Oxford Cambridge and RSA

GCE

Further Mathematics A
Y534/01: Discrete Mathematics

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
\checkmark and \mathbf{x}	Benefit of doubt
BOD	Follow through
FT	Ignore subsequent working
ISW	Method mark awarded0,1
M0, M1	Accuracy mark awarded 0,1
A0, A1	Independent mark awarded 0,1
B0, B1	Special case
SC	Omission sign
^	Misread
MR	Blank Page
BP	
Seen	
Highlighting	
	Meaning
Other abbreviations mark scheme	
dep*	Mark dependent on a previous mark, indicated by*. The * may be omitted if only one previous M mark
cao	Correctanswer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answergiven
awrt	Anything which roundsto
BC	By Calculator
DR	This question included the instruction: In this question you must show detailedreasoning.

Question		Answer	Marks	AO	Guidance
1	(a)	5 partitions into a set of size 1 and a set of size 4 $\{\mathrm{X} \mid \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}\}$ 10 partitions into a set of size 2 and a set of size 3 $\{\mathrm{X}, \mathrm{X} \mid \mathrm{X}, \mathrm{X}, \mathrm{X}\}$ because there are ${ }^{5} \mathrm{C}_{2}$ choices for the set of size 2	B1	$\begin{aligned} & 1.1 \\ & 2.5 \end{aligned}$	5 where smaller set has size 1 or ${ }^{5} \mathrm{C}_{1}=5$ 10 where smaller set has size 2 , with an explanation of why it is 10 (note the total of 15 is given in the question) e.g. ${ }^{5} \mathrm{C}_{2}=10$ or $(5 \times 4) \div 2=10$ or $4+3+2+1=10$
		Alternative solution $\{\mathrm{A}\},\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$ $\{B\},\{A, C, D, E\}$ $\{C\},\{A, B, D, E\} \quad\{D\},\{A, B, C, E\}$ $\{\mathrm{E}\},\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ $\{\mathrm{A}, \mathrm{B}\},\{\mathrm{C}, \mathrm{D}, \mathrm{E}\} \quad\{\mathrm{A}, \mathrm{C}\},\{\mathrm{B}, \mathrm{D}, \mathrm{E}\}$ $\{\mathrm{A}, \mathrm{D}\},\{\mathrm{B} . \mathrm{C} . \mathrm{E}\} \quad\{\mathrm{A}, \mathrm{E}\},\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$ $\{B, C\},\{A, D, E\} \quad\{B, D\},\{A, C, E\}$ $\{B, E\},\{A, C, D\} \quad\{C, D\},\{A, B, E\}$ $\{C, E\},\{A, B, D\} \quad\{D, E\},\{A, B, C\}$	B1 B1		List (or a ny equiva lent) that has exactly 5 distinct cases where smaller set has size 1 May just list one set, e.g. $\{A\},\{B\},\{C\},\{D\},\{E\}$ List (or any equiva lent) that has 10 distinct cases sets where sma ller set has size 2 May just list one set, e.g. $\{\mathrm{A}, \mathrm{B}\},\{\mathrm{A}, \mathrm{C}\}\{\mathrm{A}, \mathrm{D}\},\{\mathrm{A}, \mathrm{E}\},\{\mathrm{B}, \mathrm{C}\}$, $\{B, D\},\{B, E\},\{C, D\},\{C, E\},\{D, E\}$
			[2]		
1	(b)	Partitions into sets of sizes 1,1 and 3 $5 \times 4 \div 2=10$ partitions of this type Partitions into sets of sizes 1,2 and 2 $5 \times\left({ }^{4} \mathrm{C}_{2} \div 2\right)=5 \times 3=15$ partitions of this type	M1 A1 M1 A1 [4]	$\begin{aligned} & 1.1 \\ & 2.1 \\ & \\ & 1.1 \\ & 2.1 \end{aligned}$	Considering cases where set sizes are $1,1,3$ Explanation of why there are 10 of these e.g. ${ }^{5} \mathrm{C}_{3}=10$ or $5 \times 4 \div 2=10$ or a list of the cases Considering cases where set sizes are 1,2,2 Explaining why there are 15 of these e.g a relevant calculation or list of cases
1	(c)	10 partitions into sets of sizes $1,1,1,2$ 1 partition into sets of sizes $1,1,1,1,1$ $15+25+10+1=51$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.1 \end{aligned}$	Trying to deal with the cases when there are more than 3 subsets May be implied from answer 51 51
1	(d)	Number line is split into 6 pieces But there are 8 numbers Hence result by the pigeonhole principle	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {\left[\begin{array}{l} \end{array}\right]} \\ & \hline \end{aligned}$	$\begin{gathered} 2.1 \\ 2.2 \mathrm{a} \end{gathered}$	6 pieces Using pigeonhole, or expla ining why there must be at least one piece with two ormore numbers

Question			Answer	Marks	AO	Guidance
2	(a)	(i)	Next-fit methodBin 1 12 Bin 2 23 Bin 3 15 Bin 4 18 8 Bin 5 7 5	M1 A1 [2]	1.1 1.1	Bins 1 and 2 correct All correct
2	(a)	(ii)	First-fit method	M1 A1 [2]	1.1 1.1	Bins 1 and 2 correct All correct
2	(a)	(iii)	$\begin{array}{lllllll}23 & 18 & 15 & 12 & 8 & 7 & 5\end{array}$ First-fit decreasing method	M1 A1 [2]	1.1 1.1	Ordered list may be seen Bins 1 and 2 correct All correct
2	(b)		With 'online' lists the items are presented one at a time and the whole list is not known until the end. With next-fit and first-fit the items a re placed in the order they appear in the list, so these methods can be used 'offline' or 'online'. However, for first-fit decrea sing the whole list needs to be known before it can be sorted, so first-fit decreasing can only be used for an 'offline' list.	B1 B1 [2]	1.2 2.3	Evidence of understanding what 'online' means Evidence of rea lising that ffd cannot be used with an online list (or implied from an appropriate statement about next-fit and first-fit)

Question		Answer						Marks	AO	Guidance
2	(c)	$88 \div 4=22$, so M is at least 22 But it is not possible to fill 4 bins of capacity 22 Since $22-18=4$ which is less than 5 So the 23 would have to be split as 4 and 19 And then there is no 3 to go with the 19 $M=23$ is possible e.g. $23-x$ and $x, 18+5,15+8,12+7$ Hence, least M is 23						M1 A1 B1 [3]	1.1 2.4 2.2a	Identifying that M must be at least 22 Showing that $M=22$ is not possible Fully correct explanation Showing that $M=23$ is possible
3	(a)	ABXE						$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	1.1	
3	(b)	A 0.6 B 1.1 1.7 C 2.7 2.1 2.5 D 2.8 2.2 1.8 1.2 E 3.3 2.7 2.5 0.6 0.7 						M1 A1 M1 A1 [4]	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \mathrm{AB}=0.6, \mathrm{AC}=1.1 \\ & \mathrm{AD}=2.7, \mathrm{AE}=2.8 \\ & \mathrm{DF}=0.6, \mathrm{EF}=0.7 \\ & \mathrm{BF}=2.7, \mathrm{CF}=2.5 \\ & \mathrm{AF}=3.3 \text { or } \mathrm{ft} \text { from other values } \end{aligned}$
3	(c)	$\begin{aligned} & \mathrm{AB}=0.6 \\ & \mathrm{AC}=1.1 \\ & \mathrm{CE}=1.8 \\ & \mathrm{EF}=0.7 \\ & \mathrm{DF}=\frac{0.6}{4.8} \end{aligned}$						M1 A1 B1 ft [3]	$\begin{gathered} 3.1 \mathrm{~b} \\ 3.2 \mathrm{a} \\ 1.1 \end{gathered}$	A graph that connects $\{A, B, C, D, E, F\}$ with or without X and/orY Correct tree drawn or a rcs listed, including CX and XE $4.8(\mathrm{~km})$ or totalfor their tree
3	(d)	Adapting the answer to part (c)$\mathrm{B}-\mathrm{A}-\mathrm{C}-\mathrm{X}-\mathrm{Y}-\mathrm{E}-\mathrm{F}-\mathrm{D}$						$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} \hline \text { 3.1b } \\ 1.1 \end{gathered}$	Any walk orcycle that starts at B anduses every vertex at least once, including X and Y cao
								[2]		

Question			Answer	Marks	AO	Guidance
5	(a)	(i)		M1 M1 M1 A1 [4]	1.1 1.1 1.1 1.1	Ignore any extra lines (e.g. profit lines) or working forparts (b), (c) Line $2 x+3 y=12$ through $(6,0)$ and $(0,4)$ Line $x+y=10$ through at least two of $(10,0),(2,8),(4,6),(6,4),(8,2)$ and $(0,10)$ Line $5 x+2 y=30$ through at least two of $(6,0),(4,5),(2,10)$ and $(0,15)$ Fea sible region identified and correct
5	(a)	(ii)	$*$ x y $P=4 x-y$ 0 4 -4 0 10 -10 3.33 6.67 6.67 6 0 24Maximum $P=24$	M1 A1 [2]	3.1 a 1.1	'Determine' so method must be seen, not implied Checking at least two of their vertices or sliding a profit line (a line of gra dient 4 a nywhere on graph or indicating the vertex $(6,0)$) 24
5	(b)		FR has boundaries $x=0, x+y=k, 2 x+3 y=12$ $x+y=k$ and $2 x+3 y=12$ or $4 x-y=3$ Profit line $4 x-y=3$ cuts $2 x+3 y=12$ at $(1.5,3)$ $k=4.5$ Alternative solution $\begin{array}{ll} 4 x-(k-x)=3 & \Rightarrow 3 x-k=3 \\ \text { and } 2 x+3(k-x)=1 & \Rightarrow 3 k-x=12 \\ k=4.5 \end{array}$	M1 M1 A1 M1 M1 A1	$\begin{gathered} 3.4 \\ \text { 3.1a } \\ \text { 2.2a } \end{gathered}$	Not graphical Vertex where $2 x+3 y=12$ and $x+y=k$ or profit on line $x+y=k$ Calculate where profit $=3$ on boundary $2 x+3 y=12$ or $(1.5,3)$ 4.5 Use $x+y=k$ to substitute for $y($ or $x)$ in $4 x-y=3$ Form a second simultaneous equation in the sameunknowns 4.5

Question			Answer	Marks	AO	Guidance
5	(c)		Profit line $4 x-y=3$ cuts $5 x+2 y=30$ at $\frac{3}{13}, \frac{1}{13}$ $k=\frac{141}{13}$	M1 A1 [2]	$\begin{aligned} & 3.1 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$	Not graphical Or $2 \frac{1}{13}, 8 \frac{1}{13}$ or (2.7 to $2.8,8.0$ to 8.2) Or $10 \frac{11}{13}$ or 10.8 to 10.9
6	(a)	(i)	Minimum time $=9$ hours A, B, E, G, H have no float	M1 A1 M1 M1 A1 A1 [6]	$\begin{aligned} & 3.3 \\ & 1.1 \\ & 3.4 \\ & 3.4 \\ & 1.1 \\ & 1.1 \end{aligned}$	Activity network with A, B and C correct D, E, F, G, H and dummy correct (accept directions missing) Forward pass attempted, or implied from min duration correct Backward pass attempted, or implied from criticalactivities correct 9 A, B, E, G, H (in any order) and no others
6	(a)	(ii)	Assuming that there a re enough workers for each activity Resourcing may restrict how many activities can happen together	B1 [1]	3.5b	A reason why it may not always be possible to do all the activities that are needed at the same time NOT an assumption a bout the durations or immediate predecessors or that would delay the start time of an activity (e.g. weather or delays in arrival of materials)
6	(b)		Earliest time that E can start is 5 hours from start If there a re not enough workers then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ may need to be done one after a nother, taking 8 hours. And E could also be delayed until a fter Dand F, giving a latest start time for E of 10 hours	B1 M1 A1 [3]	1.1 3.5a 2.2b	5 (all the activities that must be done before E havemin completion time 5) Recognising that tasks may be done sequentially (or implied from answer 8, 9 or 10) 10 (all the activities that can be done before E have total duration 10 - startingE after 10 would be an unecessary delay)
6	(c)		Extend the duration of D to 3 hours	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.5c	Or add an activity immediately a fterD of duration 2 hours

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

