GCE

Physics A

H156/01: Breadth in physics

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

RM ASSESSOR

Annotations available in RM Assessor

Annotation		Meaning
	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
AE	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the ecF if there are no further errors. examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2	Level 2	L2 is used to show 4 marks awarded and L2^ is used to show 3 marks awarded.
L3	Level 3	L3 is used to show 6 marks awarded and L3^ is used to show 5 marks awarded.
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEEN	Seen	To indicate working/text has been seen by the examiner.
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.

XP	Wrong physics or equation	Used in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
$\boldsymbol{\wedge}$	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be presentin answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	
1	D	1	
2	B	1	
3	D	1	
4	C	1	
5	B	1	
6	C	1	
7	C	1	
8	D	1	
9	A	1	
10	D	1	
11	A	1	
12	A	1	
13	B	1	
14	B	1	
15	D	1	
16	C	1	
17	D	1	
18	A	1	
19	D	1	
20	C	1	
		20	

SECTION B

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

Question			Answer	Marks	Guidance
21	(a)		Separation between droplets increases (further down)	B1	
	(b)		'No motion' explained either in terms of the first law or second law There is no / negligible resultant force	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $F=m a$, since $F=0$, a is zero (hence at rest) Allow an object continues in a state of rest or uniform motion unless acted upon by a (resultant) force. ALLOW no frictional/extra/new force
	(c)	(i)	Tangent drawn at $t=4.0 \mathrm{~s}$ Attempt at calculating the gradient v calculated from gradient and between $9.50-10.50\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR $\begin{aligned} & s=20(\mathrm{~m}) \text { and } s=1 / 2 \text { at } t^{2} \\ & 20=1 / 2 a \times 4.0^{2} \quad \text { or } \quad a=2.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\ & v=2.5 \times 4.0 \text { or } v^{2}=2 \times 2.5 \times 20 \\ & v=10\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1 C1 C1 C1 A0	Allow other correct methods Note working required for this mark
	(c)	(ii)	change in momentum $=1200 \times 10$ or $12000\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ rate of change of momentum $=3000$ unit: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ or N OR $F=1200 \times 2.5$ rate of change of momentum $=3000$ unit: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ or N	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \text { C1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Allow ECF from (c)(i) Allow 2850-3150 Allow newton Allow ECF from (c)(i) Allow newton
			Total	9	

Question			Answer	Marks	Guidance
23	(a)		Circuit diagram with LED, voltmeter and ammeter connected to a supply with correct polarity and some means of adjusting the p.d. Increase the p.d. until the LED is just lit / current is shown in the circuit ORA To observe the light from LED use a tube / turn lights off	B1 B1 B1	Allow variable (power) supply / variable resistor in circuit Allow this on a labelled diagram e.g. tube drawn around the diode
	(b)	(i)	$\frac{0.045}{1.6 \times 10^{-19}} \begin{aligned} & \text { number of electrons }=2.8 \times 10^{17} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	$\begin{aligned} & A=\pi \times\left(0.12 \times 10^{-3}\right)^{2} \text { or } 4.5(2) \times 10^{-8}\left(\mathrm{~m}^{2}\right) \\ & 0.045=\pi \times\left(0.12 \times 10^{-3}\right)^{2} \times 6.3 \times 10^{28} \times 1.6 \times 10^{-19} \times v \\ & v=9.9 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow 2 marks for $2.5 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) ; 0.24 \mathrm{~mm}$ and POT error
	(c)	(i)	(Current causes) increase in temperature of thermistor Resistance of thermistor decreases (and hence V decreases) or Current in the circuit increases, p.d. across resistor increases (and hence V decreases)	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow warms up/heat ups Ignore increase temperature of the circuit
		(ii)	$\begin{aligned} & V=2.4(\mathrm{~V}) \text { or } V_{R}=3.6(\mathrm{~V}) \\ & I=0.30(\mathrm{~A}) \\ & \text { resistance }=8.0(\Omega) \end{aligned}$ OR $V=2.4(\mathrm{~V})$ and a potential divider equation / idea $2.4=\frac{R}{R+12} \times 6.0$ or $\frac{R}{2.4}=\frac{12}{3.6}$ resistance $=8.0(\Omega)$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \\ & \\ & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Not $V=2.2(\mathrm{~V})$; misreading Allow ECF if $V=2.2(\mathrm{~V})$ is used Allow 8 (1 SF answer) Not $V=2.2(\mathrm{~V})$; misreading Allow ECF if $V=2.2(\mathrm{~V})$ is used Allow 8 (1 SF answer)
			Total	13	

Question		Answer	Marks	Guidance
24	(a)	Both travel at the same speed / speed of light/ 3.0×10^{8} $\mathrm{m} \mathrm{s}^{-1}$	B1	Ignore travels at 'c'
	(b)	$\begin{aligned} & 3.0 \times 10^{8}=f \times 2.5 \times 10^{-11} \\ & f=1.2 \times 10^{19}(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
	(c)	Use of $\mathrm{E}=\mathrm{hf}$ or $\mathrm{E}=\mathrm{hc} / \lambda$ EITHER (λ) number $=\left(500 \times 10^{-9}\right) /\left(2.5 \times 10^{-11}\right)$ number $=2.0 \times 10^{4}$ OR (E) number $=\left(7.96 \times 10^{-15}\right) /\left(3.98 \times 10^{-19}\right)$ number $=2.0 \times 10^{4}$ OR (f) number $=\left(1.2 \times 10^{19}\right) /\left(6 \times 10^{14}\right)$ number $=2.0 \times 10^{4}$	C1 A1 C1 A1 C1 A1	Allow ECF from (b) Allow ECF from (b)
		Total	6	

Question			Answer	Marks	Guidance
25	(a)	(i)	It is longitudinal	B1	
		(ii)	Loudspeaker, microphone/ear and slit Sound spreads from the slit AW Size of slit comparable to the wavelength (of sound)	B1 B1 B1	Allow doorway for a slit/gap - receiver for microphone Not diffraction (since it is in the stem of the question)
	(b)	(i)	(refraction index) $=$ speed of light in vacuum \div speed of light in material	B1	Note light must be mentioned at least once Allow $n=c / v$ if all terms defined Allow ration of speed of light in vacuum to speed of light in material NOT speed of light in air for c
		(ii)1	Frequency (of light) is the same (in A and B) (Light travels) slower in B or $v_{B}=0.77 v_{A}$ ORA $v=f \lambda \text { and } \lambda_{\mathrm{B}}<\lambda_{\mathrm{A}}$	B1 B1 B1	Allow ffor frequency Allow v directly proportional to λ
		(ii)2	$\sin 60^{\circ}=1.3 \times \sin \theta$ $\theta=42\left(^{\circ}\right)$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)3	(No total internal reflection) Internal reflection / critical angle can only occur for light travelling from B to A AW	B1	Allow TIR can only occur for light entering an optically less dense material/lower refractive index ORA Not $\theta<\phi$
			Total	11	

Question			Answer	Marks	Guidance
26	(a)		weight $\times y=F x$ $\begin{aligned} & (A L \rho g) \times y=F x \\ & y=\left(\frac{F}{A L \rho g}\right) x \end{aligned}$	M1 M1 A0	Allow W or mg Wy $=$ Fx or mgy $=F^{\prime}$
	(b)	(i)	Straight line of best fit drawn through the data points Gradient $=1.5$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow gradient in the range 1.40-1.60
		(ii)	$\begin{aligned} & \left(\frac{F}{A L \rho g}\right)=1.5 \\ & \frac{6.8}{6.4 \times 10^{-5} \times 0.90 \times \rho \times 9.81}=1.5 \\ & \rho=8.0 \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow ECF from (b)(i) Allow 8×10^{3} (1 SF answer) Note must be consistent with gradient value from (b)(i)
			Total	8	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

