Oxford Cambridge and RSA

GCSE (9-1)

Chemistry A (Gateway Science)

J248/02: Paper 2 (Foundation Tier)

General Certificate of Secondary Education

2021 Mark Scheme (DRAFT)

This is a DRAFT mark scheme. It has not been used for marking as this paper did not receive any entries in the series it was scheduled for. It is therefore possible that not all valid approaches to a question may be captured in this version. You should give credit to such responses when marking learner's work.

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
\mathbf{S}	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
$\mathbf{R E}$	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Oreverse argument

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements and draw conclusions. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3b	Analyse information and ideas to improve experimental procedures.

| Question Answer | | Marks | AO
 element | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | | D \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{2}$ | | A \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{3}$ | | C \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{4}$ | | A \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{5}$ | | D \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{6}$ | | C \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{7}$ | | C \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{8}$ | | A \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{9}$ | | A \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{1 0}$ | | B \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{1 1}$ | | B \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{1 2}$ | | D \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{1 3}$ | | C \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{1 4}$ | | B \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{1 5}$ | | D \checkmark | $\mathbf{1}$ | 2.1 | |

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question		Answer	Marks	$\begin{array}{c}\text { AO } \\ \text { element }\end{array}$	Guidance	
$\mathbf{1 6}$	(a)		They all have one electron in the outer shell \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	$\begin{array}{l}\text { ALLOW they all have the same number of } \\ \text { electrons in the outer shell / } \\ \text { they all form 1+ ions }\end{array}$
IGNORE they have the same number of electrons						

Question			Answer	Marks	AO element	Guidance
16	(b)	(iii)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Analyses the observations to predict what you would see and the reaction time with rubidium. AND Uses knowledge of the reactions of the alkali metals to write a correct word or symbol equation for the reaction. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Analyses the observations to predict some observations and compares the reaction time with rubidium with that of potassium. AND Uses knowledge of the reactions of the alkali metals to attempt a correct word or symbol equation for the reaction or give the name of formula of a product formed in the reaction. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Analyses the observations to predict some observations with rubidium. OR Uses knowledge of the reactions of the alkali metals to attempt a correct word or symbol equation for the reaction	6	$\begin{gathered} 2 \times 1.2 \\ 4 \times 3.2 a \end{gathered}$	AO3.2a Observations with rubidium: - bubbles / fizzes / effervescence - hydrogen made - floats - moves quickly across the surface of the water - gives a flame - explodes - makes an alkaline solution - forms a colourless solution - piece of rubidium gets smaller Reaction time: - any time less than 6 s ALLOW statement that reaction is faster than potassium at Levels $1 \& 2$ A01. 2 Word equation: rubidium + water \rightarrow rubidium hydroxide + hydrogen Symbol equation: $2 \mathrm{Rb}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2}$ (need not be balanced)

| Question | | Answer | MarksAO
 elementor give the name of formula of a product formed in the
 reaction.
 There is an attempt at a logical structure with a line of
 reasoning. The information is in the most part relevant.
 $\mathbf{0}$ marks
 No response or no response worthy of credit. | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Question | | Answer | MarksAO
 element | Guidance |
| :---: | :---: | :--- | :--- | :---: | :---: | :---: |
| (e) | $\mathrm{C}_{9} \mathrm{H}_{20}+14 \mathrm{O}_{2} \rightarrow \mathbf{9 \mathrm { CO } _ { 2 } + 1 0 \mathrm { H } _ { 2 } \mathrm { O }}$
 right hand side correct \checkmark
 left hand side correct \checkmark | $\mathbf{2}$ | $\mathbf{2 . 1}$ | |
| (f) | (Carbon monoxide) is poisonous / toxic \checkmark
 (Carbon monoxide)
 can cause difficulty breathing or suffocation /
 attaches to the haemoglobin (protein) in red blood cells /
 reduces the amount of oxygen that the blood can carry /
 can cause drowsiness /
 can cause death \checkmark | $\mathbf{2}$ | IGNORE harmful / dangerous | |

Question			Answer	Marks	AO element	Guidance
18	(a)		Reversible reaction / reaction can go both ways \checkmark	1	1.1	ALLOW equilibrium
	(b)	(i)	30 (\%) \checkmark	1	2.1	
		(ii)	Temperature $-350\left({ }^{\circ} \mathrm{C}\right)$ Pressure -600 (atmospheres)	1	2.1	BOTH required for the mark
	(c)		$\mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} \checkmark$	1	2.1	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of ' + '
	(d)		Sulfuric acid \checkmark	1	2.2	ALLOW H2SO4
	(e)		Increase crop yield / idea of providing or replacing essential elements / to provide nitrogen or phosphorus or potassium \checkmark	1	1.1	ALLOW idea of making plants grow well BUT IGNORE just to make plants grow
	(f)		Potassium chloride \checkmark	1	3.2b	ALLOW correct answer ticked, circled or underlined on graph if tick box is blank
	(g)	(i)	Idea of adding acid until the indicator changes colour (completely)	1	3.3b	ALLOW add excess of dilute acid
		(ii)	Carry out experiment in a fume cupboard or well ventilated room / use low concentrations of ammonia \checkmark	1	2.2	ALLOW goggles / gloves

Question		Answer	Marks	AO element	Guidance
(h)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 506 (tonnes) award 4 marks M_{r} of $\mathrm{HNO}_{3}=63.0$ AND $\mathrm{KNO}_{3}=101.1 \checkmark$ Mass of potassium nitrate $=\frac{101.1}{63} \times 315 / 1.605 \times 315$ $=505.5$ (tonnes) \checkmark To 3 sig figs $=506$ (tonnes) \checkmark	$\mathbf{4}$	$\mathbf{2 . 2}$		

Question		Answer	Marks	AO element	Guidance
20	(a)	Metal - aluminium \checkmark Explanation: Low density \checkmark Does not corrode \checkmark Idea that cost is not too expensive \checkmark	4	$\begin{gathered} 2 \times 2.1 \\ 2 \times 3.2 a \end{gathered}$	ALLOW light weight but DO NOT ALLOW light
	(b)	Copper / Cu \checkmark	1	1.1	
	(c)	(The nail will rust in) Tube A \checkmark And any three from: Tube A contains air/oxygen and water \checkmark In Tube B the drying agent absorbs water / there is no water \checkmark Tube C has water but no air/oxygen \checkmark In Tube C oil prevents air being absorbed \checkmark Water and air/oxygen are needed for rusting \checkmark	4	$\begin{aligned} & 2 \times 1.2 \\ & 2 \times 2.2 \end{aligned}$	

| Question | | Answer | MarksAO
 element | Guidance |
| :--- | :--- | :--- | :---: | :---: | :---: |
| (d) | Painting \checkmark
 Idea of stopping air and/or water reaching the iron \checkmark
 OR
 Coating with oil / grease / plastic \checkmark
 Idea of stopping air and/or water reaching the iron \checkmark
 OR
 Plating with zinc / galvanising \checkmark
 Idea of stopping air and/or water reaching the iron /
 idea of sacrificial protection / zinc reacts instead of iron \checkmark
 OR
 Olating with tin \checkmark
 Idea of stopping air and/or water reaching the iron \checkmark | $\mathbf{2}$ | | |
| ALLOW correct higher level explanation of | | | | |
| sacrificial protection in terms of electron loss | | | | |

Question			Answer	Marks	AO element	Guidance
21	(a)		Any three from: Mass spectrum Highest m / z value or molecular ion peak is at 46 which is the M_{r} of ethanol \checkmark Peak at $\mathrm{m} / \mathrm{z}=31$ indicates $-\mathrm{CH}_{2} \mathrm{OH}$ group \checkmark Peak at $\mathrm{m} / \mathrm{z}=15$ indicates $-\mathrm{CH}_{3}$ group \checkmark Infrared spectrum Idea that IR spectrum shows peak in range 3230-3550 which indicates an O-H bond \checkmark Idea that IR spectrum shows peak at approx. 1050 which indicates a C-C bond \checkmark Idea that IR spectrum shows peak at just below 3000 which indicates a C-H bond \checkmark Idea that IR spectrum shows peak at approx. 1100 which indicates a C-O bond \checkmark	3	3.1b	ALLOW m/z value linked to any other molecular fragment ALLOW correct link between wavenumber and bond from spectrum
	(b)		Any two from: More sensitive / can analyse very small amounts of substances \checkmark More accurate Faster / can carry out analysis all the time \checkmark	2	1.1	IGNORE more precise
	(c)	(i)	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & \text { Formulae } \checkmark \\ & \text { Balancing } \checkmark \end{aligned}$	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae $\text { e.g. } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Oh}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Question		Answer	Marks	AO element	Guidance
(c)	(ii)	Produces soot / produces carbon monoxide / produces less energy \checkmark	1	1.1	ALLOW produces a toxic or poisonous gas IGNORE produces a harmful gas
(d)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 61 / 60.9 / 60.87 (\%) award 2 marks $\begin{aligned} \text { Atom economy } & =\frac{28.0}{(28.0+18.0)} \times 100 / \frac{28.0}{46.0} \times 100 \checkmark \\ & =61(\%) / 60.9(\%) / 60.87(\%) \checkmark \end{aligned}$	2	2.1	ALLOW atom economy formula in words for one mark i.e. atom economy $=\frac{\text { total } \mathrm{Mr} \text { of desired products }}{\text { total } \mathrm{Mr} \text { of all products }} \times 100$ ALLOW ECF ALLOW any correct rounding from calculator value, 60.86956522

Question			Answer	Marks	AO element	Guidance
22	(a)	(i)	Idea of looking at each stage of the life of a product to work out the potential environmental impact at each stage \checkmark	1	1.1	
		(ii)	Any two from: Raw materials needed Energy used in processing or manufacturing \checkmark Water used in processing or manufacturing \checkmark Energy needed to use the product \checkmark Energy needed to maintain the product \checkmark Water or other substances needed to maintain the product \checkmark Energy needed to dispose of the product \checkmark Space needed to dispose of the product \checkmark	2	1.1	ALLOW sustainability ALLOW idea of environmental impact of transporting raw materials ALLOW do the materials used decompose or break down ALLOW can the product be recycled IGNORE references to cost IGNORE references to waste products or pollution (stem of question)
	(b)	(i)	Vehicle operation \checkmark	1	3.1a	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

