GCE

Further Mathematics A

Y533/01: Mechanics

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
	Meaning
Other abbreviations mark scheme	in dep*
cao	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
oe	Correct answer only
rot	Or equivalent
soi	Rounded or truncated
www	Seen or implied
AG	Without wrong working
awrt	Answer given
BC	Anything which rounds to
DR	By Calculator

Question		Answer			Guidance	
1	(a)	$\omega=2 \pi / 0.84 \text { soi }$ awrt $7.48 \mathrm{rad} \mathrm{s}^{-1}$	M1 A1 [2]	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	Correct formula for angular velocity used $\left(\frac{50}{21} \pi\right)$	
1	(b)	$\begin{aligned} & v=2.8 \times \text { " } 7.48 \ldots \text { " or } 2 \pi \times 2.8 / 0.84 \\ & \text { awrt } 20.9 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	Correct formula for speed used $\left(\frac{20}{3} \pi\right)$	FT their value for ω if used
1	(c)	$\begin{aligned} & a=" 20.9 \cdots{ }^{2} / 2.8 \text { or } 2.8 \times " 7.48 \cdots "^{2} \text { or } \\ & " 20.9 \ldots " \times 7.48 \ldots " \\ & \text { awrt } 157(\text { or } 156) \mathrm{ms}^{-2} \end{aligned}$	M1 A1 $[2]$	1.1 1.1	Any correct formula for acceleration used 156 if rounded values used. $\left(\frac{1000}{63} \pi^{2}\right)$	FT their value for v if used
1	(d)	...towards O	B1 [1]	1.2	Any indication that the acceleration is towards the centre of the circle	

Question		Answer	Marks	AO	Guidance	
2	(a)	$\begin{aligned} & D=15000 / 20=750 \\ & D-R=800 \times 0.4 \end{aligned}$ $R=750-320=430$	B1 M1 A1 [3]	$\begin{aligned} & 3.4 \\ & 3.3 \\ & 1.1 \end{aligned}$	" $P=F v$ " used in the solution Use of NII with a driving force (might be incorrectly derived from power), R and correct $m a$ term. AG	
2	(b)	Need $15000 / v_{\max }=" 430 "$ $v_{\text {max }}=34.9$ so max speed is $34.9 \mathrm{~ms}^{-1}(3 \mathrm{sf})$	M1 A1 [2]	$\begin{aligned} & \hline 3.4 \\ & 1.1 \end{aligned}$	Driving force $=$ resistive force and " $P=F v$ "	
2	(c)	$\begin{aligned} & \begin{array}{l} D-R-800 \mathrm{~g} \times \sin \alpha=800 \times 0.15 \\ (=15000 / v-60 v-1568=120) \end{array} \\ & 60 v^{2}+1688 v-15000=0 \\ & 7.10 \text { or }-35.2 \end{aligned}$ Since $v>0$, speed is $7.10 \mathrm{~ms}^{-1}$ (3 sf)	M1 M1 A1 A1FT [4]	3.1b 3.1a 1.1 2.3	NII with a driving force, R, a component of weight (condone incorrect component) and correct ma term. Reduction to 3 term quadratic equation (must be equation) BC (condone 7.09 from incorrect rounding for this mark) FT their quadratic, if one positive and one negative root (ie if $a c<0$) for selecting their positive root with valid reason given.	Both roots must be seen for this mark SC1 if A0A0 for $7.10 \mathrm{~ms}^{-1}$ with no justification

Question		Answer	Marks	AO	Guidance
3	(a)	Cons of Momentum: $0.5 \times 3.15=0.5 v_{A}+0.8 \times 2 v_{A}$	M1	1.1	Or $0.5 \times 3.15=0.5 \times 1 / 2 v_{B}+0.8 \times v_{B}$
		$v_{A}=0.75$	A1	1.1	$v_{B}=1.5$
		So $v_{B}=2 v_{A}=1.5$	$\begin{gathered} \mathbf{A 1} \\ {[3]} \end{gathered}$	1.1	$v_{A}=1 / 2 v_{B}=0.75$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3 \& (b) \& \begin{tabular}{l}
\[
e=(\pm) \frac{" 1.5^{\prime \prime}-0.75^{"}}{3.15-0}
\] \\
\(\frac{5}{21}\) or awrt 0.238
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& 1.1

1.1 \& | Speed of separation over speed of approach. |
| :--- |
| Using their values from 3(a) provided c.o.m. used (and in subsequent questions) | \&

\hline 3 \& (c) \& Because e is the ratio of two speeds (in ms^{-1}) (the units cancel and so) it is a dimensionless quantity. \& B1

$$
[1]
$$ \& 2.4 \& oe \&

\hline 3 \& (d) \& \[
$$
\begin{aligned}
& \text { Initial KE }=1 / 2 \times 0.5 \times 3.15^{2} \\
& \text { Final } \mathrm{KE}=1 / 2 \times 0.5 \times " 0.75^{"}{ }^{2}+1 / 2 \times 0.8 \times \\
& \text { " } 1.5{ }^{\prime} 2 \\
& \text { KE Loss }=2.48 \ldots-1.04 \ldots=1.44 \mathrm{~J}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 [3] | \& | 1.1 |
| :--- |
| 1.1 |
| 1.1 | \& | $\frac{3969}{1600}=2.48 \ldots$ Correct KE calc $\frac{333}{320}=1.04 \ldots \mathrm{KE}$ calculation with correct m and their u and $2 u$ |
| :--- |
| FT their speeds if positive. $\frac{36}{25}=1.44$ | \& | Or change/gain of KE of $\mathrm{B}=$ $0.8 \times$ " 1.5 " ${ }^{2}$ |
| :--- |
| Change/loss of KE of $\mathrm{A}=$ $\pm 1 / 2 \times 0.5 \times$ " 0.75 " ${ }^{2} \mp 1 / 2 \times$ 0.5×3.15^{2} $2.34-0.9=1.44 \mathrm{~J}$ |
| NB Must be positive value for the amount lost |

\hline 3 \& (e) \& Not perfectly elastic since KE is lost oe \& | B1 |
| :--- |
| [1] | \& 2.4 \& eg $e \neq 1$ oe (but just $e=0.238 \ldots$ is insufficient) \&

\hline 3 \& (f) \& | Change in B 's momentum $=0.8 \times$ " 1.5 " |
| :--- |
| $(\pm) 1.2 \mathrm{Ns}$ or kgms^{-1} |
| in the opposite direction to A 's original direction of motion | \& | M1 |
| :--- |
| A1 |
| A1 |
| [3] | \& 1.1

1.1

1.1 \& \begin{tabular}{l}
Using impulse = change in momentum (condone sign error)

Impulse on B

(Hence impulse B exerts on A is (\pm) 1.2 Ns)

This statement oe needed for full marks

 \&

Or by finding the change in A's momentum:

$$
\begin{aligned}
& 0.5 \times 0.75-0.5 \times 3.15 \\
& =(\pm) 1.2 \mathrm{Ns}
\end{aligned}
$$

in the opposite direction to A's original motion
\end{tabular}

\hline
\end{tabular}

Question			Answer			Guidance	
4	(a)	(i)	Gain in $\mathrm{KE}=1 / 2 \times 4.2 \times 4.5^{2}(\mathrm{~J})$ Work done by force $=35 \times 2.4(\mathrm{~J})$ Energy lost $=84.0-42.5=$ awrt 41.5 J	M1 M1 A1 [3]	1.1 1.1 1.1	Correct formula for KE used. Can be implied by awrt 42.5 Correct formula for WD by force used. Can be implied by awrt 84.0	Do not allow the assumption that the resistance is constant, e.g. by use of suvat, also in part (ii) SC 2 if using suvat to find correct average resistance and hence total energy lost.
4	(a)	(ii)	$R=41.5 / 2.4$ So average resistive force is awrt 17.3 N	$\begin{array}{r} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{array}$	$\begin{gathered} \hline 3.1 \mathrm{~b} \\ 1.1 \end{gathered}$	Their energy loss divided by 2.4	SC1 only for 17.3 N , if using suvat/N2L
4	(b)	(i)	Other resistive forces (eg air resistance) can be ignored.	$\begin{aligned} & \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	3.3		"No friction" is not a valid answer here
4	(b)	(ii)	Need $1 / 2 \times 4.2 \times 4.5^{2}=4.2 g h$ $\begin{aligned} & h=1.033 \ldots \\ & \text { Distance }=1.033 / \sin 20^{\circ}=\text { awrt } 3.02 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.2 \mathrm{~b} \\ \\ 1.1 \\ 1.1 \\ \hline \end{gathered}$	Equating KE with PE (4.2 may be missing on both sides).	If "resistive force" term included then M0 unless recovered.
			Alternative method: $\begin{aligned} & a=-g \sin 20^{\circ} \\ & 0^{2}=4.5^{2}+2 \times-g \sin 20^{\circ} \times s \end{aligned}$ $\text { Distance }=\text { awrt } 3.02 \mathrm{~m}$	M1 M1 _A1		Correctly deducing the acceleration up the slope. Using a suvat equation, or equations, which lead(s) to s from a and u given with $v=0$ and consistent signs	
				[3]			

Question		Answer			Guidance	
5	(a)	$\begin{aligned} & {[r]=\mathrm{L},[m]=\mathrm{M} \text { and }[U]=\mathrm{LT}^{-1}} \\ & {[G]=\left[\frac{U^{2} r}{m}\right]} \\ & \therefore[G]=\left(\mathrm{LT}^{-1}\right)^{2} \mathrm{LM}^{-1}=\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2} \end{aligned}$	B1 M1 A1 [3]	2.1 1.1 $2.2 \mathrm{a}$	Correct dimensions for other parameters (U, r and m) soi (no need for them to be used for this mark to be awarded). Comparing dimensions, realising that 2 is dimensionless and rearranging AG	Could be done by dimensional analysis e.g. $[G]=L^{\alpha} M^{\beta} T^{\gamma}$ and equa te indices using $U=\sqrt{\frac{2 G m}{r}}$ oe
5	(b)	$\begin{aligned} & {[P]=\left(\mathrm{MLT}^{-2} L\right) / \mathrm{T}=\mathrm{ML}^{2} T^{-3}} \\ & \text { Need } \mathrm{LT}^{-1}=M^{\alpha} L^{2 \alpha} T^{-3 \alpha} M^{\beta} L^{\beta} T^{-2 \beta} T^{\gamma} \end{aligned}$ $\mathrm{M}: \alpha+\beta=0, \mathrm{~L}: 1=2 \alpha+\beta$ $\alpha=1, \beta=-1$ $\mathrm{T}:-1=-3 \alpha-2 \beta+\gamma$ $\gamma=0$	B1 B1 M1 A1 M1 A1 [6]	$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$ 3.4 1.1 3.4 1.1	Using $P=\mathrm{WD} / t$ oe Realising condition for equation to be dimensionally correct and substituting in dimensions. Comparing to obtain equations in α and β Comparing to obtain equation in γ	ft errors in [P] and/or [W] here and in subsequent method marks provided M, L and T appear at least twice on the RHS
5	(c)	Because $\gamma=0$, the modelled minimum launch speed V does not depend on the time t for which the engines operate...	B1ft $[1]$	3.5a	ie the modified model predicts that V does not vary when t varies	Or appropriate comment from their result, e.g. if $\gamma=-1$, then V is inversely proportional to t

	(e)	$[\mathrm{I}]=\mathrm{MLT}^{-1}$ And $[$ RHS $]=\left(\mathrm{M}^{2} \mathrm{LT}^{-2} \mathrm{~L}+\mathrm{MLMLT}^{-2}\right)^{1 / 2}$ Hence $[$ RHS $]$ MLT $^{-1}=[\mathrm{I}]$ so the inequality is dimensionally consistent	M1	1.1	Attempt dimensional analysis on both sides.	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

