Oxford Cambridge and RSA

GCE

Physics B (Advancing Physics)

H157/01: Foundations of physics

Advanced Subsidiary GCE

2021 Mark Scheme (DRAFT)

This is a DRAFT mark scheme. It has not been used for marking as this paper did not receive any entries in the series it was scheduled for. It is therefore possible that not all valid approaches to a question may be captured in this version. You should give credit to such responses when marking learner's work.

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
へ	Omission mark
SF	Error in number of significant figures
\cdots	Correct response
5	Wrong physics or equation

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation \quad Meaning	
reject	alternative and acceptable answers for the same marking point
not	Answers which are not worthy of credit
Ignore	Answers which are not worthy of credit
Allow	Statements which are irrelevant
$\mathbf{(~)}$	Whswers that can be accepted
ECF	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument

Section A: MCQs

Question		Answer	Marks	
1			A	1

SECTION B

Question		Expected Answer	Mark	Rationale/Additional Guidance
21	a	0.1 nm	1	ALLOW 0.05 to 0.2 REJECT anything with >= 2 sf
	b	0.0021 kg $\div 2.0 \times 10^{-26}$ to get $\sim 1.1 \times 10^{23}$ atoms	1 1	ALLOW conversion of $2.0 \times 10^{26} \mathrm{~kg}$ to g
	C	$\begin{aligned} & \text { Linear distance } \sqrt[3]{ } 1.1 \times 10^{23}\left(\sim 4.5 \times 10^{7}\right. \text { atom lengths) } \\ & 1 \mathrm{~cm} / \text { linear distance }=\text { atom linear size }(\sim 0.2 \mathrm{~nm}) \end{aligned}$	1 1	Look for: cube root and 1/ operations
		Total	5	

| Question | | Expected Answer | Mark | Rationale/Additional Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{2 2}$ | a | coherence/coherent | $\mathbf{1}$ | |
| | b | $\mathrm{d}=1 / 250$
 $=4.0 \times 10^{-3} \mathrm{~mm}$ | $\mathbf{1}$ | correct answer only |
| $\sin \theta=0.13$ | | | | |
| $\theta=0.13 \times 180 \div \pi$ or calculator to get 7.5° | $\mathbf{1}$ | | | |
| | | Total | $\mathbf{1}$ | |

Question		Expected Answer	Mark	Rationale/Additional Guidance
23	a	$\begin{aligned} & p=h \div \lambda \\ & =6.63 \times 10^{-34} \div 5.6 \times 10^{-7} \\ & =1.184 \times 10^{-27} \\ & \sim 1.2 \times 10^{-27} \mathrm{Ns} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	b	-2p	1	ALLOW -2.4 x $10^{-27} \mathrm{Ns}$ ALLOW left / away from sail ALLOW positive value
	c	Momentum is conserved so sail must have opposite change in momentum $/$ momentum change $=+2 p$ Force is change of momentum in unit/given time	1 1	ALLOW - sail applies force to photon (to reflect it) - so Newton 3 says force on sail
		Total	5	

Question		Expected Answer	Mark	Rationale/Additional Guidance	
$\mathbf{2 4}$	\mathbf{a}	Add lens power $=1.6 \mathrm{~m}^{-1}$	$\mathbf{1}$	ALLOW correct use of lens formula	
	\mathbf{b}		Move it to the left / closer to the lens	$\mathbf{1}$	
	c	Smaller brighter	$\mathbf{1}$		
	Total				
Total Section B	$\mathbf{1}$				

SECTION C

Question		Expected Answer	Mark	Rationale/Additional Guidance
26	a	66 cm	1	
	b	$\begin{aligned} & (22 \mathrm{fps}=>)=1.0 \div 22 \mathrm{~s} \text { per frame } \\ & =0.0454545 \ldots \mathrm{~s} \\ & (=0.045 \mathrm{~s} 2 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	c	$\begin{aligned} & s=d \div t \\ & =12 / \div 0.045 \\ & =264 \mathrm{~cm} \cdot \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ALLOW $\times 22 \mathrm{fps}$ ALLOW $2.64 \mathrm{~m} \mathrm{~s}^{-1}$ ALLOW $220+44 \mathrm{~cm} \mathrm{~s}^{-1}$
	d	$a=\Delta v \div \Delta t$ Evidence of $\Delta v=44 \mathrm{~cm} . \mathrm{s}^{-1}$ between frames $\begin{aligned} & =44 \div 0.045 \\ & =9.68 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	e	ANY 1 FROM: - lighter ball - taller drop - use more fps - improved lighting / contrast background	1	ALLOW answers that improve precision as defined in 'Language of measurement' i.e. If more precise, repeating the experiment will give results that are closer together' ALLOW suggestion to improve the picture quality
		Total	9	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

