

# F

# Tuesday 17 May 2022 – Morning

# GCSE (9–1) Combined Science B (Twenty First Century Science)

J260/01 Biology (Foundation Tier)

Time allowed: 1 hour 45 minutes

| V | 'n |   | m   |   | c | ŀΙ | h | 2 | ٧, | Δ |   |
|---|----|---|-----|---|---|----|---|---|----|---|---|
| • | v  | u | ••• | u | 3 |    | • | a | ¥  | C | • |

• a ruler (cm/mm)

#### You can use:

- · a scientific or graphical calculator
- an HB pencil

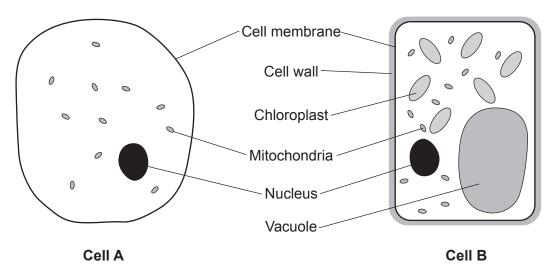


| Please write clearly in black ink. <b>Do not write in the barcodes.</b> |  |  |  |  |                  |  |  |  |
|-------------------------------------------------------------------------|--|--|--|--|------------------|--|--|--|
| Centre number                                                           |  |  |  |  | Candidate number |  |  |  |
| First name(s)                                                           |  |  |  |  |                  |  |  |  |
| Last name                                                               |  |  |  |  |                  |  |  |  |

#### **INSTRUCTIONS**

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

#### **INFORMATION**

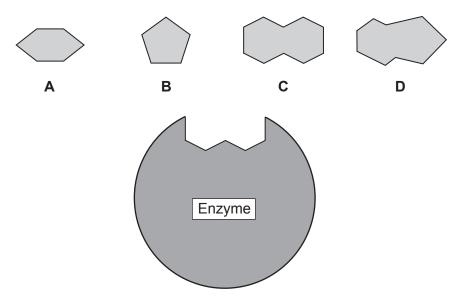

- The total mark for this paper is 95.
- The marks for each question are shown in brackets [ ].
- Quality of extended response will be assessed in questions marked with an asterisk (\*).
- This document has 28 pages.

#### **ADVICE**

Read each question carefully before you start your answer.

# Answer all the questions.

1 The diagram shows two cells.




| (a) | State <b>two</b> pieces of evidence from the diagram that show that cell <b>B</b> is a plant cell. |                     |              |               |             |                   |             |     |
|-----|----------------------------------------------------------------------------------------------------|---------------------|--------------|---------------|-------------|-------------------|-------------|-----|
|     | 1                                                                                                  |                     |              |               |             |                   |             |     |
|     | 2                                                                                                  |                     |              |               |             |                   |             | [2] |
| (b) | Which struc                                                                                        | cture stores the go | enetic mate  | erial in an a | animal cell | ?                 |             |     |
|     | Put a ring                                                                                         | around the corre    | ct answer.   |               |             |                   |             |     |
|     | Cell memb                                                                                          | rane Ce             | ll wall      | Nucle         | us          | Vacuole           |             |     |
| (c) | ·                                                                                                  | he sentences to d   | lescribe the | genetic m     | naterial.   |                   |             | [1] |
|     | alleles                                                                                            | chromosomes         | DNA          | helix         | lipids      | nucleotides       | protein     |     |
|     | In a human                                                                                         | body cell, the ge   | netic mater  | ial is store  | d as 46 st  | ructures called   |             |     |
|     |                                                                                                    |                     |              |               |             |                   |             |     |
|     | Each of the                                                                                        | se 46 structures i  | is a long mo | olecule of    |             |                   |             |     |
|     | These mole                                                                                         | ecules have a dou   | ıble         |               | str         | ucture and are po | olymers mad | de  |
|     | from                                                                                               |                     |              |               |             |                   |             |     |

[4]

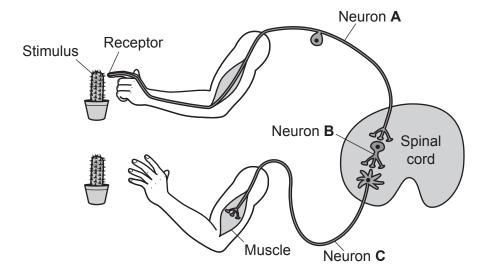
2 Milk contains a carbohydrate called lactose. Humans have an enzyme that breaks down this carbohydrate into sugars such as glucose.

The diagram shows a model of the enzyme and four carbohydrates, A, B, C and D.



(a) Which carbohydrate, A, B, C or D, will be broken down by the enzyme?

Explain your answer.


| Carbohydrate |  |
|--------------|--|
| Explanation  |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |

.....[3]

| Organ system               | Role                                               |
|----------------------------|----------------------------------------------------|
| Circulatory system         | Absorbs the sugar into the body.                   |
|                            |                                                    |
| Digestive system           |                                                    |
|                            | Releases insulin to control blood sugar level.     |
| Gaseous exchange<br>system |                                                    |
|                            |                                                    |
| Endocrine system           | Transports the sugar around the body in the blood. |
|                            |                                                    |

.....[2]

3 The diagram shows a reflex arc.



(a) The reflex arc carries a nerve impulse.

Which statement shows the correct order of the neurons that the impulse travels through?

Tick (✓) one box.

From **A** to **B** to **C**.

From **A** and **C** to **B**.

From **B** to **A** and **C**.

From **C** to **B** to **A**.

[1]

(b) Draw lines to connect each **neuron** with its correct **name**.

Neuron

Α

Name

Motor neuron

В

Relay neuron

С

Sensory neuron

[2]

| he hody's response to a st |                         |                         |           |                         |
|----------------------------|-------------------------|-------------------------|-----------|-------------------------|
| ne body s response to a si | timulus can also be     | coordinated by ho       | rmones.   |                         |
| omplete the sentences to   | describe how horm       | nones do this.          |           |                         |
| se words from the list.    |                         |                         |           |                         |
| blood effectors            | glands                  | neurons                 | receptors |                         |
| S                          | se words from the list. | se words from the list. |           | se words from the list. |

| This | que | estion is about ir | nfluenza (flu).             |                          |               |                    |           |
|------|-----|--------------------|-----------------------------|--------------------------|---------------|--------------------|-----------|
| (a)  | Wh  | at kind of patho   | gen causes flu?             |                          |               |                    |           |
|      | Put | a (ring) around    | the correct answe           | r.                       |               |                    |           |
|      | Bad | cteria             | Fungus                      | Protist                  | V             | /irus              | [41       |
| (b)  |     |                    | ntains a dead or inc        |                          |               | ne is dead or inac | [1]       |
|      |     | •                  | portant that the ha         |                          |               |                    |           |
|      |     |                    |                             |                          |               |                    |           |
| (c)  | The | e statements exp   | olain how vaccinat          | ion can hel <sub>l</sub> | o to protect  | against flu.       |           |
|      | The | e statements are   | e <b>not</b> in the correct | t order.                 |               |                    |           |
|      | Α   | Antibodies stic    | k to the flu antiger        | ns, labelling            | them for a    | ttack by white blo | od cells. |
|      | В   | Some white bl      | ood cells develop           | into memor               | y cells.      |                    |           |
|      | С   | The immune s       | ystem makes antib           | oodies agai              | nst the flu a | antigens.          |           |
|      | D   | White blood ce     | ells recognise the f        | flu antigens             |               |                    |           |
|      | E   | The vaccine is     | injected.                   |                          |               |                    |           |
|      | Wri | te the letters in  | the boxes to show           | the correct              | order of the  | e statements.      |           |
|      |     |                    |                             |                          |               |                    |           |
|      |     |                    |                             |                          |               |                    | [4]       |

5 The image shows a type of ecosystem called a peatland.



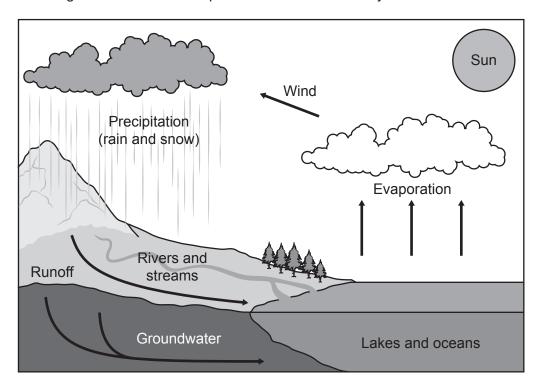
Peatlands have high biodiversity. Many different species live there.

(a) The table shows the mass of carbon contained in peatland soil and in woodland soil.

| Type of soil | Mass of carbon (kg per m <sup>3</sup> of soil) | Mass to the nearest<br>10 kg |
|--------------|------------------------------------------------|------------------------------|
| Peatland     | 178                                            |                              |
| Woodland     | 124                                            |                              |

| (i) Complete the table by writing in the masses rounded to the nearest 10 kg. | [1] |
|-------------------------------------------------------------------------------|-----|
|-------------------------------------------------------------------------------|-----|

(ii) Calculate how many times more carbon is contained in peatland soil than in woodland soil.


Number of times more carbon = ..... times more [2]

|     |                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| (b) | Some companie                                                                          | s remove large amounts of soil from peatlands to sell in garden centres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |  |  |  |
|     | Describe <b>two</b> ways in which this could reduce the biodiversity of the peatlands. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
|     | 1                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
|     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
|     | 2                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
|     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [2] |  |  |  |  |
| (c) | The graph show                                                                         | s the amount of soil removed from peatlands in England over 10 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [~] |  |  |  |  |
| (0) | The graph show                                                                         | 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - |     |  |  |  |  |
|     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
|     |                                                                                        | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     |                                                                                        | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     | Amount of soil                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     | removed (millions of m <sup>3</sup> )                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     | (minoris of m )                                                                        | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     |                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     |                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     |                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
|     |                                                                                        | 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |  |
|     |                                                                                        | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |  |
|     | Which conclusion                                                                       | n is supported by the data in the graph?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |  |  |  |
|     | Tick (✓) one box                                                                       | <b>C</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |  |  |  |
|     | Soil must have b                                                                       | peen added to the peatlands between 2002 and 2003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |  |  |  |
|     | The amount of s                                                                        | soil removed was highest in 2003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |  |
|     | The amount of s                                                                        | on formoved was highest in 2000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |
|     | The threat to bio                                                                      | odiversity in the peatlands decreased each year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |
|     | The threat to bio                                                                      | odiversity in the peatlands was lowest in 2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |

© OCR 2022 Turn over

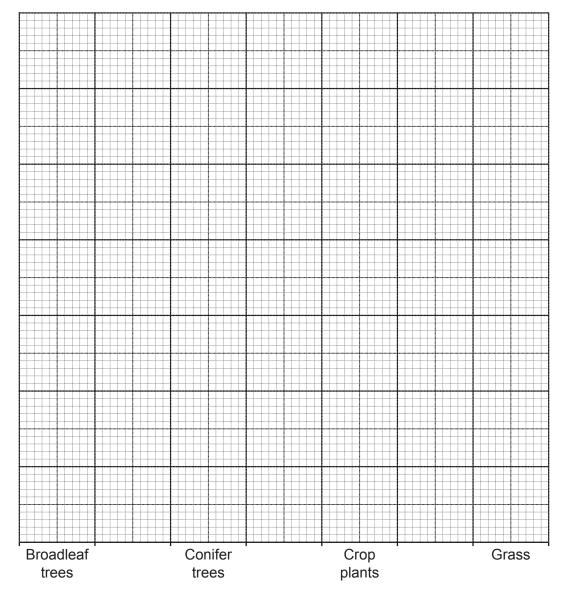
[1]

6 The diagram shows an incomplete model of the water cycle.



(a)\* The diagram does **not** show the roles of plants and animals in the water cycle.

Explain the roles of plants and animals in the water cycle, and why water is needed by


|                     | <br> |  |
|---------------------|------|--|
|                     | <br> |  |
|                     |      |  |
|                     |      |  |
|                     |      |  |
|                     | <br> |  |
| plants and animals. |      |  |

(b) Some of the rain that falls on land evaporates.

The table shows how the type of plants growing on the land affects the percentage of rain that evaporates per year.

| Type of plants growing on the land | Percentage of rain that evaporates per year (%) |  |  |
|------------------------------------|-------------------------------------------------|--|--|
| Broadleaf trees                    | 51.0                                            |  |  |
| Conifer trees                      | 67.5                                            |  |  |
| Crop plants                        | 40.0                                            |  |  |
| Grass                              | 50.0                                            |  |  |

Plot a bar chart of the results from the table on the graph.



Type of plants growing on the land

| (c) | The UK has a target to plant new trees in 300 km <sup>2</sup> of land each year to help manage the |
|-----|----------------------------------------------------------------------------------------------------|
|     | water cycle. New trees were planted in 150 km <sup>2</sup> of land in 2020.                        |

Calculate the simplest ratio of planted area: target area in 2020.

| Simplest ratio = | [2 | 2] |
|------------------|----|----|
| Simplest ratio   |    | ·J |

(d) Water and carbon are both cycled through ecosystems.

Complete the table to show which parts of an ecosystem each substance is cycled through.

Tick (✓) one box in each row.

| Substance | Cycled only through the abiotic parts | Cycled only through the biotic parts | Cycled through both parts |
|-----------|---------------------------------------|--------------------------------------|---------------------------|
| Water     |                                       |                                      |                           |
| Carbon    |                                       |                                      |                           |

[2]

7 Duckweed is a plant that grows in pondwater.

Each duckweed plant is made of one leaf and one root, as shown in Fig. 7.1.

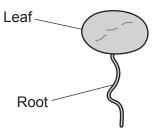



Fig. 7.1

(a) Photosynthesis in the leaf makes food, which allows the plant to reproduce.

Some students want to find out the pH at which duckweed photosynthesises best.

They put 100 duckweed plants in each of four beakers of water. **Fig. 7.2** shows the pH of the water in each beaker.

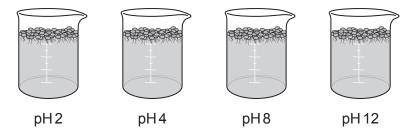



Fig. 7.2

Describe **two** variables that the students should keep the same for each beaker.

|   | [2] |
|---|-----|
| 2 |     |
| ı |     |

(b) After seven days the students count the number of living duckweed plants in each beaker.

The table shows their results.

| рН | Number of living duckweed plants |
|----|----------------------------------|
| 2  | 0                                |
| 4  | 110                              |
| 8  | 120                              |
| 12 | 0                                |

The students conclude that duckweed photosynthesises and reproduces best at pH8.

They could investigate whether their conclusion is based on an **accurate** result by growing duckweed in two more beakers of water.

What should the pH of the water in these two beakers be?

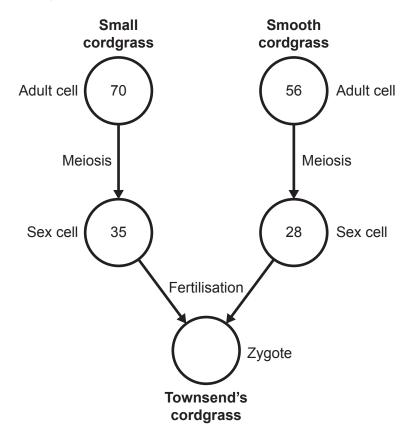
| Tick (✓) tw | o boxes. |
|-------------|----------|
| pH1         |          |
| рНЗ         |          |
| pH7         |          |
| рН9         |          |
| pH 13       |          |

[2]

8 (a) The cell cycle has two phases, interphase and mitosis.

The table describes events in the cell cycle.

Complete the table to show if each event occurs in interphase or mitosis.


Tick (✓) one box in each row.

| Event                   | Interphase | Mitosis |
|-------------------------|------------|---------|
| The cell grows larger.  |            |         |
| Chromosomes are copied. |            |         |
| Chromosomes divide.     |            |         |
| More organelles form.   |            |         |
| The nucleus divides.    |            |         |

[4]

**(b)** Two species of a plant called small cordgrass and smooth cordgrass are bred to produce a new species called Townsend's cordgrass.

The diagram shows the number of chromosomes in the cells of small cordgrass and smooth cordgrass.



(i) After meiosis, the number of chromosomes in the cordgrass sex cells is half the number in the adult cells.

(iii) The zygote will enter the cell cycle to form an adult Townsend's cordgrass plant.

How many chromosomes will each adult cell have?

Put a (ring) around the correct answer.

28 35 56 63 70

[1]

|     |                                                                |                                                   | [1] |
|-----|----------------------------------------------------------------|---------------------------------------------------|-----|
|     |                                                                |                                                   |     |
| (d) | Explain why it is important for plants to unspecialised cells. | have specialised root hair cells rather than only |     |
|     | Proteins are turned off and on.                                |                                                   | [1] |
|     | New genes are made.                                            |                                                   |     |
|     | Genes are turned off and on.                                   |                                                   |     |
|     | Cell growth becomes uncontrolled.                              |                                                   |     |
|     | Tick (✓) one box.                                              |                                                   |     |
|     | Which statement explains how the uns                           | specialised cells in a root become specialised?   |     |
| (c) | Plant roots contain unspecialised cells                        | , and specialised cells such as root hair cells.  |     |

# 18 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

9

| Dise | ease  | s such as cardiovascular disease (CVD) are non-communicable.                                                                                                                                        |       |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a)  | Def   | ine non-communicable.                                                                                                                                                                               |       |
|      |       |                                                                                                                                                                                                     |       |
| (b)  | Giv   | e <b>two</b> causes of non-communicable diseases.                                                                                                                                                   | נין.  |
|      | 1     |                                                                                                                                                                                                     |       |
|      |       |                                                                                                                                                                                                     |       |
|      | 2     |                                                                                                                                                                                                     |       |
|      |       |                                                                                                                                                                                                     | [2]   |
| The  | y dic | is wanted to investigate the effects of two medicines on the risk of developing CVD. I a study for 6 years which involved 12 000 people. eople were over the age of 55 and did <b>not</b> have CVD. |       |
| (c)  | (i)   | Suggest why only people who did <b>not</b> have CVD were involved in the study.                                                                                                                     |       |
|      |       |                                                                                                                                                                                                     |       |
|      | /::\  | Cive true reasons why we can have confidence in conclusions drawn from this study                                                                                                                   |       |
|      | (ii)  | Give <b>two</b> reasons why we can have confidence in conclusions drawn from this study  1                                                                                                          |       |
|      |       |                                                                                                                                                                                                     |       |
|      |       | 2                                                                                                                                                                                                   |       |
|      |       |                                                                                                                                                                                                     | [2]   |
|      | (iii) | Suggest <b>one</b> more piece of information that would be useful to know about the people in the study.                                                                                            |       |
|      |       |                                                                                                                                                                                                     |       |
| (    | (iv)  | Why do the conclusions of this study <b>not</b> apply to the whole population?                                                                                                                      | . [1] |
|      |       |                                                                                                                                                                                                     |       |

(d) The people in the study were divided into four groups. Each group received a different treatment.

The table shows the results of the study.

| Group | Treatment received | Percentage of people in group who developed CVD (%) |
|-------|--------------------|-----------------------------------------------------|
| Α     | Placebo            | 5.0                                                 |
| В     | Medicine 1 only    | 3.8                                                 |
| С     | Medicine 2 only    | 4.6                                                 |
| D     | Both medicines     | 3.6                                                 |

| (i)   | Describe what a placebo is.                                                      |   |
|-------|----------------------------------------------------------------------------------|---|
|       | [1]                                                                              |   |
| (ii)  | Suggest why a placebo was used.                                                  |   |
|       | [1]                                                                              | 1 |
| (iii) | Which statement best explains why it was ethical to use a placebo in this study? |   |
|       | Tick (✓) one box.                                                                |   |
|       | Placebos do no harm.                                                             |   |
|       | Placebos make people feel involved.                                              |   |
|       | No one in the study was ill with CVD.                                            |   |
|       | There are no treatments for CVD.                                                 | ĺ |
| (iv)  | Suggest <b>two</b> conclusions that can be made from the results.                |   |
|       | 1                                                                                |   |
|       |                                                                                  |   |
|       | 2                                                                                |   |
|       | [2]                                                                              | l |

(v) Group C and group D each had 3000 people in them.

| Calculate how many more neonle would have develor | ned CVD in | aroun <b>D</b> | than in |
|---------------------------------------------------|------------|----------------|---------|

Calculate how many  $\mathbf{more}$  people would have developed CVD in group  $\mathbf{D}$  than in group  $\mathbf{C}$ .

Number of people = .....[2]

- **10** Transpiration takes place in plants.
  - (a) Complete the sentences to describe transpiration.

Put a (ring) around each correct answer.

Water is absorbed / lost / translocated through the stomata in a plant's leaves.

This causes sugars / water / water and sugars to move up the

meristem / phloem / xylem tissue in the plant's stem.

[3]

(b) Fig. 10.1 shows one of the stomata from a leaf.

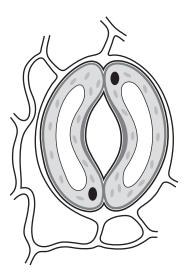



Fig. 10.1

Add two labels to Fig. 10.1.

**Label 1** The pore through which water diffuses.

Label 2 A guard cell.

[1]

(c) Complete the sentences to describe how to set up a light microscope to look at a slide of stomata from a leaf.

Put a (ring) around each correct answer.

First, turn to the **×4 / ×10 / ×20** objective lens.

Use the coarse focus knob to move the objective lens to its **lowest / middle / highest** position.

Then clip the slide onto the eyepiece / objective lens / stage.

[2]

(d) Amir sets up a leafy twig in a bubble potometer as shown in Fig. 10.2.

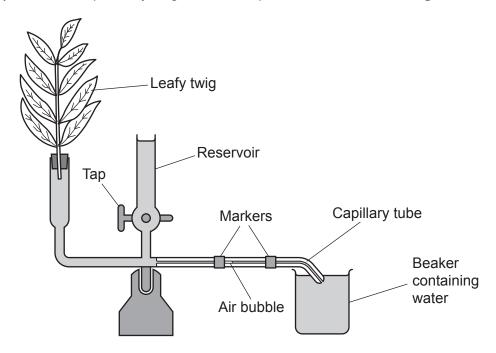



Fig. 10.2

Amir wants to use the bubble potometer to investigate the rate of transpiration in the leafy twig.

| ne <b>two</b> measurements Amir would need to make. | (i) Describe the <b>two</b> measurements Amir would need to make. |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------|--|--|
|                                                     |                                                                   |  |  |
| [2]                                                 |                                                                   |  |  |
| e purpose of the reservoir <b>and</b> tap.          | (ii)                                                              |  |  |
|                                                     |                                                                   |  |  |
|                                                     |                                                                   |  |  |
|                                                     |                                                                   |  |  |
| [2]                                                 |                                                                   |  |  |

(e) Amir investigated the rate of transpiration in the leafy twig in four different experiments.

The table shows Amir's results.

| Experiment | Temperature<br>(°C) | Wind speed<br>(m/s) | Light level | Calculated<br>mean rate<br>(mm/s) |
|------------|---------------------|---------------------|-------------|-----------------------------------|
| Α          | 22                  | 0.1                 | Dull        | 1.27                              |
| В          | 22                  | 0.1                 | No light    | 0.61                              |
| С          | 20                  | 4.8                 | Bright      | 1.54                              |
| D          | 28                  | 0.3                 | Dull        |                                   |

Amir has not yet calculated the mean rate for experiment  $\bf D$ . The results from his three repeats of experiment  $\bf D$  were 4.55, 4.17 and 0.75 mm/s.

|                                                                                         | (i)  | Discuss arguments for and against ignoring the result of $0.75\text{mm/s}$ for experiment $\textbf{D}$ . |       |  |
|-----------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------|-------|--|
|                                                                                         |      | For                                                                                                      |       |  |
|                                                                                         |      |                                                                                                          |       |  |
|                                                                                         |      | Against                                                                                                  |       |  |
|                                                                                         |      |                                                                                                          |       |  |
|                                                                                         |      |                                                                                                          | [2]   |  |
|                                                                                         | (ii) | Amir decides to keep all three results for experiment <b>D</b> .                                         |       |  |
|                                                                                         |      | Calculate the mean rate for experiment <b>D</b> .                                                        |       |  |
|                                                                                         |      | Give your answer to <b>two</b> decimal places.                                                           |       |  |
|                                                                                         |      |                                                                                                          |       |  |
|                                                                                         |      |                                                                                                          |       |  |
|                                                                                         |      |                                                                                                          |       |  |
|                                                                                         |      | Mean rate = mm/s                                                                                         | ; [3] |  |
| (f)                                                                                     | Am   | ir wants to make a conclusion about the effect of light level on the rate of transpiration.              |       |  |
| Explain why he can <b>only</b> do this by comparing experiments <b>A</b> and <b>B</b> . |      |                                                                                                          |       |  |
|                                                                                         |      |                                                                                                          |       |  |
|                                                                                         |      |                                                                                                          | . [1] |  |
|                                                                                         |      |                                                                                                          |       |  |

11 Plants need to absorb nitrate ions to stay alive.

Complete the sentences to explain why a plant needs oxygen to absorb nitrate ions.

Use words from the list.

| active tra | nsport | aerobic | anaerobic | ATP     | diffusion |
|------------|--------|---------|-----------|---------|-----------|
| DNA        | light  | osmosis | oxygen    | photosy | nthesis/  |

| The plant uses the process of to absorb nitrate ions | S.                    |
|------------------------------------------------------|-----------------------|
| This process requires energy from molecules of       |                       |
| Oxygen is needed to make these molecules during      | cellular respiration. |

### **END OF QUESTION PAPER**

### 26

## **ADDITIONAL ANSWER SPACE**

| If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |
|                                                                                                                                             |  |  |  |

| ••••• |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
| ••••• |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

| <br> | <br> |
|------|------|
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      | <br> |
|      | <br> |
|      | <br> |
|      |      |
|      |      |
| <br> | <br> |
| <br> | <br> |



#### Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.