

GCE

Further Mathematics B (MEI)

Y435/01: Extra pure

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
√and ≭	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0,M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Q	uestio	n	Answer	Marks	AO	Guid	dance
1	(a)		DR $z = f(2, y) = 8 + 4y - 2y^2$	M1	1.1	Deriving correct equation of graph of section.	
			= $10 - 2(y-1)^2 \Rightarrow \max \text{ at } (1, 10) \text{ or } (2, 1, 10)$	A1	1.1	Finding TP by completing the square, use of " $-b/2a$ ", differentiation or mid-point between roots.	Working must be shown.
				B1	1.1		Condone incorrect variable names on axes (eg <i>x-y</i> for <i>y-z</i>).
			Crossing z-axis at 8 , y-axis at $1 \pm \sqrt{5}$ and showing $(1,10)$ as a max	A1	1.1	Coordinates of intercepts and max must be shown on graph or apparent in working. Allow decimal values (awrt –1.2 and 3.2) for the <i>y</i> -intercepts.	z intercept must be shown as positive and max in 1st quadrant. However, scale is unimportant except that the negative y-intercept must be closer to O than the positive one.
				[4]			_

(b)	$\frac{\partial z}{\partial x} = 3x^2 + 2xy$	B1	1.1		
	$\frac{\partial z}{\partial y} = x^2 - 4y$	B1	1.1		
	$\frac{\partial z}{\partial x} = 0$ $\Rightarrow 3x^2 + 2xy = 0$ $\Rightarrow \text{ either } x = 0 \text{ or } x = -\frac{2}{3}y \text{ or } y = -\frac{3}{2}x$	M1	1.1	Setting a partial derivative to 0 and deriving condition(s) on <i>x</i> and/or <i>y</i> .	Or $\frac{\partial z}{\partial y} = 0$ $\Rightarrow y = \frac{1}{4}x^2 \text{ or } x^2 = 4y \text{ or } x = \pm 2\sqrt{y}$
	$\frac{\partial z}{\partial y} = 0, \ x = -\frac{2}{3}y \Rightarrow 4y = \frac{4}{9}y^2 \Rightarrow y = 9$	M1	1.1	Substituting condition into other partial derivative equation to derive a non-zero value for x or y . $\frac{\partial z}{\partial y} = 0, \ y = -\frac{3}{2}x$ $\Rightarrow x^2 + 6x = 0 \Rightarrow x = -6$	$\frac{\partial z}{\partial x} = 0, \ y = \frac{1}{4}x^2$ $3x^2 + \frac{1}{2}x^3 = 0 \Rightarrow x = -6$ or $\frac{\partial z}{\partial x} = 0, \ x = \pm 2\sqrt{y}$ $12y \pm 4y^{\frac{3}{2}} = 0 \Rightarrow y = 9$
	x = -6 z = -54 so $(-6, 9, -54) or x = 0 \Rightarrow y = 0 so (0, 0, 0)$	A1 A1 A1	1.1 1.1 1.1	From correct working only. Derived from both $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$ (could be by observation).	y = 9 If an extra SP is presented then A1 can be awarded for either SP correct and then A0.

2	(a)	From Lagrange's Theorem the order of any subgroup of G must be a factor of 8 and 6 is not a factor of 8	B1	2.4	Or "order of any subgroup of <i>G</i> (or an group of order 8) must be 1, 2 or 4 (or 8)" or "order of any subgroup must be a factor of the order of the group and 6 is not a factor of 8".	If referenced, Lagrange's Theorem does not have to be quoted provided that it is applied. So B1 for eg "6 is not a factor of 8 so by Lagrange's Theorem there can be no subgroup of G of order 6" but B0 for eg "By Lagrange's Theorem there can be no subgroup of G of order 6".
2	(b)	g^2 (or g^6) g^6 (or g^2) and no other	B1 B1 [2]	2.2a 2.2a		May see eg gg or g°g used here and/or throughout. Allow any multiplicative notation and any symbol for a binary operation.
2	(c)	$e \leftrightarrow 0$ $g \leftrightarrow 1, g^2 \leftrightarrow 2, g^3 \leftrightarrow 3, g^4 \leftrightarrow 4, g^5 \leftrightarrow 5, g^6 \leftrightarrow 6, g^7 \leftrightarrow 7$ $g \leftrightarrow 3, g^2 \leftrightarrow 6, g^3 \leftrightarrow 1, g^5 \leftrightarrow 7, g^6 \leftrightarrow 2, g^7 \leftrightarrow 5$ $g \leftrightarrow 5, g^2 \leftrightarrow 2, g^3 \leftrightarrow 7, g^5 \leftrightarrow 1, g^6 \leftrightarrow 6, g^7 \leftrightarrow 3$ and $g \leftrightarrow 7, g^2 \leftrightarrow 6, g^3 \leftrightarrow 5, g^5 \leftrightarrow 3, g^6 \leftrightarrow 2, g^7 \leftrightarrow 1$	B1 B1 B1 B1	2.2a 2.2a 2.2a 2.2a	Only needs to be seen once. Any one. Any other. Other two. Ignore repeats.	g^4 ↔ 4 does need not be seen again g^4 ↔ 4 does need not be seen again
		Alternative method: $e \leftrightarrow 0$ Either $g \leftrightarrow 1$ or $g \leftrightarrow 3$ or $g \leftrightarrow 5$ or $g \leftrightarrow 7$ $g \leftrightarrow 1, g^2 \leftrightarrow 2, g^3 \leftrightarrow 3, g^4 \leftrightarrow 4, g^5 \leftrightarrow 5, g^6 \leftrightarrow 6, g^7 \leftrightarrow 7$ $g \leftrightarrow 3, g^2 \leftrightarrow 6, g^3 \leftrightarrow 1, g^5 \leftrightarrow 7, g^6 \leftrightarrow 2, g^7 \leftrightarrow 5$ and $g \leftrightarrow 5, g^2 \leftrightarrow 2, g^3 \leftrightarrow 7, g^5 \leftrightarrow 1, g^6 \leftrightarrow 6, g^7 \leftrightarrow 3$ and $g \leftrightarrow 7, g^2 \leftrightarrow 6, g^3 \leftrightarrow 5, g^5 \leftrightarrow 3, g^6 \leftrightarrow 2, g^7 \leftrightarrow 1$	B1 M1 A1 A1		Only needs to be seen once Giving all 4 possible isomorphism options for any generator of G (ie g, g^3, g^5 or g^7) Completing the specification of any one isomorphism Other three. Ignore repeats.	g^4 ← 4 does need not be seen again
			[4]			

3	(a)	$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 3 & 0 \\ 0 & 2 - \lambda & 2 \\ 1 & 3 & 4 - \lambda \end{vmatrix}$ $= (3 - \lambda)[(2 - \lambda)(4 - \lambda) - 2 \times 3] - 3(0 - 2 \times 1) \text{ oe}$	M1 M1	1.1a	Formation of appropriate determinant soi. Attempt to expand determinant.	May see eg expansion by 1st col:
		$= (3-\lambda)[(2-\lambda)(4-\lambda)-2\times 3]-3(0-2\times 1) \text{ oc}$	IVII	1.1	Allow one slip.	(3- λ)[(2- λ)(4- λ)-6]+1(6-0) Or other formulation eg: ((3- λ)(2- λ)(4- λ)+6+0) -(0+6(3- λ)+0)
		$=-\lambda^3+9\lambda^2-20\lambda+12=0$	A1 [3]	1.1	Must be an equation. ISW.	
3	(b)	1, 2 and 6 substituted into (a) equation to verify	B1 [1]	1.1	eg checking trace is insufficient.	
3	(c)	3a + 3b = a or 2a or 6a and $2b + 2c = b \text{ or } 2b \text{ or } 6b$ and $a + 3b + 4c = c \text{ or } 2c \text{ or } 6c$ $\lambda = 1: 2a = -3b, b = -2c$ or $\lambda = 2: c = 0, a = -3b$ or $\lambda = 6: a = b, c = 2b$	M1	1.1	Correctly forming 3 equations in 3 unknowns for one of their eigenvalues. May see explicit choice of eg $c = 1$ to form 3 equations in 2 unknowns. Attempt to solve equations for at least one of their eigenvalues leading to two unknowns in terms of 3^{rd} .	Or formation of appropriate $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 4 - \lambda & -4 \\ 0 & -1 & 3 - \lambda \end{vmatrix}$ Attempt to expand determinant (might be in terms of λ) eg $\begin{pmatrix} 8 - 7\lambda + \lambda^2 \\ 6 - 2\lambda \\ 2 \end{pmatrix}$ Can be inferred by $2 \text{ correct coefficients.}$
		$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	A1	1.1	or any non-zero multiple.	
		$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	A1	1.1	or any non-zero multiple.	
			[4]			

3	(4)	(2 2 1)	M1	3.1a	Forming matrix of their	
3	(d)	$\begin{bmatrix} 3 & -3 & 1 \\ 2 & 1 & 1 \end{bmatrix}$	IVII	3.1a	eigenvectors, E.	
		$\begin{bmatrix} -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$			eigenvectors, E.	
		$\begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$				
		$(3 -3 1)^{-1} (-2 -6 4)$	A1FT	3.1a	BC. Finding inverse of their	May be in decimal form:
		$ \begin{pmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}^{-1} = \frac{1}{10} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} $ oe			matrix of eigenvectors.	(-0.2 -0.6 0.4)
		$\begin{bmatrix} -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} = \frac{-10}{10} \begin{bmatrix} -3 & -3 & 3 \\ 1 & 2 & 2 \end{bmatrix}$ be				$\begin{bmatrix} -0.5 & -0.5 & 0.5 \end{bmatrix}$
						$ \begin{bmatrix} -0.5 & -0.5 & 0.5 \\ 0.1 & 0.3 & 0.3 \end{bmatrix} $
		$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} $	B 1	3.1a	Matrix of eigenvalues must be	
		$\begin{vmatrix} 0 & 2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 2^n & 0 \end{vmatrix}$			consistent with matrix of	
		$\begin{bmatrix} 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} 0 & 0 & 6^n \end{bmatrix}$			eigenvectors. Allow 1 ⁿ .	
			N/1	21-		
		$ \begin{pmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} \frac{1}{10} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} $	M1	3.1a	Forming $\mathbf{E} \mathbf{\Lambda}^n \mathbf{E}^{-1}$. Can be awarded	
		$\begin{vmatrix} -2 & 1 & 1 & 0 & 2^n & 0 & \frac{1}{10} & -5 & -5 & 5 \end{vmatrix}$			if Λ^n incorrect or uncalculated but	
		$(1 \ 0 \ 2)(0 \ 0 \ 6^n)^{10}(1 \ 3 \ 3)$			eigenvectors must be in same	
					order as eigenvalues.	
		$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & c & t \end{pmatrix}$	M1	1.1	Proper attempt to multiply either	$(2 \ 2 \ 1)(1 \ 0 \ 0)$
		$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \end{bmatrix} \begin{bmatrix} -2 & -6 & 4 \\ 5 & 5 & 5 \end{bmatrix}$			the first two or the last two (of 3)	$\begin{bmatrix} 3 & -3 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \end{bmatrix}$
		$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} = $			in the correct order (with or	$\begin{vmatrix} -2 & 1 & 1 \\ 1 & 0 & 2 \end{vmatrix} \begin{vmatrix} 0 & 2^n & 0 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			without $\frac{1}{10}$).	$\begin{pmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} =$ or $\begin{pmatrix} 3 & -3 \times 2^n & 6^n \\ -2 & 2^n & 6^n \\ 1 & 0 & 2 \times 6^n \end{pmatrix}$
		$\begin{pmatrix} -2 & -6 & 4 \end{pmatrix}$			10 ′	or $\begin{pmatrix} 3 & -3 \times 2^n & 6^n \end{pmatrix}$
		$ \begin{bmatrix} -2 & -6 & 4 \\ -5 \times 2^n & -5 \times 2^n & 5 \times 2^n \end{bmatrix} $				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{bmatrix} -3 \times 2 & -3 \times 2 & 3 \times 2 \\ 6^n & 3 \times 6^n & 3 \times 6^n \end{bmatrix}$				$\begin{bmatrix} -2 & 2^n & 6^n \end{bmatrix}$
		$\begin{pmatrix} 6^n & 3 \times 6^n & 3 \times 6^n \end{pmatrix}$				$\begin{pmatrix} 1 & 0 & 2 \times 6^n \end{pmatrix}$
		(3 -3 1)(-2 -6 4)	A1	1.1	or	,
		$ \frac{1}{10} \begin{pmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} -2 & -6 & 4 \\ -5 \times 2^n & -5 \times 2^n & 5 \times 2^n \\ 6^n & 3 \times 6^n & 3 \times 6^n \end{pmatrix} = $			$(3 -3 \times 2^n - 6^n)(-2 -6 -4)$	
		$\begin{vmatrix} 10 \\ 1 & 0 & 2 \end{vmatrix} \begin{vmatrix} 6^n & 3 \times 6^n & 3 \times 6^n \end{vmatrix}$			$\begin{vmatrix} 1 \\ -2 \end{vmatrix} = 2^n \qquad 6^n \qquad \begin{vmatrix} -2 & -5 & 5 \\ -5 & -5 & 5 \end{vmatrix} = $	
		$\begin{pmatrix} -6+15\times2^n+6^n & -18+15\times2^n+3\times6^n & 12-15\times2^n+3\times6^n \end{pmatrix}$			$\frac{1}{10} \begin{pmatrix} 3 & -3 \times 2^n & 6^n \\ -2 & 2^n & 6^n \\ 1 & 0 & 2 \times 6^n \end{pmatrix} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} =$	
		$\frac{1}{10} \begin{pmatrix} -6+15 \times 2^{n} + 6^{n} & -18+15 \times 2^{n} + 3 \times 6^{n} & 12-15 \times 2^{n} + 3 \times 6^{n} \\ 4-5 \times 2^{n} + 6^{n} & 12-5 \times 2^{n} + 3 \times 6^{n} & -8+5 \times 2^{n} + 3 \times 6^{n} \\ -2+2 \times 6^{n} & -6+6^{n+1} & 4+6^{n+1} \end{pmatrix}$,	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			etc.	
)			Condone 6×6^n unsimplified.	
			[6]			
ь			LΔ			

4	(a)	CF: $u_{n+2} - 3u_{n+1} - 10u_n = 0$ and $u_n = \alpha r^n$	M1	1.1a	Deriving the auxiliary equation	
-	()	$\Rightarrow r^2 - 3r - 10 = 0$	1,11	1,1,1	(allow one sign error).	
		$\Rightarrow r = 5 \text{ or } r = -2$	A1FT	1.1	FT correct roots of their AE to	Condone missing brackets around
		CF is $\alpha 5^n + \beta (-2)^n$	7111 1	1.1	form CF (do not ISW).	-2 unless misused.
		Cr is as + p(-2)			Torm or (do not is w).	2 diffess misased.
		Trial function: $u_n = an + b$	B1	1.1a	Correct form.	Other forms eg $an^2 + bn + c$ are
						allowable provided $a = 0$ derived.
		a(n+2)+b-3[a(n+1)+b]-10(an+b)	M1	1.1	Substituting their form correctly	-
		=24n-10			into recurrence relation.	
		$\Rightarrow (a-3a-10a)=24$	M1	1.1	Deriving two equations in a and b	
		and $2a + b - 3a - 3b - 10b = -10$			using a correct method (eg	
					comparing coefficients)	
		a = -2 and $b = 1$ so GS is	A1	1.1	Full form of GS, including $u_n =$,	cao
		$u_n = 1 - 2n + \alpha 5^n + \beta (-2)^n$			must be seen.	
			[6]			
4	(b)	Either: $n = 0 = 1 + \alpha + \beta = 6$	M1	1.1	Substituting $n = 0$ or $n = 1$ in their	This mark can be awarded if one of
		or: $n = 1 \Rightarrow 1 - 2 + 5\alpha - 2\beta = 10$			GS to derive an equation in $\alpha \& \beta$.	their equations is wrong.
		$\alpha + \beta = 5$ and $5\alpha - 2\beta = 11$	M1	1.1	Deriving 2 equations from	Attempt to solve can be implied by
		$=> 2\alpha + 2\beta = 10 => 7\alpha = 21$			substituting $n = 0 \& 1$, at least one	correct answer or valid algebra but
					correct for their GS, and	incorrect answer with no working
					attempting to solve.	M0
		$\alpha = 3$ and $\beta = 2$ so	A1FT	1.1	FT from their GS. Allow non-	
		$u_n = 1 - 2n + 3 \times 5^n + 2 \times (-2)^n$			embedded values if GS seen in (a).	
					Do not ISW.	
\vdash			[3] B1	2.5	D.4	
4	(c)	From recurrence relation:	RI	2.5	Both expressions properly seen (ie	
		$u_2 = 3u_1 + 10u_0 + 24 \times 0 - 10$			it must be clear that candidates are	
		$= 3 \times 10 + 10 \times 6 - 10 = 80$			correctly using two different	
		From particular solution:			methods to find u_2).	
		$u_2 = 1 - 2 \times 2 + 3 \times 5^2 + 2 \times (-2)^2$				
		= 1 - 4 + 75 + 8 = 80	F41			
			[1]			

4	(d)	$v_n = \frac{1-2n}{p^n} + 3\left(\frac{5}{p}\right)^n + 2\left(\frac{-2}{p}\right)^n$	M1	3.1a	Writing v_n in a form which enables the limit to be deduced.	
		If $ p < 5$ then $v_n \to \infty$ while if $ p > 5$ then $v_n \to 0$ as $n \to \infty$	B1	2.1	Convincing argument. FT for GS of the form: $c - dn + \alpha s^n + \beta t^n$ (where $ s > t $).	At most one of c and d is 0. s and t are not equal and both not 0. Both α and β are not 0. Either $ s > 1$ or $ t > 1$ (or both).
		$ \begin{array}{c} p = 5 \\ q = 3 \end{array} $	A1 A1 [4]	2.2a 2.2a	FT. $p = s$ (must be a number). FT. $q = \alpha$ (must be a number).	A0 If $s = -t$. A0 If $s = -t$. If M0 then SC2 for $p = 5$, $q = 3$.

$ \frac{\partial g}{\partial x} = 2x \text{ or } \frac{\partial g}{\partial y} = 2y \text{ or } \frac{\partial g}{\partial z} = 4z $ M1 3.1a $ g(x, y, z) = x^2 + y^2 + 2z^2 \text{ and surface is } g = 126. \text{ Finding one correct partial derivative.} $ Finding the normal vector. $ \nabla g = \begin{pmatrix} 2x \\ 2y \\ 4z \end{pmatrix} \text{ is the normal to the tangent plane at each point.} $ A1 3.1a $ \frac{g(x, y, z) = x^2 + y^2 + 2z^2 \text{ and surface is } g = 126. \text{ Finding the normal vector.} $ Finding the normal vector. $ \nabla g = \begin{pmatrix} -\frac{x}{2z} \\ -\frac{y}{2z} \\ -1 \end{pmatrix} $	$=\sqrt{63-\frac{1}{2}y^2-\frac{1}{2}x^2}$
correct partial derivative. but condone	, 2 2
but condone	, 2 2
A1 3.1a Finding the normal vector. $\begin{bmatrix} 2x \\ -\frac{x}{-x} \end{bmatrix}$: T .
Al $\begin{bmatrix} 2x \\ - \end{bmatrix}$	
$\nabla g = 2y $ is the normal to the tangent plane at $ 2z $	
$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	0.0
each point. $ vg - \frac{1}{2z} $	00
(2x)(0) M1 3.1a Dotting normal with normal to x-y	/
$\nabla g.\mathbf{n} = \begin{pmatrix} 2x \\ 2y \\ 4z \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 4z$ $\mathbf{M1}$ $\mathbf{3.1a}$ Dotting normal with normal to x-y plane.	
$\nabla g.\mathbf{n} = 2y . 0 = 4z$	
$\left(4z\right)\left(1\right)$	
(2x) (0) M1 2.2a Expressing dot product in other	
$\left \begin{array}{c c} & 2x & 0 & 0 \\ - & 2y & 0 & 0 \end{array} \right _{\cos \pi} \pi$ form using correct value of angle.	
$= \sqrt{(2x)^2 + (2y)^2 + (4z)^2} \times 1 \times \frac{1}{2}$ M1 Using $\cos \frac{\pi}{3} = \frac{1}{2}$, forming	
$= \sqrt{(2x)^2 + (2y)^2 + (4z)^2} \times 1 \times \frac{1}{2}$ Using $\cos \frac{\pi}{3} = \frac{1}{2}$, forming	
magnitude of both normals and	
$= 2\sqrt{x^2 + y^2 + 4z^2} \times \frac{1}{2} = \sqrt{126 - 2z^2 + 4z^2}$ magnitude of both normals and reducing to form $\sqrt{a + bz^2}$ oe or $\sqrt{a + bx^2}$	$+by^2$ (could see eg
$\frac{1}{2}$	
	8 oe after equating to
4z and elimi	nating z).
$\sqrt{126 + 2z^2} = 4z \Rightarrow 126 + 2z^2 = 16z^2$ A1 3.2a Not ± in final answer.	
$\Rightarrow 14z^2 = 126 \Rightarrow z^2 = 9 \Rightarrow z = \pm 3$	
$z \ge 0 \Rightarrow z = 3$ which is the equation of Π .	

6	(a)	$\frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots$ $< \frac{1}{(q+1)} + \frac{1}{(q+1)^2} + \frac{1}{(q+1)^3} + \dots$	M1		Correct statement that given series is less than an infinite GP (could be eg $\frac{1}{q} + \frac{1}{q^2} + \dots$ or $\frac{1}{3} + \frac{1}{3^2} + \dots$).	
		$=\frac{\frac{1}{q+1}}{1-\frac{1}{q+1}}$	A1	2.1	FT on their $\frac{a}{1-r}$.	
		$=\frac{1}{q+1-1}=\frac{1}{q}$	A1 [3]	2.1	AG. Intermediate step must be seen.	
6	(b)	$q \ge 1 \Rightarrow \frac{1}{a} \le 1$	M1	2.2a		
		But $S < \frac{1}{q} \Rightarrow S < 1$; clearly $S > 0$ so $0 < S < 1$ so	A1	2.2a	AG. $S > 0$ must be stated but need not be justified.	Since $0 < \frac{1}{q} \le 1$ and $S < \frac{1}{q}$ then
		$S otin \square$.	[2]			$0 < S < 1$ and $\therefore S \notin \square$.
6	(c)	$e = \sum_{r=0}^{\infty} \frac{1}{r!} = \frac{p}{q} \Rightarrow eq! = \sum_{r=0}^{\infty} \frac{q!}{r!} = p(q-1)!$	M1	3.1a	Multiplying both sides by $q!$ No need to mention $q \ge 1$ in this part.	
		$\therefore p(q-1)! = \sum_{r=0}^{\infty} \frac{q!}{r!} = \sum_{r=0}^{q} \frac{q!}{r!} + \sum_{r=q+1}^{\infty} \frac{q!}{r!}$	M1	2.1	Rewriting to a form in which it is clear that every term on both sides, except <i>S</i> , is an integer.	
		$=q!+q!+\frac{q!}{2!}++\frac{q!}{q!}+S$				
		$= 2q! + q(q-1) \times 3 + q(q-1) \times 4 + + 1 + S$ $p(q-1)! \text{ and } q! + q! + \frac{q!}{2!} + + 1 \text{ are all integers}$ but S is not which is a contradiction.	A1	3.2a	AG	

	Alternative Method: $S = \sum_{r=q+1}^{\infty} \frac{q!}{r!}$	M1	Expressing <i>S</i> as an infinite sum in terms of factorials.	
	$S = q! \sum_{r=0}^{\infty} \frac{1}{r!} - \sum_{r=0}^{q} \frac{q!}{r!} = q! e - q! - \sum_{r=1}^{q} \frac{q!}{r!}$	M1	Rewriting to a form in which it is clear that every term on both sides, except <i>S</i> , is an integer.	
	$= p(q-1)!-q!-\sum_{r=1}^{q} q(q-1)(q-r+1)$ since $1 \le r \le q$			
	p(q-1)!, q! and $q(q-1)(q-r+1)$ are all integers but S is not which is a contradiction.	A1	 AG	
		[3]		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

