Tuesday 21 June 2022 - Afternoon
 A Level Mathematics B (MEI)

H640/03 Pure Mathematics and Comprehension
Time allowed: 2 hours

You must have:

- the Printed Answer Booklet
- the Insert
- a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided in the Printed Answer Booklet. If you need extra space use the lined pages at the end of the Printed Answer Booklet. The question numbers must be clearly shown.
- Fill in the boxes on the front of the Printed Answer Booklet.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.
- Give your final answers to a degree of accuracy that is appropriate to the context.
- Do not send this Question Paper for marking. Keep it in the centre or recycle it.

INFORMATION

- The total mark for this paper is 75 .
- The marks for each question are shown in brackets [].
- This document has 8 pages.

ADVICE

- Read each question carefully before you start your answer.

Formulae A Level Mathematics B (MEI) (H640)

Arithmetic series

$S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}$

Geometric series

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$ for $|r|<1$

Binomial series

$(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+{ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}+\ldots+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})$,
where ${ }^{n} \mathrm{C}_{r}={ }_{n} \mathrm{C}_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{r!} x^{r}+\ldots \quad(|x|<1, n \in \mathbb{R})$

Differentiation

$\mathrm{f}(x)$	$\mathrm{f}^{\prime}(x)$
$\tan k x$	$k \sec ^{2} k x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$

Quotient Rule $y=\frac{u}{v}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

Differentiation from first principles

$\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}$

Integration

$\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|+c$
$\int \mathrm{f}^{\prime}(x)(\mathrm{f}(x))^{n} \mathrm{~d} x=\frac{1}{n+1}(\mathrm{f}(x))^{n+1}+c$
Integration by parts $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

Small angle approximations

$\sin \theta \approx \theta, \cos \theta \approx 1-\frac{1}{2} \theta^{2}, \tan \theta \approx \theta$ where θ is measured in radians

Trigonometric identities

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right)$

Numerical methods

Trapezium rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right\}$, where $h=\frac{b-a}{n}$
The Newton-Raphson iteration for solving $\mathrm{f}(x)=0$: $x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}$

Probability

$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)=\mathrm{P}(B) \mathrm{P}(A \mid B) \quad$ or $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$

Sample variance

$s^{2}=\frac{1}{n-1} S_{x x}$ where $S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}=\sum x_{i}^{2}-n \bar{x}^{2}$
Standard deviation, $s=\sqrt{\text { variance }}$

The binomial distribution

If $X \sim \mathrm{~B}(n, p)$ then $\mathrm{P}(X=r)={ }^{n} \mathrm{C}_{r} p^{r} q^{n-r}$ where $q=1-p$
Mean of X is $n p$

Hypothesis testing for the mean of a Normal distribution

If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ then $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ and $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$

Percentage points of the Normal distribution

p	10	5	2	1
z	1.645	1.960	2.326	2.576

Kinematics

Motion in a straight line
$v=u+a t$
$s=u t+\frac{1}{2} a t^{2}$
$s=\frac{1}{2}(u+v) t$
$v^{2}=u^{2}+2 a s$
$s=v t-\frac{1}{2} a t^{2}$

Motion in two dimensions
$\mathbf{v}=\mathbf{u}+\mathbf{a} t$
$\mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$
$\mathbf{s}=\frac{1}{2}(\mathbf{u}+\mathbf{v}) t$
$\mathbf{s}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2}$

Answer all the questions.

Section A (60 marks)

1 A curve for which y is inversely proportional to x is shown below.

Find the equation of the curve.

2 The function $\mathrm{f}(x)=\sqrt{x}$ is defined on the domain $x \geqslant 0$.
The function $\mathrm{g}(x)=25-x^{2}$ is defined on the domain \mathbb{R}.
(a) Write down an expression for $\mathrm{fg}(x)$.
(b) (i) Find the domain of $\mathrm{fg}(x)$.
(ii) Find the range of $\mathrm{fg}(x)$.

3 An infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{n}=\frac{n}{n+1}$, for all positive integers n.
(a) Find the limit of the sequence.
(b) Prove that this is an increasing sequence.

4 In this question you must show detailed reasoning.
Determine the exact solutions of the equation $2 \cos ^{2} x=3 \sin x$ for $0 \leqslant x \leqslant 2 \pi$.

5 A curve is defined implicitly by the equation $2 x^{2}+3 x y+y^{2}+2=0$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 x+3 y}{3 x+2 y}$.
(b) In this question you must show detailed reasoning.

Find the coordinates of the stationary points of the curve.

6 A hot drink is cooling. The temperature of the drink at time t minutes is $T^{\circ} \mathrm{C}$.
The rate of decrease in temperature of the drink is proportional to $(T-20)$.
(a) Write down a differential equation to describe the temperature of the drink as a function of time.
(b) When $t=0$, the temperature of the drink is $90^{\circ} \mathrm{C}$ and the temperature is decreasing at a rate of $4.9^{\circ} \mathrm{C}$ per minute.

Determine how long it takes for the drink to cool from $90^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
[6]

7 A student is trying to find the binomial expansion of $\sqrt{1-x^{3}}$.
She gets the first three terms as $1-\frac{x^{3}}{2}+\frac{x^{6}}{8}$.
She draws the graphs of the curves $y=\sqrt{1-x^{3}}, y=1-\frac{x^{3}}{2}$ and $y=1-\frac{x^{3}}{2}+\frac{x^{6}}{8}$ using software.

(a) Explain why $1-\frac{x^{3}}{2}+\frac{x^{6}}{8} \geqslant 1-\frac{x^{3}}{2}$ for all values of x.
(b) Explain why the graphs suggest that the student has made a mistake in the binomial expansion.
(c) Find the first four terms in the binomial expansion of $\sqrt{1-x^{3}}$.
(d) State the set of values of x for which the binomial expansion in part (c) is valid.
(e) Sketch the curve $y=2.5 \sqrt{1-x^{3}}$ on the grid in the Printed Answer Booklet.
(f) In this question you must show detailed reasoning.

The end of a bus shelter is modelled by the area between the curve $y=2.5 \sqrt{1-x^{3}}$, the lines $x=-0.75, x=0.75$ and the x-axis. Lengths are in metres.

Calculate, using your answer to part (c), an approximation for the area of the end of the bus shelter as given by this model.

8 The curves $y=\mathrm{h}(x)$ and $y=\mathrm{h}^{-1}(x)$, where $\mathrm{h}(x)=x^{3}-8$, are shown below.
The curve $y=\mathrm{h}(x)$ crosses the x-axis at B and the y-axis at A.
The curve $y=\mathrm{h}^{-1}(x)$ crosses the x-axis at D and the y-axis at C .

(a) Find an expression for $\mathrm{h}^{-1}(x)$.
(b) Determine the coordinates of A, B, C and D.
(c) Determine the equation of the perpendicular bisector of AB . Give your answer in the form $y=m x+c$, where m and c are constants to be determined.
(d) Points A, B, C and D lie on a circle.

Determine the equation of the circle. Give your answer in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$, where a, b and r^{2} are constants to be determined.

Answer all the questions.

Section B (15 marks)

The questions in this section refer to the article on the Insert. You should read the article before attempting the questions.

9 Show that $y=x$ has the same gradient as $y=\sin x$ when $x=0$, as stated in line 5 .

10 In this question you must show detailed reasoning.

Fig. C2.2 indicates that the curve $y=\frac{4 x(\pi-x)}{\pi^{2}}-\sin x$ has a stationary point near $x=3$.

- Verify that the x-coordinate of this stationary point is between 2.6 and 2.7.
- Show that this stationary point is a maximum turning point.

11 Show that, for the angle 45°, the formula $\sin \theta \approx \frac{4 \theta(180-\theta)}{40500-\theta(180-\theta)}$ given in line 28 gives the same approximation for the sine of the angle as the formula $\sin x \approx \frac{16 x(\pi-x)}{5 \pi^{2}-4 x(\pi-x)}$ given in line 23.

12 (a) Show that $\cos x=\sin \left(x+\frac{\pi}{2}\right)$.
(b) Hence show that $\sin x \approx \frac{16 x(\pi-x)}{5 \pi^{2}-4 x(\pi-x)}$ gives the approximation $\cos x \approx \frac{\pi^{2}-4 x^{2}}{\pi^{2}+x^{2}}$, as stated in line 31 .

END OF QUESTION PAPER

OCR
 Oxford Cambridge and RSA

