^{2}+0.64^{2}\right) \\ & \mathrm{N}(1,1.082) \\ & \mathrm{P}(\text { within } 1 \text { unit })=0.473 \quad(0.47274 \ldots) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	$\begin{aligned} & 3.3 \\ & 1.1 \\ & 3.4 \end{aligned}$	For N and mean For variance BC	Allow -1 for mean Allow if N stated anywhere in answer SOI
5	(c)	DR $\mathrm{H}_{0}: \mu=30.2 \quad \mathrm{H}_{1}: \mu \neq 30.2$ where μ is the population mean capacitance Sample mean $=29.96$ $\begin{aligned} \text { Est. population variance } & =\frac{1}{9}\left(8981.0-\frac{299.6^{2}}{10}\right) \\ & =0.5538 \end{aligned}$ Test statistic $=\frac{29.96-30.2}{\sqrt{\frac{0.5538}{10}}}$ $=-1.020$ Refer to t_{9} Critical value (2-tailed) at 5% level is 2.262 $-1.020>-2.262$ so not significant (do not reject H_{0}) Insufficient evidence to suggest that the capacitance of the batch is different from 30.2	B1 B1 B1 M1 A1 M1 A1 M1 A1 M1 E1 [11]	$\begin{gathered} 3.3 \\ 1.2 \\ 1.1 \\ 1.1 \\ 1.1 \\ 3.3 \\ \\ \hline 1.1 \\ 3.4 \\ 1.1 \\ \hline 2.2 b \\ 3.5 a \end{gathered}$	Hypotheses in words only must include "population" For definition in context FT their mean and/or sd BC No FT if not t_{9} Or $1.020<2.262$	Or sd $=0.7442$ Or $\mathrm{P}(t<-1.020)=0.1672$ Or $0.1672>0.025$ Answer must be in context

Question		Answer	Marks	AOs	Guidance	
6	(a)	$\begin{aligned} & \text { Mean }=1.725 \\ & \text { Variance }=1.768 \end{aligned}$ The variance is reasonably close to the mean so this does support the suitability of a Poisson model	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{gathered} 1.1 \\ 1.1 \\ 2.2 \mathrm{~b} \end{gathered}$	Condone 1.759 (using divisor n)	$\text { Or } \frac{345}{200}$ Dep on mean and variance correct
6	(b)	$\begin{aligned} \text { Cell C3 } & =0.3106 \\ \text { Cell D3 } & =62.1124 \\ \text { Cell E3 } & =\frac{(65-62.1224)^{2}}{62.1224} \\ & =0.1342 \end{aligned}$	B1 B1FT M1FT A1 [4]	$\begin{gathered} \hline 3.4 \\ 2.2 \mathrm{a} \\ 1.1 \mathrm{a} \\ 1.1 \end{gathered}$	$200 \times$ their C3 (62.12 if use 0.3106)	Do not allow 0.311 Allow 62.2 from 0.311 Must show working to get M1 Allow 0.126 from 62.2
6	(c)	Because otherwise some expected frequencies would be less than 5 so too small for the test to be valid	$\begin{aligned} & \text { E1 } \\ & {[1]} \\ & \hline \end{aligned}$	3.5b	For 'less than 5 so invalid'	
6	(d)	H_{0} : Poisson model is a good fit H_{1} : Poisson model is not a good fit $X^{2}=2.43$ Refer to χ_{5}^{2} Critical value at 5% level $=11.07$ $2.43<11.07$ so result is not significant There is insufficient evidence to suggest that the $\mathrm{Po}(1.7)$ model is not a good fit.	$\begin{gathered} \text { B1 } \\ \text { B1FT } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	2.5 1.1 3.4 1.1 1.1 2.2b	FT Their value of E3 For degrees of freedom $=5$ soi For comparison with critical value Conclusion in context	Allow M1 (not A1) for comparison with any chi squared critical value eg 1.145 or 5.991

Question			Answer	Marks	AOs	Guidance	
7	(a)		The pairing will eliminate any differences in grip strengths between different people and so will only compare the grip strengths of the dominant and nondominant hands	$\begin{aligned} & \mathrm{E} 1 \\ & \text { E1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.2 \mathrm{~b} \\ & 2.2 \mathrm{~b} \end{aligned}$	Give 1 mark for any valid comment For 2 marks must include pairing	
7	(b)		The parent population of differences must be Normally distributed	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.2 \end{aligned}$	For Normally distributed For full answer including 'differences'	
7	(c)		It does because the confidence interval contains 2	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \\ & \hline \end{aligned}$	3.5a		
7	(d)	(i)	$\begin{aligned} & \text { Sample mean difference }=2.39 \\ & 0.45=1.96 \times \frac{\mathrm{SD}}{\sqrt{100}} \\ & \text { Sample } \mathrm{SD}=2.30 \quad(2.2959 \ldots) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.1 \\ 3.1 \mathrm{~b} \\ 1.1 \end{gathered}$		
7	(d)	(ii)	The sample must be random since only a random sample enables proper inference about the population to be undertaken	B1 B1 [2]	$\begin{gathered} \hline \text { 3.2b } \\ 2.4 \end{gathered}$	Do not allow eg a random sample is less likely to be biased	

Question			Answer	Marks	AOs	Guidance	
8	(a)	(i)	Predicted $=50.5$	$\begin{gathered} \text { B1 } \\ {[1]} \end{gathered}$	1.1		Do not allow answer to more than 2dp
8	(a)	(ii)	Although this point lies within the data (interpolation), the points do not lie too close to the line and the value of r^{2} is not too close to 1 so the estimate is only moderately reliable	B1 B1 [2]	$\begin{aligned} & \hline 2.2 a \\ & 3.5 b \end{aligned}$	Mention of 1 of the three points Mention of at least 2 points with correct conclusion	
8	(a)	(iii)	Coordinates (47.3, 48.7)	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1		
8	(a)	(iv)	This is the point with coordinates which are the means of the x - and y-values respectively	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	1.1	Allow 'This is the centroid'	
8	(b)	(i)	The scatter diagram is very roughly elliptical and so the distribution may be bivariate Normal	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 1 \\ & {[2]} \end{aligned}$	$\begin{gathered} \hline 3.5 \mathrm{a} \\ 2.4 \end{gathered}$		
8	(b)	(ii)	$\begin{aligned} S_{v t} & =3886.53-\frac{1}{20} \times 80.37 \times 970.86 \quad(=-14.87 \ldots) \\ S_{t t} & =324.71-\frac{1}{20} \times 80.37^{2} \quad(=1.743 \ldots) \\ S_{v v} & =47829.24-\frac{1}{20} \times 970.86^{2} \quad(=700.78 \ldots) \\ r & =\frac{S_{t v}}{\sqrt{S_{t t} S_{v v}}}=\frac{-14.87}{\sqrt{1.743 \times 700.78}} \\ & =-0.4255 \end{aligned}$	M1 M1 M1 A1 [4]	1.1a 1.1 3.3 1.1	Numerical evaluations are not required at this stage For either $S_{t t}$ or $S_{v v}$ For general form including sq. root BC	
8	(b)	(iii)	$\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho<0$ where ρ is the population pmcc between t and v For $n=20$, the 5% critical value is 0.3783 Since $\|-0.4255\|>0.3783$ the result is significant, so there is sufficient evidence to reject H_{0} There is sufficient evidence at the 5% level to suggest that there is negative correlation between marathon time and $\mathrm{VO}_{2 \text { max }}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \\ \text { A1FT } \\ \text { [5] } \end{gathered}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \\ & 3.4 \\ & 1.1 \\ & \\ & \hline 2.2 b \end{aligned}$	For both hypotheses For defining ρ For correct critical value For comparison and conclusion Allow -0.4255 <-0.3783 FT for conclusion in words	Do not allow r in place of ρ Hypotheses in words only get B1 unless population mentioned Answer must be in context

Question		Answer	Marks	AOs	Guidance	
9	(a)	$\begin{aligned} \mathrm{P}\left(X>\frac{1}{2} n\right) & =\frac{\frac{1}{2}(n+1)}{2 n+1} \\ & =\frac{n+1}{2(2 n+1)} \end{aligned}$	M1 M1 A1 [3]	$\begin{gathered} \text { 3.1a } \\ 1.1 \\ 1.1 \end{gathered}$	For correct denominator For correct numerator	
9	(b)	$\begin{aligned} & (2 n+1) \text { values so } \begin{aligned} \operatorname{Var}(X) & =\frac{1}{12}\left[(2 n+1)^{2}-1\right] \\ \text { Var of sum of } 10 \text { values } & =10 \times \frac{1}{12}\left[(2 n+1)^{2}-1\right] \\ & =\frac{10}{3} n^{2}+\frac{10}{3} n \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{gathered} 3.1 \mathrm{a} \\ 1.1 \\ 1.1 \end{gathered}$		Allow M1 for $10 \times$ any attempt at variance

10	(a)	$\begin{aligned} & \mathrm{P}(T \leq 56)=\frac{104}{500}=0.208 \\ & \mathrm{P}(T>61)=1-\frac{253}{500}=0.494 \end{aligned}$	B1 B1 [2]	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$		
10	(b)	$\begin{aligned} & \mathrm{E}(T)=25+28+5+3=61 \\ & \begin{aligned} \operatorname{Var}(T) & =\frac{1}{12} \times 10^{2}+\frac{1}{12} \times 6^{2}+4+16 \\ \quad & =\frac{94}{3} \quad(=31.333) \end{aligned} \\ & W \sim \mathrm{~N}(61,31.333) \text { so } \mathrm{P}(W \leq 56)=0.186 \\ & \mathrm{P}(W>61)=0.5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[5]} \end{aligned}$	$\begin{gathered} \hline \text { 3.1a } \\ 1.1 \\ 1.1 \\ 3.3 \\ 1.1 \end{gathered}$	BC	
10	(c)	Because the mean is 61 and both the uniform and Normal distributions are symmetrical so you would expect the simulated probability to be very close to 0.5	$\begin{aligned} & \mathrm{E} 1 \\ & \text { E1 } \\ & {[2]} \end{aligned}$	$\begin{gathered} \hline 2.2 \mathrm{~b} \\ 2.4 \end{gathered}$	For second mark must mention symmetrical	

Question		Answer	Marks	AOs	Guidance	
11	(a)	$\begin{aligned} & \mathrm{F}(3)=1 \Rightarrow \int_{0}^{2} a x^{2} \mathrm{~d} x+\int_{2}^{3} b(3-x)^{2} \mathrm{~d} x=1 \\ & \Rightarrow \frac{8}{3} a+\frac{1}{3} b=1 \\ & \mathrm{E}(X)=2 \Rightarrow \int_{0}^{2} a x^{3} \mathrm{~d} x+\int_{2}^{3} b x(3-x)^{2} \mathrm{~d} x=2 \\ & \Rightarrow 4 a+\frac{3}{4} b=2 \\ & a=\frac{1}{8}, b=2 \end{aligned}$	M1 A1 M1 A1 A1 [5]	3.1a 1.1 3.1a 1.1 1.1		
11	(b)	$\begin{aligned} & \mathrm{F}(2)=\int_{0}^{2} \frac{1}{8} x^{2} \mathrm{~d} x=\frac{1}{3} \\ & \Rightarrow \int_{2}^{m} 2(3-x)^{2} \mathrm{~d} x=\frac{1}{6} \\ & \Rightarrow-\frac{2}{3}(3-m)^{3}+\frac{2}{3}=\frac{1}{6} \\ & \Rightarrow(3-m)^{3}=\frac{3}{4} \Rightarrow m=2.09 \quad(2.0914 \ldots) \end{aligned}$	B1 M1 A1 [3]	$\begin{gathered} 3.1 \mathrm{a} \\ 2.2 \mathrm{a} \\ \\ 1.1 \end{gathered}$	Or $m=3-\sqrt[3]{\frac{3}{4}}$	
11	(c)	$\begin{aligned} & \text { Using } \mathrm{N}\left(2, \frac{0.2}{50}\right) \\ & \mathrm{N}(2,0.004) \\ & \text { Estimate } \mathrm{P}(\text { Mean }<1.9)=0.0569 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 3.1a } \\ \text { 1.1a } \\ 1.1 \end{gathered}$	For use of Normal distribution For correct values	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

