GCE

Physics B

H557/01: Fundamentals of physics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ES	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
$\mathbf{L 3}$	Level 3
TE	Transcription error
NBOD	Benefit of doubtnot given
POT	Power of 10 error
\boldsymbol{A}	Omission mark
SF	Error in number of significant figures
\boldsymbol{S}	Correct response
\boldsymbol{S}	Wrong physics or equation

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Section A: MCQs

Section B

Question		Answer	Marks	Guidance
31	(a)	$\begin{aligned} & \text { method: } \\ & \begin{aligned} \text { diameter of atom } & =\text { Circumference/[no. atoms + spaces] } \\ & =\pi \mathrm{D} /[2 \times 19] \text { OR }=3.5 \pi / 38(\mathrm{~nm}) \end{aligned} \\ & \text { evaluation: } \quad=0.29 \text { OR } 0.3(\mathrm{~nm}) \end{aligned}$	L M	correct counting to 38 [atoms + spaces] value of 0.58 nm (from using radius instead of diameter in circumference calculation) max 1 ; not 0.6 or 0.58 if scaling method used other methods acceptable including measuring diameter of circle and individual atom leading to evaluation in the range 0.23 to 0.29 nm : - correct ratio of measured length of arrow / 3.5nm \checkmark - measured diameter of atom / ratio \checkmark - evaluation in range 0.23 to 0.29 nm OR correctly rounded to 0.2 or $0.3 \mathrm{~nm} \checkmark$
		Total	3	

Question		Answer	Mark s	Guidance
32	(a)	$121 / 2$ waves per 1 ms means $f_{\max } \approx 12500 \mathrm{~Hz}$ and need 2 samples per cycle	L	need to identify $f_{\text {max }}$ for mark do not allow $25 \mathrm{kHz} / 2=12.5 \mathrm{kHz}$ for $f_{\text {max }}$ not just "sampling needs to be at least double the highest frequency" or statements of Nyquist
32	(b)	$\begin{aligned} & V_{\text {total }} / V_{\text {noise }} \approx 140 / 0.4=350 \\ & 2^{\text {bits }}>350 \quad 2^{9}=512 \text { suggest } 9 \text { bits sample }-1 \end{aligned}$	L M	Allow estimates in range 340 to 360 need to show $2^{8}=256$ or $2^{9}=512$ or $\log _{2}(350)=8.45$ leading to 9 (bits sample ${ }^{-1}$) for second mark not just quoting bits $=\log _{2}\left(\mathrm{~V}_{\text {total }} / \mathrm{Vnoise}\right)$ from data booklet
		Total	3	

Question			Answer	Marks	Guidance
33	(a)		wavelengths are shortened OR they are blue-shifted because these galaxies are approaching (Milky Way)	L L	Must have idea of change Allow emitted waves are bunched up not just "because of Doppler effect"
33	(b)	(i)	$1000 / 1.9 /\left[4 \times 10^{4} / 660\right]$ $(=526 / 60.6)=8.7$	M M	Allow first mark for correctly calculating both gradientsunits not required for mark 1929 gradient in range 519 to 526 1998 gradient in range 60.6 to 61.5 Allow evaluation in range 8.4 to 8.7 Allow a valid comparison with completed calculation using 8 x 1998 gradient value or 1929 value / 8 for the second mark Allow max 1 for a correct evaluation in the range $>8, \leq 9$ using correct method but incorrect values from graphs.
33	(b)	(ii)	$\begin{aligned} & \text { age }=1 / H_{0} \\ & =\left[660 \times 3.1 \times 10^{22}\right]\left[\left[4 \times 10^{7}\right] \mathrm{s}=5.1 \times 10^{17} / 3.2 \times 10^{7}\right. \text { years } \\ & =16(\pm 2) \times 10^{9} \text { (years) } \end{aligned}$	H H	method Allow 1/gradient OR in numbers Allow ecf from gradient in $b(i)$ for this mark evaluation of show that.
			Total	5	

Question		Answer	Marks	Guidance
34	(a)	$\begin{aligned} N & =A \times t 1 / 2 / \ln 2 \quad \text { OR }=8.5 \times 10^{6} \times 60 \times 24 \times 3600 / 0.693 \checkmark \\ & =6.4 \times 10^{13} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	method evaluation
34	(b)	$\begin{aligned} & \text { absorbed dose }=\mathrm{N}_{0} / 2 \times 35 \times 10^{3} \times 1.6 \times 10^{-19} \times 1 / 0.05 \\ & =3.6(\mathrm{~Sv}) \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathbf{M} \end{aligned}$	method mark for using energy deposited per unit mass Allow 3.4 Sv using $N_{o}=6 \times 10^{13}$ for 2 marks Allow ecf from 34(a) when $N o$ rounds to >6 and <7 Allow 1 mark for 7.2 Sv for only $1 / 2$ decay
34	(c)	cells nearer seed will receive higher dose than farther away / to give more even irradiation / dose will decay away from the seed by γ-ray absorption \checkmark	L	any valid point e.g. spread over greater volume further away Allow spreads out over larger (surface) area further away Allow valid use of $1 / R^{2}$ and / or exponentially
		Total	5	

Question		Answer	Marks	Guidance
35	(a)	e.g. lines on graph OR $e^{-1}=0.37$ $T=1300 \text { (K) }$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	evidence of finding f when $E=k T$ accept answers in range 1100 to 1500 (K) if first mark awarded
35	(b)	the average molecule has energy $k T$ and so will be able to perform the process Boltzmann factor $\mathrm{e}^{-20} \approx 2 \times 10^{-9}$ so only a small fraction of molecules have sufficient energy but make many attempts each second / high collision frequency giving a significant rate	M	completion : allow very few collisions occur with a pair of molecules with less than energy $k T$ significant rate at $T / 20$: OR Boltzmann tail contains molecules that have much higher than average energy by "getting lucky" / gaining energy from multiple consecutive collisions by chance from the thermal chaos
		Tota Total section B	$\begin{gathered} \hline 4 \\ 20 \end{gathered}$	

Section C

Question			Answer	Marks	Guidance
36	(b)	(i)	```Q=It so A xh = 1 A x 3600s = 3600 As or 3600C OR charge = current }\times\mathrm{ time }```	L	Not just $\mathrm{Q}=$ It
36		(ii)	curving up to about $0.18 \pm 0.2 \Omega$ by about 60 mins levelling off then increasing again to 0.27Ω If graph not drawn credit any one correct calculation based on $r=[4.2-V] / 4.5$ including $[4.2-3.0] / 4.5=0.27 \Omega$ for final value	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	
36	(b)	(iii)	$\begin{aligned} N & =I t /\left[N_{\mathrm{A}} \times \mathrm{e}\right]=4.5 \times 2 \times 3600 /\left[6.0 \times 10^{23} \times 1.6 \times 10^{-19}\right] \\ & =0.3(4) \text { (moles) } \end{aligned}$ $\begin{aligned} & \text { OR } N=I t /\left[N_{\mathrm{A}} \times \mathrm{e}\right] \\ & =4.5 \times 116 \times 60 /\left[6.0 \times 10^{\left.23 \times 1.6 \times 10^{-19}\right]}\right. \\ & =0.33 \text { (moles) } \end{aligned}$	S\&C S\&C	estimate method Allow approximation $t=2$ hours evaluation
			Total	11	

Question			Answer	Marks	Guidance
37	(a)	(i)	(tilting the runway slightly so that) component (of gravity) down the slope balances friction OR so that there is no resultant force on the trolley at the experimental speed	L	Accept (downward slope can ensure it) maintains constant speed
37	(b)	*	Level 3 (5-6 marks) Marshals argument in a clear manner and includes clear explanation of all strands including: - conservation of momentum check - conservation of kinetic energy check - forces acting on each trolley There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) covers all strands at a superficial level and does not include enough depth forlevel 3. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	$\begin{gathered} \text { L } \\ \text { M } \\ \text { HH } \\ \text { H } \\ \text { S\&C } \end{gathered}$	Indicative scientific points may include: expect measurements from tapes to be to $\pm 1 \mathrm{~mm}$ accuracy i.e. tape A before : 79 to 81; tape A after:39 to 41; tape B after 119 to 121. Allow use of less than 5 dot strip as long as measured length leads to evaluation in range. conservation of momentum check - momentum before $=0.9 \times 0.8=0.72 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - after $=[0.9 \times 0.4+0.3 \times 1.2]=0.72 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ sensibly conserved / to within the limits of uncertainty measurements comment that momentum is conserved in (all) collisions and should be conserved here. conservation of kinetic energy check - k.e. before $=1 / 2 \times 0.9 \times[0.8]^{2}=0.288 \mathrm{~J}$ - k.e. after $=1 / 2 \times 0.9 \times[0.4]^{2}+1 / 2 \times 0.3 \times[1.2]^{2}$ $=0.072+0.216=0.288 \mathrm{~J}$ - sensibly conserved / to within limits of uncertainty measurements - so perfectly elastic collision - comment that kinetic energy is not always conserved in collisions - comment that kinetic energy is conserved in elastic collisions

Question			Answer	Marks	Guidance
			Level 1 (1-2 marks) Makes at least two independent points (possibly from only one strand), that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		forces acting on each trolley - forces are equal and opposite OR - some version of N3 backwards on A, forwards on B - $\rightarrow F_{B}=\Delta m v / \Delta t=0.3 \times 1.23 / 0.06=6.2 \mathrm{~N}$ to right OR - $\leftarrow F_{\mathrm{A}}=0.9 \times[0.41-0.82] / 0.06=6.2 \mathrm{~N}$ to left
37	(c)	(i)	volume flow rate OR $A v$ must remain constant by calculation for $1.0 \mathrm{~s}: \quad v_{1} \pi[0.075]^{2} / 4=v_{2} \pi[0.025]^{2} /$ 4 gives $9 v_{1}=v_{2}$ OR at \mathbf{F} diameter is $1 / 3$ of value at \mathbf{E} so A is $1 / 9$	$\begin{gathered} M \\ s \& C \end{gathered}$	Allow water is incompressible expect numerical argument completed OR $A \propto D^{2}$ OR $A \propto R^{2}$ with $[1 / 3]^{2}=1 / 9$
37	(c)	(ii)	$\begin{aligned} & \pi D_{1}{ }^{2} v_{1} / 4=0.02 \text { OR } v_{1}=0.020 \times 4 /\left[\pi D_{1}^{2}\right] \\ & =4.5(3)\left(\mathrm{m} \mathrm{~s}^{-1}\right) \end{aligned}$ OR $v_{1}=0.020 \times 4 /\left[9 \pi \times 0.025^{2}\right] ;=4.5(3)\left(\mathrm{ms}^{-1}\right)$	$\begin{aligned} & \text { S\&C } \\ & \text { S\&C } \end{aligned}$	method evaluation Max 1 mark if diameter used for radius
37	(c)	(iii)	rate of change of momentum of water in nozzle $=\Delta m v / \Delta t \checkmark$ $=20 \times(9-1) v_{1}=20 \times 8 \times 4.53=72(4)(\mathrm{N})$	H S \& C	Method - no credit for just writing $=\Delta m v / \Delta t$ from formula sheet evaluation
			Total	13	

Question			Answer	Marks	Guidance
38	(a)	(i)	$\begin{aligned} E & =k e / r^{2}=8.98 \times 10^{9} \times 1.6 \times 10^{-19} /\left[40 \times 10^{-12}\right]^{2} \\ & =0.90 \times 10^{12}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \end{aligned}$	L	Allow just $E=k e / r^{2}$ OR correct substitution for method mark allow use of $k=9 \times 10^{9}$ leading to 0.9×10^{12} evaluation of show that : allow 0.898×10^{12}
	(a)	(ii)	expect two valid checks with 2 approx = numerical values OR 0.9 TV m${ }^{-1} @ 40 \mathrm{pm}$ becomes $0.9 / 2^{2}=0.22$ TV m$^{-1}$ @ 80 pm two values here	MM	check: $E r^{2}=$ sensibly constant in range $[1.4$ to 1.5$] \times 10^{-9}$ Max 1 mark if one value just outside range Max 1 mark only for general statement: as r doubles E becomes $\times 1 / 4$ OR for 1 value of $E r^{2}$ Allow full credit for correct calculation without units
38	(a)	(iii)	area represents p.d. OR potential difference OR $\Delta V \checkmark$ 1 big sq $\equiv 0.2 \times 10^{12} \times 20 \times 10^{-12}=4 \mathrm{~V}$ and about $5 \pm 1 / 2$ big squares $\approx 20 \pm 2 \mathrm{~V}$ OR $\begin{aligned} & =\Delta k e / r=9 \times 10^{9} \times 1.6 \times 10^{-19} \times\left[1 / 52 \times 10^{-12}-{ }^{1} / 160 \times 10^{-12}\right] \\ & =[27.7-9]=18.7 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~S} \mathrm{\& C} \end{gathered}$	```not unit of \(V\) evaluation by counting squares allow units not needed here if area \(\equiv\) voltage given already```
38	(b)	(i)	method: $m v^{2} / r=k e^{2} / r^{2} \rightarrow 1 / 2 m v^{2}=k e^{2} / 2 r \quad \checkmark$	H	requires algebraic argument
38	(b)	(ii)	$E_{\text {total }}=1 / 2 k e^{2} / r-k e^{2} / r=-1 / 2 k e^{2} / r$ graph is mirror image i.e. $-E_{\text {kinetic }}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	must be clear that $E_{\text {potential }}=-k e^{2} / r$

Question		Answer	Marks	Guidance			
	(b)	(iii)	otherwise orbits would decay by (radiative emission) electron would spiral into proton	\mathbf{M}	any valid point: Allow without quantisation any energy or orbit radius would be allowed and there would be no specific energy levels OR no typical line spectrum		
	(b)	(iv)	$r=53 \mathrm{pm}$ requires 14 eV so 14 V is ionization potential	\checkmark	S\&C		evaluation $5.3 \times 10^{-11} \mathrm{~m}$
:---							
on total energy graph (to remove electron to ∞)							

Question			Answer	Marks	Guidance
39	(a)	(i)	flux loops want to shorten / magnet tries to align parallel to flux between coils 1 and 2 (at about $\theta=30^{\circ}$) /flux lines leave \mathbf{N} pole of rotor at an angle which exerts a turning moment to right	L	Allow coil 1 is a S and will attract the N pole of the rotor (so this force will turn the rotor clockwise) not flux lines leave \mathbf{S} pole of rotor radially which exerts no turning moment in this position
39	(a)	(ii)	anticlockwise path completed loop through the upper $1 / 3$ of stator ring		only one field line loop expected coil 3 coll 1
39	(b)		1: to make a stronger (stator) field/flux OR increase permeance (of flux path) 2: to reduce eddy currents / heat losses 3: to get more flux for the same (stator) coil current OR as air gaps reduce permeance (of magnetic circuit)/ as air gaps reduce permeance (of magnetic circuit)		Allow reduce reluctance of flux path Must have correct technical term - e.g. permeance / reluctance
39	(c)		1: alter the frequency of switching (coils) 2: alter magnitude of current (in stator coils) / (supply) voltage \checkmark	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	allow for second mark pulse the switched supply voltage / current to stator coils by pulse width modulation PWM / on:off ratio will determine moment
			Total	9	

Question			Answer	Marks	Guidance
40	(a)	(i)	$\begin{aligned} & P \propto 1 / V \\ & V \propto T \quad \text { AND } \quad P \propto T \quad(\mathrm{OR} \theta+273) \end{aligned}$	\bar{L} M	Allow in words e.g. just "inverse proportionality" Allow in words but response must either make reference to T or absolute temperature / Kelvin temperature
40	(a)	(ii)	e.g. $P V=\mathrm{c}_{1}=\mathrm{c}_{2} T=k N T=N k T \quad \checkmark$	M	Must have PV/T = constant OR PV $=$ constant $\times T$ leading to $p V=N k T$ allow ecf if correctly combined to an (incorrect) equation involving k
40	(a)	(iii)	$\begin{aligned} k & =101 \times 10^{3} \times 22.4 \times 10^{-3} /\left[6.02 \times 10^{23} \times 273\right] \\ & =1.377 \times 10^{-23}\left(\mathrm{JK}^{-1}\right)=1.38 \times 10^{-23}\left(\mathrm{JK}^{-1}\right) \end{aligned}$	M	evaluation to 4sf so that it shows correct conversions \& subs rounded to 3sf for final answer not just quote the datasheet value alone for which no credit
40	(b)	(i)	$\begin{aligned} & \sqrt{ } c^{2}=\sqrt[V]{ }[3 N k T / m] \quad \text { OR } \quad \sqrt{ } c^{2}=\sqrt{ }[3 R T / m] \\ &=\sqrt{ }\left[3 \times 6.02 \times 10^{23} \times 1.38 \times 10^{-23} \times 300 / 4.0 \times 10^{-3}\right] \\ & O R=\sqrt{ }\left[3 \times 8.31 \times 300 / 4.0 \times 10^{-3}\right] \\ &=1.37 \times 10^{3} \end{aligned}$	\bar{M} M	method Allow in algebra or substituted numbers evaluation accept $1.4 \times 10^{3}\left(\mathrm{~ms}^{-1}\right)$
40	(b)	(ii)	Any two points : high collision frequency $/ \approx 10^{9} \mathrm{~s}^{-1}$ OR small mean free path $/ \approx 10^{-7} \mathrm{~m}$ random change in direction after collision OR random path gives slow diffusion or spread OR mean diffused distance $=\sqrt{ } N x \approx$ few cm per minute	L M	not scent molecules more massive travel slower not sensitivity of nasal detection Allow diagram for full marks if clearly explained and annotated Allow reference to Brownian motion for one of two points
			Total	8	

Question			Answer	Marks	Guidance
41	(a)	(i)	$\begin{aligned} \Delta m & =[1.008665-\{1.007276+0.000549\}]=0.00084 \mathrm{u} \checkmark \\ & =0.78(2)(\mathrm{MeV}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	find mass defect in u convert to MeV
41	(a)	(ii)	"missing" energy / momentum was carried by an (anti)neutrino / a particle of tiny rest mass and zero charge	M	Allow Energy (of beta particle) is shared with (anti)neutrino / a particle of tiny rest mass and zero charge
41	(a)	(iii)	$\begin{aligned} & A=\lambda N=\ln 2 / t_{1 / 2} \times 10^{4} \\ & =10 \text { or } 11\left(10.7 \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	Allow alternative method - e.g. calculate N remaining after 1 s (for 1 mark) and subtract from 10^{4} (for second mark) evaluation do not penalise non-integer values
41	(a)	(iv)	d quark changes \rightarrow u quark $\quad \checkmark$	L	Allow udd \rightarrow und
41	(b)		stable neutrons exist in nuclei of light elements very close to $\boldsymbol{N}=\boldsymbol{Z} \quad$ OR $\quad \boldsymbol{N} / \boldsymbol{Z}=1$	M	Allow vice-versa-e.g. unstable neutrons exist for nuclei where $\boldsymbol{N} / \mathbf{Z} \boldsymbol{>} 1$ Allow worded explanation, for example with reference to concept of "neutron rich" Allow unstable nuclei become stable by beta emission which increases Z to become closer/equal to N Not just "they are stable"
			Total	7	
			Total section C Total sections B \& C	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

