GCE

Further Mathematics A

Y531/01: Pure Core

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
A	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations mark scheme	Meaning
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
a wrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

Question		Answer	Marks	AO	Guidance	
2		$u=x+1$ $(u-1)^{3}=u^{3}-3 u^{2}+3 u-1$ used in solution $\begin{aligned} & 2 x^{3}+3 x^{2}-2 x+5=0 \Rightarrow 2\left(u^{3}-3 u^{2}+3 u\right. \\ & -1)+3\left(u^{2}-2 u+1\right)-2(u-1)+5=0 \end{aligned}$ $2 u^{3}-3 u^{2}-2 u+8=0$	B1 M1 M1 A1 [4]	3.1a 1.1 1.1 2.5	Attempt to expand using binomial. 4 terms. Substituting into equation. Allow if no " $=0$ " here. Must have an attempt at expanding $(u-1)^{3}$ and $(u-1)^{2}$ Must be an equation	Follow through on their $u=x+1$ Follow through on their $u=x+1$ For correct equation found using sums and products of roots allow SC2 (Method required was dictated in question) Only allocate marks using main scheme, or SC method
Question		Answer	Marks	AO	Guidance	
3		$\begin{aligned} & 3+5 \mathrm{i} \text { is a root } \\ & \text { Attempt to expand } \\ & (x-(3+5 i))(x-(3-5 i)) \\ & =x^{2}-6 x+34 \text { so this must be a factor } \\ & x^{4}-7 x^{3}-2 x^{2}+218 x-1428= \\ & \left(x^{2}-6 x+34\right)\left(x^{2}+\ldots x-42\right) \\ & \text { or }\left(x^{2}-6 x+34\right)\left(x^{2}-x+\ldots\right) \\ & \left(x^{2}-6 x+34\right)\left(x^{2}-x-42\right) \\ & \left(x^{2}-x-42\right)=(x-7)(x+6)=>\text { roots }-6,7 \\ & \text { (and } 3+5 i) \end{aligned}$	B1 M1 A1 M1 A1 A1 [6]	1.2 1.1 2.2a 1.1 1.1 1.1	Need to see statement that $3+5 \mathrm{i}$ is a root. Attempt to use the conjugate pair to derive a real quadratic Attempt to factorise or divide resulting in x^{2} and one other term $3+5$ i may be mentioned as a root earlier in the solution	May happen at end of question May see $(3+5 i)(3-5 i)=9+25=34$ $\text { and }(3+5 i)+(3-5 i)=6$ instead of expansion NB: This question required detailed reasoning

Question			Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { M1 } \end{gathered}$	$\frac{\mathbf{A O}}{1.1}$	Guidance		
4	(a)	(i)	Line drawn, perpendicular to line segment joining $(0,-1)$ and $(2,0)$ Region below line indicated as being the required region.			Line needs to have negative gradient with \|gradient	>1 and to intersect the y axis at a positive value Exact perpendicularity not needed, but should be approximately perpendicular.	If "shading out" is used then there needs to be an indication that the required region is below the line, such as " R " placed below line or "This region" written in etc.
	(a)	(ii)	$\begin{aligned} & m=-1 /(1 / 2)=-2 \\ & 4 x+2 y-3=0 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	Explicitly stated	Note must be in required form $a x+b y+c=0$	
	(b)		Circle centre $(-1,0)$ radius 3 or circle centre $(0,2)$ radius 2 . Both circles correct Correct region shaded or otherwise indicated	M1 A1 A1 [3]	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	Radius can be implied by axis labels or tick-marks. Region inside circle with radius 3 but outside circle with radius 2 .	If M0A0 then SC 1 for two circles with correct radii but centres $(1,0)$ and $(0,-2)$	

Question		Answer	Marks	AO	Guidance	
5	(a)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{array}\right)=\left(\begin{array}{cc} -\frac{5}{13} & \frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{array}\right) \\ & \mathbf{B A}=\left(\begin{array}{cc} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{array}\right)\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{cc} -\frac{5}{13} & -\frac{12}{13} \\ -\frac{12}{13} & \frac{5}{13} \end{array}\right) \neq \mathbf{A B} \end{aligned}$ so matrix multiplication is not commutative	M1 A1 $[2]$	2.1 $2.2 \mathrm{a}$	BC. AB or BA correct. BC. Other multiplication correct and conclusion	Could see $\frac{1}{13}\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} 5 & -12 \\ 12 & 5 \end{array}\right)=\frac{1}{13}\left(\begin{array}{cc} -5 & 12 \\ 12 & 5 \end{array}\right)$
	(b)	Rotation about O 67.4° anticlockwise	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	or 1.18 rads	1
	(c)	$\left(\mathrm{T}_{\mathrm{B}}\right)^{-1}$ is a rotation about O by -67.4° anticlockwise (or 67.4° clockwise) $\begin{aligned} & \text { So } \mathbf{B}^{-1}=\left(\begin{array}{ll} \cos \left(-67.4^{\circ}\right) & -\sin \left(-67.4^{\circ}\right) \\ \sin \left(-67.4^{\circ}\right) & \cos \left(-67.4^{\circ}\right) \end{array}\right) \\ & =\left(\begin{array}{cc} \frac{5}{13} & \frac{12}{13} \\ -\frac{12}{13} & \frac{5}{13} \end{array}\right) \end{aligned}$	M1 A1 [2]	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 1.1 \end{gathered}$	Correct inverse of their rotation T_{B}. or $\mathbf{B}^{-1}=\left(\begin{array}{cc}0.385 & 0.923 \\ -0.923 & 0.385\end{array}\right)$ (allow 0.384 for 0.385)	Could also be rotation of 292.6° anticlockwise NB: Question states "by considering the inverse transformation". SC1 For correct inverse by other method.
	(d)	$\operatorname{det} \mathbf{B}=1$ and $\operatorname{det} \mathbf{C}=-3$ So area of $N=\|1 \times-3\| \times 5=15$	M1 A1 [2]	$\begin{aligned} & 3.1 \mathrm{a} \\ & 3.2 \mathrm{a} \end{aligned}$	Could find BC and then find $\operatorname{det}(\mathbf{B C})=-3$ Area must be 15, do not allow -15 or ± 15	

Question		Answer	Marks	AO	Guidance	
6	(a)	$\begin{aligned} & z=\frac{-(-10) \pm \sqrt{(-10)^{2}-4 \times 2 \times 25}}{2 \times 2} \\ & z=\frac{5}{2} \pm \frac{5}{2} \mathrm{i} \end{aligned}$	M1 A1 [2]	$\begin{aligned} & 2.1 \\ & 1.1 \end{aligned}$	Correct substitution into formula. If formula quoted allow one slip. Allow $z=\frac{5 \pm 5 \mathrm{i}}{2}$ or equivalent fractions	Or completing the square one slip allowed. NB: This question required detailed reasoning
	(b)	$3 \omega-2=5 \mathrm{i}+2 \mathrm{i} \omega \Rightarrow 3 \omega-2 \mathrm{i} \omega=2+5 \mathrm{i}$ $\begin{aligned} & (3-2 \mathrm{i}) \omega=2+5 \mathrm{i} \Rightarrow \omega=\frac{2+5 \mathrm{i}}{3-2 \mathrm{i}} \\ & \omega=\frac{2+5 \mathrm{i}}{3-2 \mathrm{i}} \times \frac{3+2 \mathrm{i}}{3+2 \mathrm{i}}=\frac{6+4 \mathrm{i}+15 \mathrm{i}-10}{9+4} \\ & \omega=-\frac{4}{13}+\frac{19}{13} \mathrm{i} \end{aligned}$	M1 M1 M1 A1	1.1 1.1 2.1 1.1	Expanding and rearranging Factorising and dividing by two term complex number Multiplying top and bottom by conjugate of bottom	Must rearrange to isolate ω terms on one side and other terms on other side NB: This question required detailed reasoning
		Alternative method $\begin{aligned} & \omega=a+b \mathrm{i} \Rightarrow 3 a+3 b \mathrm{i}-2=5 \mathrm{i}+2 a \mathrm{i}-2 b \\ & 3 a-2=-2 b \text { and } 3 b=5+2 a \\ & 9 a-6+10+4 a=0 \Rightarrow a=-\frac{4}{13} \\ & \Rightarrow b=\frac{19}{13} \Rightarrow \omega=-\frac{4}{13}+\frac{19}{13} \mathrm{i} \end{aligned}$	M1 M1 M1 A1		Assigning real and imaginary parts, to ω expanding and rearranging Comparing real and imaginary parts Using valid algebra to eliminate one unknown and finding the other	
			[4]			

Question		Answer	Marks	AO	Guidance	
8	(a)	$\begin{aligned} & (t-1)(6-t(2-2 t)) \\ & -(t-1)((1-t)-t(2-2 t)) \\ & +(t-1)((1-t)(2-2 t)-6(2-2 t)) \\ & (t-1)[(6-t(2-2 t))-((1-t)-t(2-2 t)) \\ & +((1-t)(2-2 t)-6(2-2 t))] \\ & (t-1)\left(6-2 t+2 t^{2}-1+t+2 t-2 t^{2}+2-4 t\right. \\ & \left.+2 t^{2}-12+12 t\right) \\ & =(t-1)\left(2 t^{2}+9 t-5\right) \\ & =(t-1)(2 t-1)(t+5) \end{aligned}$	M1 M1 A1 [3]	1.1 1.1 1.1	Correct process for expanding determinant. Bringing $(t-1)$ or $(t+5)$ or ($2 t-1$) oe out as factor of the entire expression	Fully expanded form: $2 t^{3}+7 t^{2}-14 t+5$ Factors may appear BC from no working
	(b)	$-5,1 / 2,1$	B1 [1]	1.1	FT their complete factorisation of determinant into 3 linear factors.	
	(c)	$t=b^{2}+2$ and so $t \geq 2$ so cannot be $-5,1 / 2$ or 1 therefore \mathbf{A}^{-1} will exist (for all values of b) and so there will be a unique solution to the system for all values of b.	M1 A1 [2]	2.1 2.4	So that the system is $\mathbf{A r}=\mathbf{c}$ Complete reasoning must be seen for A1.	Could test $t=1,1 / 2,-5$ in $b^{2}=t-2$, and show that these do not give real values of b

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { M1 } \end{gathered}$	$\frac{\mathbf{A O}}{2.1}$	Guidance	
9	(a)	$\begin{aligned} & \overrightarrow{P Q}=\left(\begin{array}{c} -1 \\ 3 \\ -16 \end{array}\right)-\left(\begin{array}{c} 3 \\ 5 \\ -21 \end{array}\right)=\left(\begin{array}{c} -4 \\ -2 \\ 5 \end{array}\right) \\ & \left(\begin{array}{c} -4 \\ -2 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ s \\ t \end{array}\right)=0 \\ & -4-2 s+5 t=0 \\ & =2 s=5 t-4 \\ & \Rightarrow s=2.5 t-2 \end{aligned}$	M1 M1 A1 [3]	2.1 1.1 2.1	Attempt to find the direction vector of the tunnel. Any non-zero multiple. Use of $\overrightarrow{P Q} \cdot \mathbf{b}=0$ in the solution. AG. Some intermediate work must be seen.	
	(b)	$\begin{aligned} & \mathrm{M}=\frac{1}{2}\left(\left(\begin{array}{c} -1 \\ 3 \\ -16 \end{array}\right)+\left(\begin{array}{c} 3 \\ 5 \\ -21 \end{array}\right)\right)=\left(\begin{array}{c} 1 \\ 4 \\ -18.5 \end{array}\right) \\ & \mathbf{r}=\left(\begin{array}{c} 1 \\ 4 \\ -18.5 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ s \\ t \end{array}\right) \text { when } z=0 \\ & \Rightarrow-18.5+\lambda t=0 \\ & \Rightarrow \lambda=\frac{18.5}{t}(\text { so } c=18.5) \end{aligned}$	B1 M1 A1 [3]	1.1 3.4 1.1	Position vector (or coordinates) of mid-point found Using $z=0$ and the equation of the line to find a 'horizontal' relationship between λ and t.	Condone errors in, or omission of, x and y components. NB: Question can be answered just by considering the z coordinate. If done correctly and M1 A1 gained also allow B1 as implied.

Question	Answer	Marks	AO	Guidance	
(c)	So we need to minimise $\left\|\frac{18.5}{t}\left(\begin{array}{c}1 \\ 2.5 t-2 \\ t\end{array}\right)\right\|$	M1	3.3	Stating or implying that the length of the shaft is given by $\|\lambda \mathbf{b}\|$ and using their λ / t relationship to reduce length of shaft to a form with only one variable.	Or eg $\left\|\frac{18.5}{0.4 s+0.8}\left(\begin{array}{c}1 \\ s \\ 0.4 s+0.8\end{array}\right)\right\|$
	$\begin{aligned} (y & =) \frac{1369}{4 t^{2}}\left(1+(2.5 t-2)^{2}+t^{2}\right) \\ & =\frac{1369}{4}\left(7.25-10 t^{-1}+5 t^{-2}\right) \end{aligned}$	M1*	1.1	Finding expression for (squared) length of their vector	May see $\frac{37}{2}\left(7.25-10 t^{-1}+5 t^{-2}\right)^{\frac{1}{2}}$ Or $\frac{39701}{16}-\frac{6845}{2} t^{-1}+\frac{6845}{4} t^{-2}$ oe
	So to minimise set $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{1369}{4}\left(10 t^{-2}-10 t^{-3}\right)=0$	$\begin{gathered} \text { dep } \\ \text { M1* } \end{gathered}$	3.1 a	Correct method for minimisation of (squared) length of their vector (eg differentiating and setting to 0)	Or attempt to complete the square in t^{-1}. $y=\frac{1369}{4}\left(5\left(t^{-1}-1\right)^{2}+2.25\right)$
	$10 t^{-2}-10 t^{-3}=0 \Rightarrow t=1$	A1	2.2a		So min when $t^{-1}-1=0, t=1$
	So length of shaft $=\left\|18.5\left(\begin{array}{c}1 \\ 0.5 \\ 1\end{array}\right)\right\|$ or $\sqrt{\frac{1369}{4}\left(7.25-10 \times 1^{-1}+5 \times 1^{-2}\right)}$ oe	M1	3.4	Substituting their t into their form for length of shaft	
	$=18.5 \times 1.5=27.75$	A1	1.1		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

