

F

Friday 27 May 2022 – Morning GCSE (9–1) Chemistry A (Gateway Science)

J248/01 Paper 1 (Foundation Tier)

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9–1) Chemistry A (inside this document)

You can use:

- · a scientific or graphical calculator
- an HB pencil

									/
Please write clea	arly in	black	ink.	Do no	ot writ	e in the barcodes.			
Centre number						Candidate number			
First name(s)									
Last name									

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- · Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if the answer is wrong.

INFORMATION

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 28 pages.

ADVICE

· Read each question carefully before you start your answer.

SECTION A

Answer **all** the questions.

You should spend a maximum of 30 minutes on this section.

Write your answer to each question in the box provided.

1	Wh	ich state symbol is used for liquids?		
	Α	(aq)		
	В	(g)		
	С	(I)		
	D	(s)		
	You	ır answer		[1]
2	Wh	ich particle model diagram shows a	gas?	
	A		B O O O O O O O O O O O O O O O O O O O	
	С		D	
			369899	
	You	ır answer		[1]

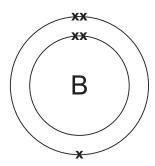
	ich substance				
Α	Carbon nan	otubes			
В	Diamond				
С	Graphene				
D	Graphite				
You	ır answer				[
Whi	ich is correct	about any two elements with the	e same number o	f electron shells?	
Α	They are bo	oth metals.			
В	They are bo	oth non-metals.			
С	They are bo	oth in the same group on the Per	iodic Table.		
	,	3 34			
D	They are bo	th in the same period on the Pe	riodic Table.		
D	They are bo	oth in the same period on the Pe	riodic Table.		
	They are bo	oth in the same period on the Per	riodic Table.		[
You	ır answer e table shows	the results when four solutions		iversal indicator and a pH	[
You	ır answer e table shows			iversal indicator and a pH	[
You	ir answer e table shows be.	the results when four solutions	are tested with ur Reading on	iversal indicator and a pH	[
You The prob	ir answer e table shows be.	the results when four solutions Colour when universal indicator is added	are tested with un Reading on pH probe	iversal indicator and a pH	[
You The prob	ir answer e table shows be.	Colour when universal indicator is added	Reading on pH probe	iversal indicator and a pH	[

		4	
6	Whi	ch pieces of apparatus are used for filtration ?	
	Α	Beaker, filter paper and condenser	
	В	Beaker, filter paper and funnel	
	С	Beaker, funnel and mass balance	
	D	Filter paper, funnel and condenser	
	You	r answer	[1]
7	Whi	ch description is correct for melting ice?	
	Α	There is a chemical change and a change of state.	
	В	There is a chemical change and a reaction occurs.	
	С	There is a physical change and a change of state.	
	D	There is a physical change and a reaction occurs.	
	You	r answer	[1]
8	The	symbol for a calcium ion is Ca ²⁺ . The symbol for an iodate ion is IO ₃ ⁻ .	
	Wha	at is the formula for calcium iodate?	
	Α	CaIO ₃	
	В	CaIO ₃₂	
	С	$Ca(IO_3)_2$	
	D	Ca_2IO_3	
	You	r answer	[1]

9	Dur	ing the electrolysis of molten sodium chloride, sodium and chlorine are formed.	
	Wha	at happens at the positive electrode (anode)?	
	Α	The chloride ion, Cl^- , gains an electron.	
	В	The chloride ion, Cl^- , loses an electron.	
	С	The sodium ion, Na ⁺ , gains an electron.	
	D	The sodium ion, Na ⁺ , loses an electron.	
	You	ir answer	[1]
10	Wha	at did Rutherford suggest about the model of the atom?	
	Α	Atoms contain a nucleus.	
	В	Atoms contain electrons.	
	С	The atom is a solid sphere like a billiard ball.	
	D	The nucleus is made up of protons and neutrons.	
	You	ir answer	[1]
11	Wha	at is the relative formula mass of potassium chloride, KCl?	
	Rela	ative atomic mass (A_r): $Cl = 35.5$ K = 39.1	
	Α	36.0	
	В	67.4	
	С	74.6	
	D	79.0	
	You	er answer	[1]

his table without the atomic mas or undiscovered ements in order of the smaller than 1	ut knowing a ses incorrec	
the atomic mas or undiscovered ements in order o	ses incorrec	reactivity.
or undiscovered	elements.	g reactivity.
ements in order o		
	of increasing	
smaller than 1		[1]
e smaller than 1		
	× 10 ⁻⁹ m?	
, molecules and	atoms	
, neutrons and e	electrons	
ms and electron	ıs	
ymers and proto		
		[1]
ury is a liquid at	25°C.	
nercury is correc	ct?	
	ing Point (°C)	
above	25	
below	25	
above	25	
below	25	
_	below	above 25 below 25 above 25 below 25

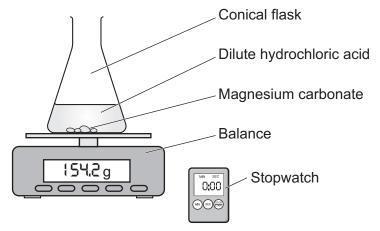
15		ich products are formed in the electrolysis of aqueous copper sulfate, CuSO ₄ using inert ctrodes?	
	Α	Copper and oxygen	
	В	Copper and sulfur dioxide	
	С	Hydrogen and oxygen	
	D	Hydrogen and sulfur dioxide	
	You	ır answer	[1]


SECTION B

Answer **all** the questions.

16 (a) Complete the sentences about the structure of an atom. Use words from the list.

		electrons	negative	neutral	neutrons	positive	protons	
	An	atom has a n	ucleus with a		cha	arge. The nuc	cleus is made (up of
			and					[3]
(b)	(i)	Look at the	information at	oout two isc	otopes of boror	۱.		
		5 B 10	5 B 11					
		Which state	ments about t	he isotopes	of boron are c	orrect?		
		Tick (✓) two	boxes.					
		Boron has 1	I1 protons.					
		The atomic	number of bo	ron is 5.				
		The electron	ns are heavier	than the pr	otons.			
		The isotope	es of boron hav	ve different	numbers of ne	utrons.		
		The isotope	es of boron hav	ve different	numbers of pro	otons.		
		The mass n	umber of bord	on is the sar	ne for both isot	opes.		[2]


(ii) The diagram shows a boron atom.

	Explain why boron is in Group 3 of the Periodic Table.	
		. [1]
(c)	Chlorine is in Group 7 of the Periodic Table. Chlorine is a non-metal.	
	Why do non-metals form negative ions?	
		[2]
(d)	Chlorine reacts with aluminium to form aluminium chloride.	
	• The formula for aluminium chloride is $AlCl_3$.	
	• The symbol for a chloride ion is Cl^- .	
	What is the symbol for an aluminium ion?	
		[1]

			_		_	
17	(a)	Complete the	word	equation	for	neutralisation.

		acid + alkali → salt +	
			[1]
(b)		udent reacts magnesium carbonate with dilute hydrochloric acid. bon dioxide gas and a salt are made.	
	(i)	What is the name of the salt made?	
			[1]
	(ii)	The diagram shows the apparatus the student uses.	

How can the student tell when the reaction is complete?
[1]

(iii) The student records the mass on the balance every 2 minutes for 12 minutes.

The student's results are shown in the table.

Time (minutes)	Mass (g)
0	154.2
2	150.5
4	148.2
6	146.5
8	145.3
10	144.0
12	142.9

The mass before the reaction starts is 154.2g.

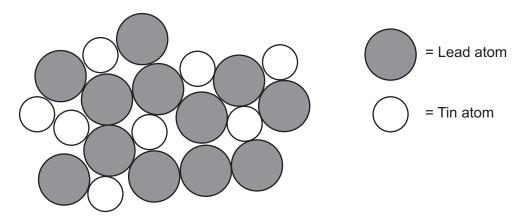
How much carbon dioxide gas is made after 8 minutes?

Mass of carbon dioxide =g [2]

			12			
(c)	(i)	The student wants to pre This is made by reacting		mple of the soluble salt. ate and dilute hydrochloric a	acid.	
		Select the three correct	steps that the stude	nt uses to prepare the pure,	dry salt.	
		Put them in the order the	e student completes	each step by labelling them	1, 2 and 3.	
		Crystallise the filtrate in a	an evaporating basir	1.		
		Distil the filtrate using fra	ectional distillation.			
		Filter the solution, leavin	g the magnesium ca	rbonate in the filter paper.		
		Filter the solution, leavin	g the salt in the filter	paper.		
		React hydrochloric acid	with excess magnes	ium carbonate.		
		React magnesium carbo	nate with excess hy	drochloric acid.		[3]
	(ii)	-	of salt produced. Th	eir results are shown in the	table.	
		Experiment number	Mass of salt (g)	_		
		2	20.95	_		
		3	21.78	_		
		4	23.40	_		
		Calculate the mean mas Give your answer to 3 sign	·			

18 The table shows data about four different substances.

Substance	Melting point (°C)	Boiling point (°C)	Soluble in water?	Conducts electricity as a solid?	Conducts electricity when molten or dissolved?
Α	550	1300	yes	no	yes
В	-183	-162	no	no	no
С	420	907	no	yes	yes
D	1670	>1670	no	no	no


A scientist uses the information to find out what type of bonding is present in each substance.

		Solid	Liquid	Gas	[1]
		Put a ring around the correct answer.			
	(iii)	What is the state of substance B at roon	n temperature?		
		Reason 2			[3]
		Reason 1			
		Substance			
		Explain your answer.			
	(ii)	Which of the substances is a simple co			,
		Explain why the scientist is correct.			
(a)	(i)	The scientist thinks substance A is an ic	onic compound.		
		•			

(b) The scientist investigates some metals and metal alloys.

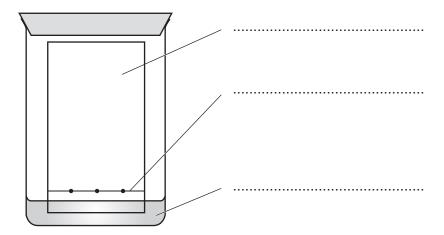
(i)	Describe the structure and bonding in a metal.
	You can include a labelled diagram in your answer.
	[3]
(ii)	Explain why metals are malleable.
	[1]
(iii)	Explain why metals can conduct electricity.
	[2]

(iv) The scientist has a diagram of one type of metal alloy as shown.

What is the smallest ratio of lead to tin in the alloy?

Ratio of lead to tin =		[2]
------------------------	--	-----

(v) The table shows data about other alloys made from tin, copper and silver.


	Alloy 1	Alloy 2	Alloy 3
Tin content (%)	95.5	99.0	96.5
Copper content (%)	0.7	0.7	0.5
Silver content (%)	3.8	0.3	3.0
Melting point (°C)	217	227	220

What is the relationship between the silver content and the melting point?
[1

A st	tuder	nt investigates dyes.		
(a)	Sor	ne dyes are nanoparticles.		
	(i)	What is the size of a nanopart	icle?	
		Tick (✓) one box.		
		Less than 1 nm		
		Between 1 and 100 nm		
		Between 100 and 1000 nm		
		Greater than 1000 nm		[1]
	(ii)	Some people think using nanckeep using them.	particulate materials is dangerous. Other people want t	to
		State one advantage and one	e disadvantage of using nanoparticulate materials.	
		Advantage		
		Disadvantage		
				[2
		(a) Sor (i)	Tick () one box. Less than 1 nm Between 1 and 100 nm Between 100 and 1000 nm Greater than 1000 nm (ii) Some people think using nanckeep using them. State one advantage and one Advantage	(a) Some dyes are nanoparticles. (i) What is the size of a nanoparticle? Tick (✓) one box. Less than 1 nm Between 1 and 100 nm Between 100 and 1000 nm Greater than 1000 nm (ii) Some people think using nanoparticulate materials is dangerous. Other people want to the content of the co

(b) The student uses paper chromatography to separate the dyes.

The diagram shows the apparatus at the start of the experiment.

Label the apparatus. Use phrases from the list.

Ink spot
Mobile phase
Pencil line
Solvent front
Stationary phase

[3]

(c) At the end of the experiment one of the dyes has moved 55 mm.

The solvent has moved 65 mm.

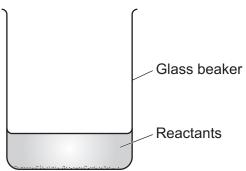
(i) Calculate the R_f value of this dye.

Give your answer to 2 significant figures.

R_f value of dye =[2]

		гэ
	Explain why the student is incorrect.	
	Evalois why the student is incorrect	
	The student thinks dye X is tartrazine.	
	The student knows that the food colouring tartrazine has an $R_{\rm f}$ value of 0.11.	
(ii)	Another dye, X , has an R _f value of 0.22.	

20* The table shows the results of two chemical reactions, A and B.

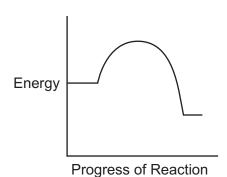

	Temperature at the start of the reaction (°C)	Temperature at the end of the reaction (°C)	Energy change (kJ/mol)
Reaction A	25.5	32.1	– 157
Reaction B	23.4	18.3	+ 241

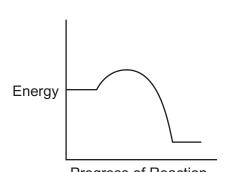
(a) Use the information in the table to state if each of the reactions, A and B, are exothermic or

endothermic.
Explain your answers.

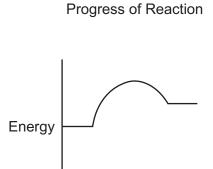
(b) A teacher wants to calculate the temperature change of another reaction.

The diagram shows the apparatus they use.

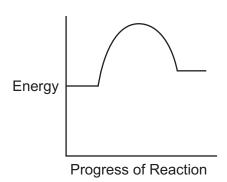

(i)	The teacher measures the temperature of the reaction at the start and end of the reaction.
	What apparatus do they use to measure the temperature?
	[1]
(ii)	The temperature of the reaction does not change. The teacher thinks too much heat is escaping from the apparatus.
	Suggest two ways they can improve the apparatus to stop the heat escaping.
	1
	2
	[2]


(c) The diagrams show the reaction profiles for four different reactions.

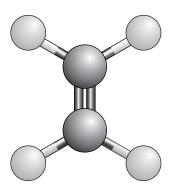
Draw three lines to connect the reaction profile with its correct description.


Reaction profile

Description


Exothermic reaction with low activation energy

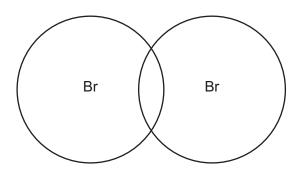
Endothermic reaction with low activation energy


Progress of Reaction

Exothermic reaction with high activation energy

[3]

21 The diagram shows a ball and stick model for ethene, $\mathrm{C_2H_4}$.



(a) Which statements about this ball and stick model of ethene are correct?

Tick (✓) two boxes.

The model shows how many electrons the carbon atoms have.	
The model shows how many electrons the hydrogen atoms have.	
The model shows how much space each atom fills.	
The model shows that the carbon atoms are bigger than the hydrogen atoms.	
The model shows the difference between double bonds and single bonds.	[2]

(b) Molecules can be drawn using dot and cross diagrams.

Complete the dot and cross diagram for bromine, $\mathrm{Br}_2.$

Show the electrons in the outer shells only.

	23					
(c)	At room temperature, ethene is a gas and bromine is a liquid.					
	Use the particle model to describe two differences between the movement or arrangement of the particles in ethene and the particles in bromine.					
	1					
	2					
	[2]					
(d)	Ethene reacts with bromine to make a product.					
	The relative formula mass of the product is 187.8.					
	There are 2 carbon atoms and 4 hydrogen atoms in the product.					
	Calculate how many bromine atoms are in the product.					
	Number of bromine atoms =[3]					

22	A student has a sample of a liquid .				
	(a)	(i)	State a method the student uses to find out if the sample is pure . [1]		
		(ii)	The student finds out that the sample is impure .		
			The sample contains hexane, C_6H_{14} , and cyclohexane, C_6H_{12} .		
			What is the empirical formula of hexane?		
		(iii)	The boiling point of hexane is lower than the boiling point of cyclohexane.		
			Describe a method the student could use to obtain a sample of pure hexane from the mixture of cyclohexane and hexane.		
			You can include a labelled diagram in your answer.		

(b) (i) The student obtains 12.0 g of hexane from 15.2 g of the mixture of hexane and cyclohexane.

Calculate the percentage of hexane obtained.

Give your answer to 2 significant figures.

Percentage of hexane = % [2]

(ii) Hexane reacts with oxygen in a combustion reaction.

Complete the **balanced symbol** equation for this reaction.

2
$$C_6H_{14} + \dots CO_2 + \dots H_2O$$
 [1]

END OF QUESTION PAPER

26

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).			

 ,	 	
 <u> </u>	 	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.