GCSE (9-1)

Chemistry A (Gateway Science)

J248/04: Paper 4 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubtgiven
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubtnot given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
--	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry:

AO1	Assessment Objective
AO1.1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
	Analyse information and ideas to improve experimental procedures.
AO3	

| Question Answer | | Marks | AO
 element | | |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| $\mathbf{1}$ | | D \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{2}$ | | A \checkmark | $\mathbf{1}$ | 1.2 | |
| $\mathbf{3}$ | | D \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{4}$ | | C \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{5}$ | | C \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{6}$ | | C \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{7}$ | | B \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{8}$ | | B \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{9}$ | | C \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{1 0}$ | | D \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{1 1}$ | | B \checkmark | $\mathbf{1}$ | 2.2 | |
| $\mathbf{1 2}$ | | C \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{1 3}$ | | D \checkmark | $\mathbf{1}$ | 2.1 | |
| $\mathbf{1 4}$ | | C \checkmark | $\mathbf{1}$ | 1.1 | |
| $\mathbf{1 5}$ | | D \checkmark | $\mathbf{1}$ | 1.1 | |

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question			Answer	Marks	AO element	Guidance
16	(a)		Any three from: Mass spectrum Highest m / z value or molecular ion peak is at 46 which is the $M r$ of ethanol \checkmark Peak at $\mathrm{m} / \mathrm{z}=31$ indicates $-\mathrm{CH}_{2} \mathrm{OH}$ group \checkmark Peak at $\mathrm{m} / \mathrm{z}=15$ indicates $-\mathrm{CH}_{3}$ group \checkmark Infrared spectrum Idea that IR spectrum shows peak in range 3230-3550 which indicates an $\mathrm{O}-\mathrm{H}$ bond \checkmark Idea that IR spectrum shows peak at approx. 1050 which indicates a C-C bond \checkmark Idea that IR spectrum shows peak at just below 3000 which indicates a C-H bond \checkmark Idea that IR spectrum shows peak at approx. 1100 which indicates a C-O bond \checkmark	3	3.1b	ALLOW m/z value linked to any other molecular fragment ALLOW correct link between wavenumber and bond from spectrum
	(b)		Any two from: More sensitive / can analyse very small amounts of substances \checkmark More accurate Faster / can carry out analysis all the time \checkmark	2	1.1	IGNORE more precise
	(c)	(i)	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & \text { Formulae } \checkmark \\ & \text { Balancing } \checkmark \end{aligned}$	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae $\text { e.g. } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Oh}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Question		Answer	Marks	AO element	Guidance
(c)	(ii)	Produces soot / produces carbon monoxide / produces less energy \checkmark	1	1.1	ALLOW produces a toxic or poisonous gas IGNORE produces a harmful gas
(d)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 61 / 60.9 / 60.87 (\%) award 2 marks $\begin{aligned} & \text { Atom economy }=\frac{28.0}{(28.0+18.0)} \times 100 / \frac{28.0}{46.0} \times 100 \checkmark \\ & =61(\%) / 60.9(\%) / 60.87(\%) \checkmark \end{aligned}$	2	2.1	ALLOW atom economy formula in words for one mark $\text { i.e. atom economy }=\frac{\text { total Mr of desired products }}{\text { total Mr of all products }} \times 100$ ALLOW ECF ALLOW any correct rounding from calculator value, 60.86956522

Question		Answer	Marks	AO element	Guidance	
$\mathbf{1 7}$	(a)	(i)	Idea of looking at each stage of the life of a product to work out the potential environmental impact at each stage \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	
(ii)	Any two from: Raw materials needed \checkmark Energy used in processing or manufacturing \checkmark Water used in processing or manufacturing \checkmark Energy needed to use the product \checkmark Energy needed to maintain the product \checkmark Water or other substances needed to maintain the product \checkmark Energy needed to dispose of the product \checkmark Space needed to dispose of the product \checkmark	$\mathbf{2}$	$\mathbf{1 . 1}$	ALLOW sustainability ALLOW idea of environmental impact of transporting raw materials		

Question		Answer	Marks	AO element	Guidance
(b)	(i)	Vehicle operation \checkmark	1	3.1a	
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 9.5 (tonnes) award 4 marks Mass of CO_{2} produced by petrol car $=80 \%$ of 29.8 tonnes $=23.84$ (tonnes) \checkmark Mass of CO_{2} produced by diesel car $=70 \%$ of 20.5 tonnes $=14.35$ (tonnes) \checkmark Difference $=23.84-14.35=9.49$ (tonnes) \checkmark To 2 sig figs $=9.5$ (tonnes) \checkmark	4	3.2b	ALLOW ECF ALLOW ECF ALLOW 1 mark for correct identification of percentages of CO_{2} from vehicle operation for each car (petrol-80\%, diesel-70\%), if no other mark awarded ALLOW answers given to 2 sig figs throughout the question, i.e. Mass of CO_{2} produced by petrol car $=24$ (tonnes) Mass of CO_{2} produced by diesel car = 14 (tonnes) Difference $=10$ (tonnes)

	stion	Answer	Marks	AO element	Guidance
18	(d)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Analyses the results to correctly identify the effects of changing the temperature AND changing the concentration, with a correct explanation of the results. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Analyses the results to correctly identify the effects of changing the temperature OR changing the concentration, with a correct explanation of the results. OR Correctly identifies the effects of changing the temperature AND changing the concentration OR Correctly explains the effect of changing the temperature AND changing the concentration. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Analyses the results to correctly identify the effects of changing the temperature OR changing the concentration. OR Correctly explains the effect of changing the temperature OR changing the concentration. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} 3 \times 1.2 \\ 3 \times 3.2 b \end{gathered}$	AO3.2b - results of experiments $1 \& 2$ show that as the temperature increases the reaction time decreases, so the rate of reaction increases - results of experiments 2 \& 3 show that as the concentration increases the reaction time decreases, so the rate of reaction increases - reaction rate is fastest in experiment 3 due to the combined effects of increased temperature \& increased concentration A01.2 Increasing concentration: - idea of more crowded particles / particles are closer together / more particles per unit volume / more acid particles per cm^{3} / more acid particles in the same space - idea of more collisions per second / collisions more often / increased collision frequency / more chance of a collision IGNORE references to just 'more particles' Increasing the temperature: - idea that acid particles move faster / particles have more energy - idea of more collisions per second / collisions more often / increased collision frequency / more chance of a collision - idea of more successful collisions / collisions between marble chips and acid are more energetic IGNORE references to 'faster' collisions

Question		Answer	Marks	AO element	Guidance
19	(a)	Boiling point of fluorine Answer in range -50 to -200 ($\left.{ }^{\circ} \mathrm{C}\right) \checkmark$ Melting point of astatine Answer in range 150 to $320\left({ }^{\circ} \mathrm{C}\right) \checkmark$	2	3.1a	
	(b)	$\begin{aligned} & \mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2} \\ & \text { Balancing } \checkmark \\ & \text { Formulae } \checkmark \end{aligned}$	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae eg CL2 $+2 \mathrm{NABr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br} 2$
	(c)	(Group 7) atoms gain electrons \checkmark Fluorine atoms are smaller (than astatine) / ORA / idea that outer electron shell is closer to the nucleus in fluorine / ORA / fluorine has less electron shells (than astatine) / ORA less shielding in fluorine (than astatine)/ ORA \checkmark Electrons are more strongly attracted to fluorine atoms / ORA / fluorine atoms gain electrons more easily / ORA / less energy needed to gain outer electron in fluorine/ ORA \checkmark	3	1.1	Assume unqualified answer refers to fluorine IGNORE fluorine atoms gain electrons more quickly / ORA

Question			Answer	Marks	AO element	Guidance
20	(a)		LPG Petrol Diesel Bitumen All 4 correct $=\mathbf{2}$ marks Any 2 correct = 1 mark	2	2.1	
	(b)	(i)	Any three from: Idea of high demand for smaller molecules \checkmark Smaller molecules used for fuels / alkenes used for polymers \checkmark Idea of not enough supply of smaller molecules \checkmark Idea of surplus of larger molecules \checkmark Idea that cracking changes larger molecules to smaller molecules or alkenes \checkmark	3	1.1	ALLOW named larger and smaller molecules, e.g. bitumen and LPG / petrol ALLOW molecules with double bonds or unsaturated molecules are used for polymers IGNORE idea that the molecules are too long
		(ii)	Idea that any carbon to carbon bond in the molecule can break \checkmark	1	2.1	
		(iii)	$\mathrm{C}_{30} \mathrm{H}_{62} \rightarrow \mathrm{C}_{20} \mathrm{H}_{42}+2 \mathrm{C}_{5} \mathrm{H}_{10} \quad \checkmark$	1	2.1	

Question		Answer	Marks	AO element	Guidance
(c)	(i)	Any one from: Compound \mathbf{B} is an alkene / compound \mathbf{A} is an alkane \checkmark Compound \mathbf{B} is unsaturated / compound \mathbf{A} is saturated \checkmark Compound \mathbf{B} contains a double bond / compound \mathbf{A} only has single bonds \checkmark	1	1.2	Assume unqualified answer refers to compound B
	(ii)	 OR $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2} \checkmark$	1	2.2	ALLOW structure of - CH_{3} group shown in product ALLOW butene drawn as a straight chain or product drawn at an angle as butene ALLOW Br2C4 ${ }_{4} \mathrm{H}_{8}$

Questi	Answer	Marks	AO element	Guidance
(d)	Any two from: Avoid naked flames or sources of ignition because solvent is highly flammable Wear gloves because reagents are corrosive Wear eye protection because reagents are corrosive \checkmark	2	$\begin{aligned} & 1.2 \\ & 2.2 \end{aligned}$	ALLOW (Carry out experiment) in a wellventilated lab / fume cupboard ALLOW a description of 2 precautions for 1 mark if no other mark awarded

Question			Answer	Marks	AO element	Guidance
22	(a)	(i)	$150\left(\mathrm{dm}^{3}\right)^{\checkmark}$	1	2.1	
		(ii)	$300\left(\mathrm{dm}^{3}\right)^{\checkmark}$	1	2.1	ALLOW ECF from (a)(i), ie $2 \times$ (a)(i)
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.6 (g) award 4 marks Moles of $I_{2}=\frac{150}{24} / 6.25 \checkmark$ Mass of $\mathrm{I}_{2}=\frac{150}{24} \times 253.8 / 6.25 \times 253.8 / 1586.25 \mathrm{~g} \checkmark$ Mass of I_{2} in $\mathrm{kg}=1.586 / 1.58625 / 1.5863(\mathrm{~kg}) \checkmark$ To 1 decimal place $=1.6(\mathrm{~kg}) \checkmark$	4	2.2	ALLOW ECF from moles of I_{2} ALLOW ECF from mass of I_{2} in grams ALLOW ECF for 1 decimal place mark

Question			Answer	Marks	AO element	Guidance
23	(a)		Correct identification of sodium / Na^{+}(from Test 1) \checkmark Correct identification of sulfate $/ \mathrm{SO}_{4}{ }^{2-}($ from Test 2$) \checkmark$ Correct formula of compound $\mathbf{Y}-\mathrm{Na}_{2} \mathrm{SO}_{4} \checkmark$	3	2×2.2 1×1.2	Award all 3 marks for $\mathrm{Na}_{2} \mathrm{SO}_{4}$
	(b)	(i)	Idea that more than one cation gives a white precipitate \checkmark	1	1.2	ALLOW answers which refer to specific cations that give a white precipitate $\left(\mathrm{Al}^{3+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Zn}^{2+}\right.$, Pb^{2+}) IGNORE incorrect cation charges DO NOT ALLOW incorrect cations
		(ii)	Idea that the chloride ions could have come from the hydrochloric acid \checkmark	1	3.2b	
		(iii)	Use nitric acid (instead of hydrochloric acid) \checkmark	1	1.2	ALLOW use a different acid / do not use hydrochloric acid BUT DO NOT ALLOW sulfuric acid

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

