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Foreword

This document contains model solutions to the 2011 STEP Mathematics Paper I. The solu-
tions are fully worked and contain more detail and explanation than would be expected from
candidates. They are intended to help students understand how to answer the questions, and
therefore they are encouraged to attempt them first before looking at these model answers.

This document also contains a Mark Scheme. This was used by the markers during the marking
process. It is important to remember that the nature of these questions is such that there may
be multiple acceptable ways of answering them. As in any examination, the mark scheme was
adapted appropriately for these alternative approaches; these adaptations are not recorded here.

The meanings of the marks are as in the standard GCSE and AS/A2 mark schemes:

• M marks for method

• A marks for correct answers, dependent on gaining the corresponding M mark(s). If there
is no method shown, but the answer is correct, either the M marks should be awarded
along with the A mark or no marks can be awarded. What to do in any particular case
should be discussed with the PE.

• B marks are independent accuracy marks

• ft means that incorrect working is followed through

• dep means this method mark is dependent upon gaining the previous method mark

• cao/cso means ‘correct answer/solution only’

• SC means ‘special case’, and applies when the regular mark scheme has given the student
(almost) no marks

• ‘condone . . . ’ means ‘award the mark even if the candidate has made the specified error’

• AG means ‘answer given’ in the question; sufficient working has to be demonstrated to
show that the candidate has reached the given answer from their work rather than simply
copying it from the question
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Question 1

(i) Show that the gradient of the curve
a

x
+
b

y
= 1, where b 6= 0, is −ay

2

bx2
.

We begin by differentiating the equation of the curve (ax−1 + by−1 = 1) implicitly with respect
to x, to get

−ax−2 − by−2 dy

dx
= 0,

so that

− b

y2
dy

dx
=

a

x2
,

giving our desired result
dy

dx
= −ay

2

bx2
.

An alternative, but more complicated method, is to rearrange the equation first to get y in terms
of x before differentiating. We have, on multiplying by xy,

ay + bx = xy, (1)

so that (x− a)y = bx, which gives

y =
bx

x− a.

We can now differentiate this using the quotient rule to get

dy

dx
=
b(x− a)− bx.1

(x− a)2
=

−ab
(x− a)2

.

The challenge is now to rewrite this in the form required. We can rearrange equation (1) to get
(x − a)y = bx, so that (x − a) = bx/y. Substituting this into our expression for the derivative
then gives

dy

dx
= − ab

(bx/y)2
= −aby

2

b2x2
= −ay

2

bx2

as required.
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Marks

M1: Implicitly differentiating equation

A1: −ax−2 term in derivative

A1: −by−2 dy

dx
term in derivative

A1 cso (AG): Rearranging to find dy/dx

Alternative method: Rearranging equation

M1: Rearranging equation to get y = · · ·
A1: Reaching y = b(1− a/x)−1 = bx/(x− a) or equivalent

M1: Differentiating this to get
dy

dx
=

−ab
(x− a)2

A1 (AG): Substituting to deduce that this equals −ay2/bx2
[Total for this first part: 4 marks]

The point (p, q) lies on both the straight line ax + by = 1 and the curve
a

x
+
b

y
= 1,

where ab 6= 0. Given that, at this point, the line and the curve have the same gradient,
show that p = ±q .

Rearranging the equation of the straight line ax + by = 1 as y = −(ab )x + 1
b shows that its

gradient is −a/b.
Then using the above result for the gradient of the curve, we require that

−aq
2

bp2
= −a

b
,

so q2/p2 = 1, that is p2 = q2 or p = ±q.

Marks

B1: Gradient of straight line

M1: Equating gradients of line and curve at (p, q)

A1 cso: Deducing given result

[Total for this part: 3 marks]

Show further that either (a− b)2 = 1 or (a+ b)2 = 1 .

Since (p, q) lies on both the straight line and the curve, it must satisfy both equations, so

ap+ bq = 1 and
a

p
+
b

q
= 1.

Now if p = q, then the first equation gives (a+ b)p = 1 and the second gives (a+ b)/p = 1, and
multiplying these gives (a+ b)2 = 1.

Alternatively, if p = −q, then the first equation gives (a− b)p = 1 and the second equation gives
(a− b)/p = 1, and multiplying these now gives (a− b)2 = 1.
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Marks

B1: Substituting (p, q) into equations for line and curve (can be awarded earlier if seen; will often
be joined with the next step/mark)

M1: Substituting p = ±q or q = ±p into both equations

M1: Factorising or some other useful step towards required result

A1: Multiplying equations or equivalent to reach either (a+ b)2 = 1 or (a− b)2 = 1

A1: Repeating the above for the other case

[Total for this part: 5 marks; Total for part (i): 12 marks]

(ii) Show that if the straight line ax + by = 1, where ab 6= 0, is a normal to the curve
a

x
− b

y
= 1, then a2 − b2 = 1

2 .

We can find the derivative of this curve as above. A slick alternative is to notice that this is
identical to the above curve, but with b replaced by −b, so that

dy

dx
=
ay2

bx2
.

The gradient of the straight line is −a/b as before, so as this line is normal to the curve at the
point (p, q), say, we have

aq2

bp2

(
−a
b

)
= −1

as perpendicular gradients multiply to −1; thus a2q2/b2p2 = 1, or a2q2 = b2p2.

We therefore deduce that aq = ±bp, which we can divide by pq 6= 0 to get a
p = ± b

q .

Now since (p, q) lies on both the straight line and the curve, we have, as before,

ap+ bq = 1 and
a

p
− b

q
= 1.

Now if a
p = b

q , the second equation would become 0 = 1, which is impossible. So we must have
a
p = − b

q , giving
a

p
+
a

p
= 1,

so that a
p = − b

q = 1
2 , giving p = 2a and q = −2b.

Substituting this into the equation of the straight line yields

a.2a+ b.(−2b) = 1,

so that a2 − b2 = 1
2 as required.

Marks

B1: Gradient of curve

M1: Product of normal gradients is −1

A1: Reaching a2q2/b2p2 = 1; following through an incorrect gradient of −ay2/bx2 to get
a2q2/b2p2 = −1 is awarded this mark (but further progression is impossible)

A1: Reaching aq = ±bp
M1: Rejecting aq = +bp possibility
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M1: Substituting to get 2a/p = 1 or 2b/q = −1

A1: Reaching p = 2a and q = −2b or equivalent

A1 cso AG: Substituting to get a2 − b2 = 1
2

[Total for part (ii): 8 marks]
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Question 2

The number E is defined by E =

∫ 1

0

ex

1 + x
dx .

Show that ∫ 1

0

xex

1 + x
dx = e− 1− E,

and evaluate

∫ 1

0

x2ex

1 + x
dx in terms of e and E.

Approach 1: Using polynomial division

Using polynomial division or similar, we find that we can write

x

1 + x
= 1− 1

1 + x
.

Therefore our first integral becomes∫ 1

0

xex

1 + x
dx =

∫ 1

0

(
1− 1

1 + x

)
ex dx

=

∫ 1

0
ex dx−

∫ 1

0

ex

1 + x
dx

=
[
ex
]1
0
− E

= e− 1− E,

as required.

We can play the same trick with the second integral, as

x2

1 + x
= x− 1 +

1

1 + x
,

so that ∫ 1

0

x2ex

1 + x
dx =

∫ 1

0

(
x− 1 +

1

1 + x

)
ex dx

=

∫ 1

0
xex dx−

∫ 1

0
ex dx+

∫ 1

0

ex

1 + x
dx.

Now we can use integration by parts for the first integral to get∫ 1

0
xex dx =

[
xex
]1
0
−
∫ 1

0
ex dx

= e− (e− 1)

= 1.

Therefore ∫ 1

0

x2ex

1 + x
dx = 1− (e− 1) + E = 2− e + E.
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Approach 2: Substitution

We can substitute u = 1 + x to simplify the denominator in the integral. This gives us∫ 1

0

xex

1 + x
dx =

∫ 2

1

(u− 1)eu−1

u
du

=

∫ 2

1
eu−1 − eu−1

u
du.

The first part of this integral can be easily dealt with. The second part needs the reverse
substitution to be applied, replacing u by 1 + x, giving[

eu−1
]2
1
− ex

1 + x
dx = e− 1− E.

This is essentially identical to the first approach. The second integral follows in the same way.

Approach 3: Integration by parts

Integration by parts is trickier for this integral, as it is not obvious how to break up our integral.
We use the parts formula as written in the formula booklet:

∫
udv
dx dx = uv −

∫
v du
dx dx.

There are several ways which work (and many which do not). Here is a relatively straightforward
approach. For the first integral, we take

u =
x

1 + x
and

dv

dx
= ex

so that
du

dx
=

1

(1 + x)2
and v = ex.

We then get ∫ 1

0

xex

1 + x
dx =

[
xex

1 + x

]1
0

−
∫ 1

0

ex

(1 + x)2
dx

= 1
2e−

∫ 1

0

ex

(1 + x)2
dx.

The difficulty is now integrating the remaining integral. We again use parts, this time taking

u = ex and
dv

dx
=

1

(1 + x)2

so that
du

dx
= ex and v = − 1

1 + x
.

This gives ∫ 1

0

ex

(1 + x)2
dx =

[
− ex

1 + x

]1
0

−
∫ 1

0
− ex

1 + x
dx

= −1
2e + 1 + E.

Combining this result with the first result then gives∫ 1

0

xex

1 + x
dx = 1

2e− (−1
2e + 1 + E) = e− 1− E.
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For the second integral, we use a similar procedure, this time taking

u =
x2

1 + x
and

dv

dx
= ex

so that
du

dx
=

2x+ x2

(1 + x)2
and v = ex.

We then get ∫ 1

0

x2ex

1 + x
dx =

[
x2ex

1 + x

]1
0

−
∫ 1

0

(2x+ x2)ex

(1 + x)2
dx

= 1
2e−

∫ 1

0

(2x+ x2)ex

(1 + x)2
dx.

The integral in the last step can be handled in several ways; the easiest is to write

2x+ x2

(1 + x)2
=
x2 + 2x+ 1− 1

(1 + x)2
= 1− 1

(1 + x)2

and then use the earlier calculation of
∫

ex/(1 + x)2 dx to get∫ 1

0

x2ex

1 + x
dx = 1

2e−
(∫ 1

0
ex − ex

(1 + x)2
dx

)
= 1

2e− [ex]10 + (−1
2e + 1 + E)

= −e + 1 + 1 + E

= 2− e + E.

Marks

Approaches 1 and 2:

M1: Writing x/(1 + x) as 1− 1/(1 + x) or substituting u = 1 + x and breaking up the integral

M1: Splitting integral and integrating
∫

ex dx correctly, including substituting back x = u− 1 if
relevant

A1 cso AG: Reaching given answer

Approach 3 (parts):

M2: Applying parts correctly twice (once is insufficient to get anywhere)

A1 cso AG: Reaching given answer

[Total: 3 marks for first integral]

Approaches 1 and 2:

M1: Writing x2/(x+ 1) as x− x/(x+ 1) or as x− 1 + 1/(x+ 1), or substituting u = 1 + x and
breaking up the integral

M1: Using parts for
∫
xex dx

A1: Correct
∫
xex dx, condoning at most one arithmetic error (e.g., evaluating xex as 1 when

x = 0) but not a sign error in the parts formula

M1: Using earlier results to evaluate everything else, including substituting x = u− 1 if relevant

A1 cao: Correctly evaluating integral to get 2− e + E, or unsimplified equivalent.

Approach 3 (parts):

M1: Useful application of parts – must be “going somewhere” to get any method marks

M1: Either applying parts a second time or using some other technique to make useful progress
on the integral
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A1: If relevant, correct
∫
xex dx, condoning at most one arithmetic error (e.g., evaluating xex as 1

when x = 0) but not a sign error in the parts formula; otherwise correct application of parts

M1: Using earlier results to evaluate everything else

A1 cao: Correctly evaluating integral to get 2− e + E, or unsimplified equivalent.

[Total: 5 for second integral, 8 in total for this part of question]

Evaluate also, in terms of E and e as appropriate:

(i)

∫ 1

0

e
1−x
1+x

1 + x
dx ;

This integral looks to be of a vaguely similar form, but with a more complicated exponential
part. We therefore try the substitution u = 1−x

1+x and see what we get.

If u =
1− x
1 + x

, then

du

dx
=
−(1 + x)− (1− x)

(1 + x)2
=

−2

(1 + x)2
,

so that dx
du = −1

2(1 + x)2. Also, when x = 0, u = 1, and when x = 1, u = 0.

We can also rearrange u =
1− x
1 + x

to get

(1 + x)u = 1− x
so ux+ x = 1− u
giving x =

1− u
1 + u

.

Thus ∫ 1

0

e
1−x
1+x

1 + x
dx =

∫ 0

1

eu

1 + x

(
−1

2(1 + x)2
)

du

=

∫ 1

0

1
2eu(1 + x) du reversing the limits

=

∫ 1

0

1
2eu

(
1 +

1− u
1 + u

)
du

=

∫ 1

0

1
2eu

(
2

1 + u

)
du

=

∫ 1

0

eu

1 + u
du

= E.

Marks

M1: Attempting to use substitution u = 1−x
1+x

M1: Calculating du/dx or dx/du . . .

A1: . . . correctly

M1: Rearranging u = 1−x
1+x to make x the subject
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M1: Correctly performing substitution; condone forgetting to change the limits for this mark

A1 cao: Deducing correct integral in terms of u alone; must have evidence of change of limits for
this mark

A1: Evaluating integral to E (only follow through earlier sign error or arithmetic slip)

[Total for part (i): 7 marks]

Evaluate also in terms of E and e as appropriate:

(ii)

∫ √2
1

ex
2

x
dx

Again we have a different exponent, so we try substituting u = x2, so that x =
√
u, while

du
dx = 2x and so dx

du = 1
2x . Also the limits x = 1 and x =

√
2 become u = 1 and u = 2, giving us∫ √2

1

ex
2

x
dx =

∫ 2

1

eu

x

1

2x
du

=

∫ 2

1

eu

2u
du.

This is very similar to what we are looking for, except that it has the wrong limits and a
denominator of 2u rather than u + 1 or perhaps 2(u + 1). So we make a further substitution:
u = v + 1, so that v = u− 1 and du/dv = 1, giving us∫ √2

1

ex
2

x
dx =

∫ 2

1

eu

2u
du

=

∫ 1

0

ev+1

2(v + 1)
dv

=
e

2

∫ 1

0

ev

v + 1
dv

=
eE

2
,

where on the penultimate line we have written ev+1 = e.ev and so taken out a factor of e/2.

It is also possible to evaluate this integral more directly by substituting u = x2 − 1, so that
x2 = u+ 1. The details are left to the reader.

Marks

M1: Substituting u = x2, including correctly using the derivative, but condoning wrong limits, . . .

A1: . . . and getting it all correct

M1 dep: Substituting u = v + 1, as before, . . .

A1: . . . and getting it all correct

A1 cao: Final integral evaluation

Alternative if substitute u = x2 − 1 directly

M1: Attempt to substitute u = x2 − 1 or equivalent

M1: Correctly using derivative and attempting to change limits

A1: All correct

M1: Taking out factor of e

A1 cao: Correct answer

[Total for part (ii): 5 marks]
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Question 3

Prove the identity
4 sin θ sin(13π − θ) sin(13π + θ) = sin 3θ . (∗)

We make use of two of the factor formulæ:

2 sinA sinB = cos(A−B)− cos(A+B)

2 sinA cosB = sin(A+B) + sin(A−B)

(These can be derived by expanding the right hand sides using the addition formulæ, and then
collecting like terms.)

Then initially taking A = 1
3π− θ and B = 1

3π+ θ and using the first of the factor formulæ gives

4 sin θ sin(13π − θ) sin(13π + θ) = 2 sin θ
(
cos(−2θ)− cos(23π)

)
= 2 sin θ(cos 2θ + 1

2)

= 2 sin θ cos 2θ + sin θ.

We now use the second factor formula with A = θ and B = 2θ to simplify this last expression to(
sin 3θ + sin(−θ)

)
+ sin θ = sin 3θ,

as required.

An alternative approach is to expand the second and third terms on the left hand side using the
addition formulæ, giving:

4 sin θ sin(13π − θ) sin(13π + θ)

= 4 sin θ(sin 1
3π cos θ − cos 1

3π sin θ)(sin 1
3π cos θ + cos 1

3π sin θ)

= 4 sin θ
(√

3
2 cos θ − 1

2 sin θ
)(√

3
2 cos θ + 1

2 sin θ
)

= 4 sin θ(34 cos2 θ − 1
4 sin2 θ)

= 3 sin θ cos2 θ − sin3 θ,

while

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ + (cos2 θ − sin2 θ) sin θ

= 3 sin θ cos2 θ − sin3 θ.

Thus the required identity holds.

Marks

Factor formula approach:

M1: Using a factor formula once to replace two of the sines with a product

A1: Applying the factor formula correctly and simplifying if relevant

M1: Applying another factor formula to simplify the remaining product(s)

A1 cso (AG): Reaching the stated result
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Addition formula approach:

M1: Using addition formulæ twice to expand the two sine terms

A1: Expanding and simplifying to reach a simple expression for the left hand side

M1: Applying the addition and double-angle formulæ or de Moivre’s theorem to the right hand
side to reach an expression for the right hand side in terms of θ

A1 cso (AG): Reaching the stated result

[Total for this part: 4 marks]

(i) By differentiating (∗), or otherwise, show that

cot 1
9π − cot 2

9π + cot 4
9π =

√
3 .

We can differentiate a product of several terms using the product rule repeatedly. In general,
we have

d

dx
(uvwt . . .) =

du

dx
vwt . . .+ u

dv

dx
wt . . .+ uv

dw

dx
t . . .+ · · ·

In our case, we are differentiating a product of three terms, and we get

4 cos θ sin(13π − θ) sin(13π + θ)− 4 sin θ cos(13π − θ) sin(13π + θ) +

4 sin θ sin(13π − θ) cos(13π + θ) = 3 cos 3θ.

Now we are aiming to get an expressing involving cot, so we divide this result by (∗) to get

cot θ − cot(13π − θ) + cot(13π + θ) = 3 cot 3θ.

We now let θ = 1
9π to get

cot 1
9π − cot 2

9π + cot 4
9π = 3 cot 1

3π = 3/
√

3 =
√

3,

and we are done.

Marks

M1: Differentiating (∗) using the product rule twice or using the generalised product rule

A1: Correct derivative of (∗)
M1: Dividing derivative by (∗)
M1 dep: Substituting θ = 1

9π

A1 cso (AG): Reaching given result

Alternative approach:

M1: Taking the natural logarithm of (∗)
A1: Correct derivative of logarithm

M1: Simplifying result to get in terms of cot

M1 A1 as above

[Total for part (i): 5 marks]
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(ii) By setting θ = 1
6π−φ in (∗), or otherwise, obtain a similar identity for cos 3θ and deduce

that
cot θ cot(13π − θ) cot(13π + θ) = cot 3θ .

Setting θ = 1
6π − φ in (∗) as instructed gives

4 sin(16π − φ) sin(16π + φ) sin(12π − φ) = sin 3(16π − φ).

To get cosines from this expression, we will need to use the identity sin(12π − x) = cosx. So we
rewrite this as

4 sin
(
1
2π − (13π + φ)

)
sin
(
1
2π − (13π − φ)

)
sin(12π − φ) = sin(12π − 3φ)

which allows us to apply our identity to get

4 cos(13π + φ) cos(13π − φ) cosφ = cos 3φ,

which is a similar identity for cos 3φ. Replacing φ by θ and reordering the terms in the product
gives

4 cos θ cos(13π − θ) cos(13π + θ) = cos 3θ.

Now dividing this identity by (∗) gives our desired identity for cot:

cot θ cot(13π − θ) cot(13π + θ) = cot 3θ. (†)

(Note that there is no factor of 4 in this expression.)

Marks

M1: Substituting θ = 1
6π − φ and simplifying the result

M1 dep: Using sin( 1
2π − x) = cosx on this expression at least once, or expanding with addition

formulæ

A1 cao: Formula for cos 3θ or equivalent in the required form; allow cos 3φ = 4 sin(1
6π − φ) . . . as

this is “similar” to the original identity

M1: Dividing by (∗)
A1 cso (AG): Reaching given identity

[Total for this sub-part: 5 marks]

Show that
cosec 1

9π − cosec 5
9π + cosec 7

9π = 2
√

3 .

As before, we differentiate the expression (†) which we have just derived to get

− cosec2 θ cot(13π − θ) cot(13π + θ) +

cot θ cosec2(13π − θ) cot(13π + θ)−
cot θ cot(13π − θ) cosec2(13π + θ) = −3 cosec2 3θ.

When we negate this identity and then divide it by (†), we will have lots of cancellation and we
will be left with terms of the form cosec2 x/ cotx. Now

cosec2 x

cotx
=

1

sin2 x
.
sinx

cosx
=

1

sinx cosx
=

2

sin 2x
= 2 cosec 2x,
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so that the division gives us

2 cosec 2θ − 2 cosec 2(13π − θ) + 2 cosec 2(13π + θ) = 6 cosec 6θ.

To get the requested equality, we halve this identity and set 2θ = 1
9π so that

cosec 1
9π − cosec 5

9π + cosec 7
9π = 3 cosec 1

3π = 3. 2√
3

= 2
√

3

as required.

Marks

M1: Differentiating (†) using the product rule twice or the generalised product rule

M1 dep: Dividing by (†) and simplifying terms at least as far as 1/ sin θ cos θ or tan θ cosec2 θ

M1 dep on previous M mark: Reaching expressions of the form 2 cosec 2θ (this could be performed
later)

A1: Correct identity for 2θ (possibly divided by 2 or negated, possibly with 2θ replaced by θ)

M1 (dependent upon previous M1 being awarded at some point): Substituting 2θ = 1
9π in

expression involving cosec 2θ (award if substitute into 1/ sin θ cos θ terms and then manipulate
to reach cosec 2θ terms)

A1 cso (AG): Reaching given equation

[Total for this sub-part: 6 marks]
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Question 4

The distinct points P and Q, with coordinates (ap2, 2ap) and (aq2, 2aq) respectively, lie on
the curve y2 = 4ax. The tangents to the curve at P and Q meet at the point T . Show that
T has coordinates

(
apq, a(p+ q)

)
. You may assume that p 6= 0 and q 6= 0.

We begin by sketching the graph (though this may be helpful, it is not required):

y

x

P

Q

T

F

φ

The equation of the curve is y2 = 4ax, so we can find the gradient of the curve by implicit
differentiation:

2y
dy

dx
= 4a,

and thus
dy

dx
=

2a

y
,

as long as y 6= 0. (Alternatively, we could write x = y2/4a and then work out dx/dy = 2y/4a;
taking reciprocals then gives us the same result.)

Therefore the tangent at the point P with coordinates (ap2, 2ap) has equation

y − 2ap =
2a

2ap
(x− ap2),

which can easily be rearranged to give

x− py + ap2 = 0.

Since y = 0 would require p = 0, we can ignore this case, as we are assuming that p 6= 0. [In
fact, if y = p = 0, we can look at the reciprocal of the gradient, dx

dy = y
2a , and this is zero, so the

line is vertical. In this case, our equation gives x = 0, which is, indeed, a vertical line, so our
equation works even when p = 0.]

Thus the tangent through P has equation x − py + ap2 = 0 and the tangent through Q has
equation x− qy + aq2 = 0 likewise.

We solve these equations simultaneously to find the coordinates of T . Subtracting them gives

(p− q)y − a(p2 − q2) = 0.
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Since p 6= q, we can divide by p− q to get

y − a(p+ q) = 0,

so y = a(p+ q) and therefore x = py − ap2 = ap(p+ q)− ap2 = apq.

Thus T has coordinates
(
apq, a(p+ q)

)
, as wanted.

Marks

M1: Implicit differentiation, finding dx/dy and taking reciprocals, or rearranging to get
y = ±

√
4ax and differentiating that

A1 cao: Formula for dy/dx. Note: only award M1 A0 if rearrange to get y =
√

4ax but do not
take account of ±

A1 ft: Equation of tangent through P or Q (does not need to be simplified), either in cartesian or
vector form

B1 ft: Equation of tangent through other point (follow through equation of first tangent found)

M1: Solving equations simultaneously to find coordinates of T (reasonable attempt)

B1: Justification for dividing by p− q (sufficient to say that p 6= q or p− q 6= 0)

A1 cso (AG): Correct x or y coordinate as given

A1 cso (AG): Reaching given coordinates of T

[Total for this part: 8 marks]

The point F has coordinates (a, 0) and φ is the angle TFP . Show that

cosφ =
pq + 1√

(p2 + 1)(q2 + 1)

and deduce that the line FT bisects the angle PFQ.

In the triangle TFP , we can use the cosine rule to find cosφ:

TP 2 = TF 2 + PF 2 − 2.TF.PF. cosφ,

so that

cosφ =
TF 2 + PF 2 − TP 2

2.TF.PF
.

Now using Pythagoras to find the distance between two points given their coordinates, we obtain

TF 2 =
(
a(pq − 1)

)2
+
(
a(p+ q)

)2
= a2(p2q2 − 2pq + 1 + p2 + 2pq + q2)

= a2(p2q2 + p2 + q2 + 1)

= a2(p2 + 1)(q2 + 1)

FP 2 =
(
a(p2 − 1)

)2
+ (2ap)2

= a2(p4 − 2p2 + 1 + 4p2)

= a2(p4 + 2p2 + 1)

= a2(p2 + 1)2

TP 2 =
(
a(pq − p2)

)2
+
(
a(p+ q − 2p)

)2
=
(
ap(q − p)

)2
+
(
a(q − p)

)2
= a2(p2 + 1)(q − p)2
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Thus

TF 2 + FP 2 − TP 2 = a2(p2 + 1)(q2 + 1 + p2 + 1− q2 + 2pq − p2)
= 2a2(1 + p2)(1 + pq)

so that

cosφ =
2a2(1 + p2)(1 + pq)

2a2
√

(p2 + 1)(q2 + 1)(p2 + 1)2

=
1 + pq√

(p2 + 1)(q2 + 1)

as we wanted.

An alternative approach is to use vectors and dot products to find cosφ. We have

−−→
FP .
−→
FT = FP.FT. cosφ

(where the dot on the left hand side is the dot product, but on the right is ordinary multiplica-
tion), so we need only find the lengths FP , FT as above and the dot product. The dot product
is

−−→
FP .
−→
FT =

(
ap2 − a
2ap− 0

)
.

(
apq − a

a(p+ q)− 0

)
= (ap2 − a)(apq − a) + 2ap.a(p+ q)

= a2(p2 − 1)(pq − 1) + 2a2(p2 + pq)

= a2(p3q − p2 − pq + 1 + 2p2 + 2pq)

= a2(p3q + p2 + pq + 1)

= a2(p2(pq + 1) + pq + 1)

= a2(p2 + 1)(pq + 1)

Therefore we deduce

cosφ =

−−→
FP .
−→
FT

FP.FT

=
a2(p2 + 1)(pq + 1)

a(p2 + 1).a
√

(p2 + 1)(q2 + 1)

=
pq + 1√

(p2 + 1)(q2 + 1)

as required.

Marks

M1: Using the cosine rule or dot products to find cosφ

M1: Calculating TF 2 or |TF |
A1 cao: Fully factorising result correctly

M1: Calculating FP 2 or |FP |
A1 cao: Fully factorising result correctly

A1: Calculating TP 2 or evaluating the dot product

M1: Substituting in and simplifying to find cosφ (dependent on at least two of the preceding
three method marks)

A1 cso (AG): Determining cosφ as given in question
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[Total for finding cosφ: 8 marks]

Now to show that the line FT bisects the angle PFQ, it suffices to show that φ is equal to the
angle TFQ (see the sketch above).

Now we can find cos(∠TFQ) by using the above formula and swapping every p and q in it, as
this will swap the roles of P and Q.

But swapping every p and q does not change the formula, so cos(∠TFQ) = cos(∠TFP ), and
so ∠TFQ = ∠TFP as both angles are strictly less than 180◦ and cosine is one-to-one in this
domain.

Thus the line FT bisects the angle PFQ, as required.

Marks

M1: Swapping p and q to find cos(∠TFQ) or calculating from scratch

A1: Showing cos(∠TFQ) = cos(∠TFP )

M1: Deducing that ∠TFQ = ∠TFP (need some minimal comment or implication sign that
cosines equal implies angles equal; does not need to state explicitly that φ < 180◦ for this
mark or subsequent A1)

A1 cso: Making the required deduction about line TF

Alternative method: Calculating cos(∠PFQ) first

M1: Calculating cos(∠PFQ) using the cosine rule as above

A1 cao: Showing cos(∠PFQ) =
p2q2 − p2 − q2 + 4pq + 1

(p2 + 1)(q2 + 1)

M1: Showing that cos(∠PFQ) = cos 2φ using double-angle formula

A1 cso: Making the required deduction about line TF

[Total for this final part: 4 marks]
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Question 5

Given that 0 < k < 1, show with the help of a sketch that the equation

sinx = kx (∗)

has a unique solution in the range 0 < x < π.

We sketch the graph of y = sinx in the range 0 6 x 6 π along with the line y = kx.

Now since d
dx(sinx) = cosx, the gradient of y = sinx at x = 0 is 1, so the tangent at x = 0 is

y = x. We therefore also sketch the line y = x.

y

x0 π

y = kx
y = x

α

It clear that there is at most one intersection of y = kx with y = sinx in the interval 0 < x < π,
and since 0 < k < 1, there is exactly one, as the gradient is positive and less that that of
y = sinx at the origin. (If k 6 0, there would be no intersections in this range as kx would be
negative or zero; if k > 1, the only intersection would be at x = 0.)

Marks

M1: Determining gradient of y = sinx at x = 0

A1: Tangent at x = 0 is y = x (award M1 A1 if just draw y = x as tangent at origin, as long as it
is labelled)

M1: Decent sketch showing y = sinx and y = kx with 0 < k < 1

A1: Reasonably convincing argument from sketch; must explain that k < 1 implies there is at
least one intersection (condone ignoring the 0 < k condition) because gradient is less than
that of sinx at origin

[Total for this part: 4 marks]

Let

I =

∫ π

0

∣∣sinx− kx∣∣ dx .
Show that

I =
π2 sinα

2α
− 2 cosα− α sinα ,

where α is the unique solution of (∗).

It is a pain to work with absolute values (the “modulus function”), so we split the integral
into two integrals: in the interval 0 6 x 6 α, sinx − kx > 0, and in the interval α 6 x 6 π,
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sinx− kx 6 0. So

I =

∫ π

0

∣∣sinx− kx∣∣ dx
=

∫ α

0

∣∣sinx− kx∣∣ dx+

∫ π

α

∣∣sinx− kx∣∣dx
=

∫ α

0
sinx− kxdx+

∫ π

α
− sinx+ kx dx

=
[
− cosx− 1

2kx
2
]α
0

+
[
cosx+ 1

2kx
2
]π
α

= (− cosα− 1
2kα

2)− (− cos 0− 0) + (cosπ + 1
2kπ

2)− (cosα+ 1
2kα

2)

= −2 cosα− kα2 + 1
2kπ

2

= −2 cosα− α sinα+
π2 sinα

2α

where the last line follows using kα = sinα so that k = (sinα)/α, and we have reached the
desired result.

Marks

M1: Splitting integral into two appropriate intervals

M1 dep: Removing absolute values correctly

A1 cao: Correct integration of expression (ignoring limits; no follow through marks here)

M1: Substituting in to evaluate integral (condone one sign error)

M1: Correctly substituting k = sinα/α into expression

A1 cso (AG): Reaching given expression

[Total for this part: 6 marks]

Show that I, regarded as a function of α, has a unique stationary value and that this stationary
value is a minimum. Deduce that the smallest value of I is

−2 cos
π√
2
.

We differentiate I to find its stationary points. We have

dI

dα
=
π2

2

(
α cosα− sinα

α2

)
+ 2 sinα− sinα− α cosα

= (sinα− α cosα)− π2

2α2
(sinα− α cosα)

=

(
1− π2

2α2

)
(sinα− α cosα)

so dI
dα = 0 if and only if 2α2 = π2 or sinα = α cosα. The former condition gives α = ±π/

√
2,

while the latter condition gives tanα = α.

A quick sketch of the tan graph (see below) shows that tanα = α has no solutions in the range
0 < α < π (though α = 0 is a solution); the sketch uses the result that d

dx(tanx) = sec2 x, so
the tangent to y = tanx at x = 0 is y = x.
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y

x

y = x

π
2 π

Thus the only solution in the required range is α = π/
√

2 (and note that π/
√

2 < π).

Marks

Determining location of stationary point:

M1: Finding dI/dα using quotient rule or equivalent

M1: Factorising to solve dI/dα = 0, performing at least one step and effectively dividing or
completely factorising

M1: Reasonable attempt to reject possibility sinα = α cosα, e.g., by considering tanα = α

A1: Correctly rejecting this possibility

A1 cao: Deducing α = π/
√

2, dependent upon explicit rejection of sinα = α cosα possibility (can
award even if previous M1 A1 is not awarded, as long as say that this case is not possible)

[Total: 5 marks for finding stationary point]

To ascertain whether it is a maximum, a minimum or a point of inflection, we could either
look at the values of I or dI/dα at this point and either side or we could consider the second
derivative.

Either way, we will eventually have to work out the value of I when α = π/
√

2, so we will do so
now:

I =
π2 sin(π/

√
2)

2π/
√

2
− 2 cos

π√
2
− π√

2
sin

π√
2

=
π√
2

sin
π√
2
− 2 cos

π√
2
− π√

2
sin

π√
2

= −2 cos
π√
2
.

Approach 1: Using values either side

The function I is not well-defined when α = 0, but if we know that sinα
α → 1 as α→ 0, we can

deduce that as α→ 0, I → −2 + π2

2 > 5
2 > 2 (using π > 3).

When α = π, we have I = 2.

Since at α = π/
√

2, we have I = −2 cos(π/
√

2) < 2, this must be the minimum value of I.

Alternatively, if we wish to consider the value of dI/dα, we need to know the sign of sinα−α cosα
near α = π/

√
2. Now since π

2 < α < π, cosα < 0 and so this expression is positive. Therefore
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for α slightly less that π/
√

2, dI/dα < 0 and for α > π/
√

2, dI/dα > 0, so that α = π/
√

2 is a
(local) minimum.

Approach 2: Using the second derivative

We have

d2I

dα2
=
π2

α3
(sinα− α cosα) +

(
1− π2

2α2

)
(cosα− cosα+ α sinα)

=
π2

α3
(sinα− α cosα) +

(
1− π2

2α2

)
α sinα

Now when α = π/
√

2, so that π2/2α2 = 1, we have

d2I

dα2
=
π2

α3
(sinα− α cosα).

Since α = π
2

√
2 > π

2 , we have sinα > 0 and cosα < 0, so d2I
dα2 > 0 and I has a local minimum at

this value of α.

Marks

Evaluating the minimum:

B1 cso (AG): reaching the given expression for minimum I; can be awarded at any point.

Determining nature of stationary point:

Approach 1a: Evaluating I either side

[B1 for evaluating I at the stationary point is awarded below]

M1: Attempting to evaluate I at points either side of α = π/
√

2

A1: Correctly evaluating on one side

A1: Correctly evaluating on other side

A1 cso: Convincingly deducing that α = π/
√

2 gives a minimum

Approach 1b: Evaluating dI/dα either side

M1: Attempting to determine the values or signs of dI/dα at points either side of α = π/
√

2

A1: Determining the sign of sinα− α cosα near π/
√

2

A1: Determining the sign of 1− π2/2α2 either side of π/
√

2

A1 cso: Convincingly showing that α = π/
√

2 gives a minimum

Approach 2: Second derivative

M1: Differentiating their expression for first derivative using product rule or otherwise

M1: Simplifying the evaluated expression in the case α = π/
√

2

M1: Considering signs of cosα, sinα for α = π/
√

2

A1 cso: Convincingly deducing that the second derivative is positive

[Total for this part: 5 marks]
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Question 6

Use the binomial expansion to show that the coefficient of xr in the expansion of (1− x)−3 is
1
2(r + 1)(r + 2) .

Using the formula in the formula book for the binomial expansion, we find that the xr term is(−3

r

)
(−x)r =

(−3)(−4)(−5) . . . (−3− r + 1)

r!
(−1)rxr

=
3.4.5. · · · .(r + 2)

r!
xr

=
3.4.5. · · · .(r + 2)

1.2.3.4.5. · · · .r xr

=
(r + 1)(r + 2)

1.2
xr

so the coefficient of xr is 1
2(r + 1)(r + 2). But the argument as we’ve written it assumes that

r > 2 (as we’ve left ourselves with “1.2” in the denominator), so we need to check that this
this also holds for r = 0 and r = 1. But this is easy, as

(−3
0

)
(−1)0 = 1 = 1

2 × 1 × 2 and(−3
1

)
(−1)1 = 3 = 1

2 × 2× 3.

Alternatively, we could have argued

3.4.5. · · · .(r + 2)

r!
xr =

1.2.3.4.5. · · · .(r + 2)

1.2.r!
xr =

(r + 1)(r + 2)

1.2
xr

and this would have dealt with the cases r = 0 and r = 1 automatically, as we are not implicitly
assuming that r > 2.

Marks

M1: Use of binomial theorem in this case, with the right structure of the expanded general
coefficient (but condone, for example, an incorrect final term in the numerator)

A1 cso: Fully correct unsimplified coefficient

M1: Explicitly cancelling the negatives correctly

A1 cso (AG): Reaching the given expression for coefficient

A1 (dep on previous A1): Justifying that the given expression also holds for r = 0 and r = 1
(award together with previous A1 if the assumption r > 2 is not implicitly used)

[Total for this part: 5 marks]

(i) Show that the coefficient of xr in the expansion of

1− x+ 2x2

(1− x)3

is r2 + 1 and hence find the sum of the series

1 +
2

2
+

5

4
+

10

8
+

17

16
+

26

32
+

37

64
+

50

128
+ · · · .

We have
1− x+ 2x2

(1− x)3
= (1− x+ 2x2)(a0 + a1x+ a2x

2 + · · ·+ arx
r + . . . )
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where ar = 1
2(r + 1)(r + 2). Thus

1− x+ 2x2

(1− x)3
= a0 + a1x + a2x

2 + · · · + arx
r + · · ·

− a0x − a1x
2 − · · · − ar−1x

r − · · ·
+ 2a0x

2 + · · · + 2ar−2x
r + · · ·

= a0 + (a1 − a0)x+ (a2 − a1 + 2a0)x
2 + · · ·

+ (ar − ar−1 + 2ar−2)x
r + · · ·

Thus the coefficient of xr for r > 2 is

ar − ar−1 + 2ar−2 = 1
2(r + 1)(r + 2)− 1

2r(r + 1) + (r − 1)r

= 1
2(r2 + 3r + 2− r2 − r + 2r2 − 2r)

= 1
2(2r2 + 2)

= r2 + 1

as required. Also, the coefficient of x0 is a0 = 1 = 02 + 1 and the coefficient of x1 is a1 − a0 =
3 − 1 = 2 = 12 + 1, so the formula r2 + 1 holds for these two cases as well. Therefore, the
coefficient of xr is r2 + 1 for all r > 0.

Now we can sum our series: it is

1 +
2

2
+

5

4
+

10

8
+

17

16
+ · · · = 02 + 1

20
+

12 + 1

21
+

22 + 1

22
+ · · ·+ r2 + 1

2r
+ · · ·

= (02 + 1) + (12 + 1)(12) + · · ·+ (r2 + 1)(12)r + · · ·

=
1− 1

2 + 2(12)2

(1− 1
2)3

=
1

(18)

= 8.

Marks

M1: Writing the quotient as a product (1 − x + 2x2)(a0 + · · · ), possibly with numerical or
algebraic coefficients in the latter bracket; must include a general term, though

M1 dep: Expanding the product, in particular showing the coefficients of x0, x1 and xr

A1: Correct coefficient of xr in expansion (in unsimplified form)

A1 cso (AG): Deducing the required expression for r > 2 (with or without specifying this
condition)

B1: Checking that general expression holds for r = 0 and r = 1

[Total for verifying r2 + 1: 5 marks]

B1: For general term (r2 + 1)/2r

M1: Substituting x = 1
2 into formula

A1 cao: Sum is 8

[Total for summing series: 3 marks]
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(ii) Find the sum of the series

1 + 2 +
9

4
+ 2 +

25

16
+

9

8
+

49

64
+ · · · .

The denominators look like powers of 2, so we will rewrite the terms using powers of 2:

1 + 2 +
9

4
+ 2 +

25

16
+

9

8
+ · · · = 1

1
+

4

2
+

9

4
+

16

8
+

25

16
+

36

32
+

49

64
+ · · ·

and it is clear that the general term is r2/2r−1, starting with the term where r = 1.

We can rewrite this in terms of the series found in part (i) by writing

r2

2r−1
= 2 · r

2

2r
= 2 · r

2 + 1

2r
− 2 · 1

2r
,

so our series becomes

2

(
2

2
+

5

4
+

10

8
+

17

16
+ · · ·

)
− 2

(
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

)
= 2

(
1 +

2

2
+

5

4
+

10

8
+

17

16
+ · · ·

)
− 2

(
1 +

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

)
= 2 · 8− 2 · 2
= 12,

where on the second line, we have introduced the term corresponding to r = 0, and on the
penultimate line, we have used the result from (i) and the sum of the infinite geometric series
1 + 1

2 + 1
4 + 1

8 + · · · = 1/(1− 1
2) = 2.

An alternative approach is to begin with the result of part (i) and to argue as follows.

We have

1− x+ 2x2

(1− x)3
=

∞∑
r=0

(r2 + 1)xr

=

∞∑
r=0

r2xr +

∞∑
r=0

xr

= x
∞∑
r=0

r2xr−1 +
∞∑
r=0

xr.

But our required sum is
∑∞

r=0 r
2(12)r−1, so we put x = 1

2 into this result and get

1− 1
2 + 2(12)2

(1− 1
2)3

= 1
2

∞∑
r=0

r2(12)r−1 +
∞∑
r=0

(12)r.

The last term on the right hand side is our geometric series, summing to 2. The left hand side
evaluates to 8, and so we get

8 = 1
2

∞∑
r=0

r2(12)r−1 + 2.

Thus our series sums to 12, as before.
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A third approach is to observe that the series can be written as
∑∞

r=0(r + 1)2xr =
∑∞

r=0(r
2 +

2r + 1)xr with x = 1
2 , then to look for a polynomial p(x) of degree at most 2 such that the

coefficient of xr in the expansion of p(x)/(1 − x)3 is exactly r2 + 2r + 1, using methods like
those in part (i). (The polynomial needs to be of degree at most 2 so that the terms are also
correct for r = 0 and r = 1 in addition to the general term being correct.) This turns out to
give p(x) = x+ 1, so that the sum is (12 + 1)/(1− 1

2)3 = 12.

Marks

Markscheme for Approach 1:

M1: Identifying the general term as r2/2r−1 or equivalent

M1 dep: Splitting r2/2r−1 into two terms to match part (i)

M1 dep: Identifying the “missing” first term

M1: Sum infinite GP for second bracket

A1 cao: Sum of infinite GP

M1: Using the result of part (i) to sum the first bracket

A1: Reaching the answer 12; can follow through an incorrect answer to (i) if it is used in the
solution to this part

[Total for part (ii): 7 marks]
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Question 7

In this question, you may assume that ln(1 + x) ≈ x− 1
2x

2 when |x| is small.

The height of the water in a tank at time t is h. The initial height of the water is H and
water flows into the tank at a constant rate. The cross-sectional area of the tank is constant.

(i) Suppose that water leaks out at a rate proportional to the height of the water in the
tank, and that when the height reaches α2H, where α is a constant greater than 1, the
height remains constant. Show that

dh

dt
= k(α2H − h),

for some positive constant k. Deduce that the time T taken for the water to reach height
αH is given by

kT = ln

(
1 +

1

α

)
and that kT ≈ α−1 for large values of α.

Since the tank has constant cross-sectional area, the volume of water within the tank is propor-
tional to the height of the water.

Therefore we have the height increasing at a rate a− bh, where a is the rate of water flowing in
divided by the cross-sectional area, and b is a constant of proportionality representing the rate
of water leaking out. In other words, we have

dh

dt
= a− bh.

Now, when h = α2H, dh
dt = 0, so a− bα2H = 0, or a = bα2H, giving

dh

dt
= bα2H − bh = b(α2H − h).

Hence if we write k = b, we have our desired equation.

We can now solve this by separating variables to get∫
1

α2H − h dh =

∫
k dt

so that
− ln(α2H − h) = kt+ c.

At t = 0, h = H, so
− ln(α2H −H) = c,

which finally gives us
kt = ln(α2H −H)− ln(α2H − h).
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Now at time T , h = αH, so that

kT = ln(α2H −H)− ln(α2H − αH)

= ln

(
α2H −H
α2H − αH

)
= ln

(
α2 − 1

α2 − α

)
= ln

(
α+ 1

α

)
= ln

(
1 +

1

α

)
as required.

When α is large, so that 1
α is small, this is

kT = ln

(
1 +

1

α

)
≈ 1

α
− 1

2α2

≈ 1

α
.

Marks

M1: Differential equation in form dh/dt = a− bh or equivalent

M1 dep: Deducing a− bα2H = 0 to find a

A1 cso (AG): Reaching stated differential equation (ODE)

M1: Separating variables

A1 cao: Deducing general solution to ODE

M1: Deducing specific solution to ODE using boundary conditions

M1: Finding expression for kT (in form ln(· · · )− ln(· · · ) or better)

A1 cso: Reaching kT = ln(1 + 1
α ) as given

B1 cso (AG): Using given approximation for ln(1 + x) to reach stated approximation kT ≈ α−1

Alternative for marks 4–6 (M1 A1 M1) if use
∫ T
0
. . . dt =

∫ αH
H

. . . dh:

M1: Separating variables

M1: Limits essentially correct

A1: Integration to reach − ln(. . . )

[Total for part (i): 9 marks]

(ii) Suppose that the rate at which water leaks out of the tank is proportional to
√
h (instead

of h), and that when the height reaches α2H, where α is a constant greater than 1, the
height remains constant. Show that the time T ′ taken for the water to reach height αH
is given by

cT ′ = 2
√
H

(
1−√α+ α ln

(
1 +

1√
α

))
for some positive constant c and that cT ′ ≈

√
H for large values of α.

We proceed just as in part (i).
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This time we have
dh

dt
= a− b

√
h,

where a and b are some constants. Now, when h = α2H, dh
dt = 0, so a − b

√
α2H = 0, which

yields a = bα
√
H. We thus have

dh

dt
= bα

√
H − b

√
h = b(α

√
H −

√
h).

So if this time we write c = b, we have our desired differential equation.

We again solve this by separating variables to get∫
1

α
√
H −

√
h

dh =

∫
cdt.

To integrate the left hand side, we use the substitution u =
√
h, so that h = u2 and dh

du = 2u.
This gives us ∫

1

α
√
H − u

· 2udu = ct.

We divide the numerator by the denominator to get

ct =

∫ −2(α
√
H − u) + 2α

√
H

α
√
H − u

du

=

∫
−2 +

2α
√
H

α
√
H − u

du

= −2u− 2α
√
H ln

(
α
√
H − u

)
+ c′

= −2
√
h− 2α

√
H ln

(
α
√
H −

√
h
)

+ c′

where c′ is a constant.

An alternative way of doing this step is to use the substitution v = α
√
H −

√
h, so that h =

(α
√
H − v)2 = α2H − 2αv

√
H + v2 and dh/dv

= − 2α
√
H + 2v. This gives us

ct =

∫
1

v
(−2α

√
H + 2v) = ct

=

∫ −2α
√
H

v
+ 2 dv

= −2α
√
H ln v + 2v + c′

= −2α
√
H ln

(
α
√
H −

√
h
)

+ 2
(
α
√
H −

√
h
)

+ c′

where c′ is again a constant.

At t = 0, h = H, so
c′ = 2

√
H + 2α

√
H ln

(
α
√
H −

√
H
)
.
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Now at time T ′, h = αH, so that

cT ′ = −2
√
αH − 2α

√
H ln

(
α
√
H −

√
αH
)

+ 2
√
H + 2α

√
H ln

(
α
√
H −

√
H
)

= 2
√
H(1−√α) + 2α

√
H ln

(
α
√
H −

√
H

α
√
H −

√
αH

)

= 2
√
H

(
1−√α+ α ln

(
(
√
α+ 1)(

√
α− 1)√

α(
√
α− 1)

))
= 2
√
H

(
1−√α+ α ln

(√
α+ 1√
α

))
= 2
√
H

(
1−√α+ α ln

(
1 +

1√
α

))
as required.

When α is large, 1/
√
α is small, so this gives

cT ′ = 2
√
H

(
1−√α+ α ln

(
1 +

1√
α

))
≈ 2
√
H

(
1−√α+ α

(
1√
α
− 1

2α

))
≈ 2
√
H
(
1−√α+

√
α− 1

2

)
≈
√
H.

Marks

M1: Correct structure of ODE (dh/dt = a− b
√
h)

A1: Correct ODE: dh/dt = c(α
√
H −

√
h)

M1: Reasonable attempt to substitute u =
√
h or similarly effective substitution

M1 dep: Fully correct substitution

M1 dep: Dividing through numerator by denominator to simplify fraction

A1: Correct general solution to ODE, condone at most one algebraic error

A1 cao: Correct particular solution to ODE

M1: Substituting h = αH correctly and simplifying logs to find cT ′

A1 cso (AG): Determining cT ′ in form given in question

M1: Applying approximation for ln(1 + x) correctly

A1 cso (AG): Deducing approximation given in question

Alternative for marks 4–8 (M1 M1 A1 A1 M1) if use
∫ T
0
. . . dt =

∫ αH
H

. . . dh:

M1 dep: Fully correct substitution, ignoring limits

M1 dep: Dividing through numerator by denominator to simplify fraction

M1: Changing limits, substantially correctly

A1: Correct integration, condone at most one algebraic error

A1 cao: Correct evaluation of integral

SC: If begin with dh/dt = c(α2H −
√
h), then can score max M0 A0 M1 M1 M1 A1 A0 M1 A0

M1 A1

[Total for part (ii): 11 marks]
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Question 8

(i) The numbers m and n satisfy
m3 = n3 + n2 + 1 . (∗)

(a) Show that m > n. Show also that m < n + 1 if and only if 2n2 + 3n > 0 . Deduce
that n < m < n+ 1 unless −3

2 6 n 6 0 .

As n2 > 0, we have

m3 = n3 + n2 + 1

> n3 + 1

> n3

so m > n as the function f(x) = x3 is strictly increasing.

Now

m < n+ 1 ⇐⇒ m3 < (n+ 1)3

⇐⇒ n3 + n2 + 1 < n3 + 3n2 + 3n+ 1

⇐⇒ 0 < 2n2 + 3n

so m < n+ 1 if and only if 2n2 + 3n > 0.

Combining these two conditions, n < m always, and m < n+ 1 if and only if 2n2 + 3n > 0, so
n < m < n+ 1 unless 2n2 + 3n 6 0.

Now 2n2 + 3n = 2n(n+ 3
2) 6 0 if and only if −3

2 6 n 6 0, so n < m < n+ 1 unless −3
2 6 n 6 0.

Marks

M1: Using n2 > 0 to show m3 > n3

A1 cso (AG): Correct deduction of m > n; be generous, but showing the converse (m > n implies
m3 > n3 + n2 + 1) alone gets A0

M1: Cubing m < n+ 1 and expanding (n+ 1)3

A1 cso (AG): Reaching given condition 2n2 + 3n > 0; must have an explicit “if and only if”
argument for this mark

M1 dep on at least one previous M: Combining conditions to get n < m < n + 1 unless
2n2 + 3n 6 0

M1: Some reasonable method of solving this quadratic inequality

A1 cso (AG; dependent on final two M marks): Reaching correct conclusion (− 3
2 6 n 6 0)

through a valid method

[Total for part (i)(a): 7 marks]

(b) Hence show that the only solutions of (∗) for which both m and n are integers are
(m,n) = (1, 0) and (m,n) = (1,−1).

If solution to (∗) has both m and n integer, we cannot have n < m < n + 1, as there is no
integer strictly between two consecutive integers. We therefore require −3

2 6 n 6 0, so n = −1
or n = 0.
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If n = −1, then m3 = 1, so m = 1.

If n = 0, then m3 = 1, so m = 1.

Thus the only integer solutions are (m,n) = (1, 0) and (m,n) = (1,−1).

Marks

M1: Deducing that n = −1 or n = 0

M1 dep: Substituting into (∗) to determine m

A1 cso (AG): Reaching given answers

[Total for part (i)(b): 3 marks]

(ii) Find all integer solutions of the equation

p3 = q3 + 2q2 − 1 .

We try a similar argument here. We start by determining whether p > q:

p > q ⇐⇒ p3 > q3

⇐⇒ q3 + 2q2 − 1 > q3

⇐⇒ 2q2 > 1

⇐⇒ q2 > 1
2

so that p > q unless q2 6 1
2 , and q2 6 1

2 if and only if − 1√
2
6 q 6 1√

2
.

We now determine the conditions under which p < q + 1:

p < q + 1 ⇐⇒ p3 < (q + 1)3

⇐⇒ q3 + 2q2 − 1 < q3 + 3q2 + 3q + 1

⇐⇒ 0 < q2 + 3q + 2

so p < q+ 1 unless q2 + 3q+ 2 6 0. This condition becomes (q+ 1)(q+ 2) 6 0, so −2 6 q 6 −1.

Thus q < p < q + 1 unless − 1√
2
6 q 6 1√

2
or −2 6 q 6 −1.

If p and q are both integers, this then limits us to three cases: q = 0, q = −1 and q = −2.

If q = 0, then p3 = −1, so p = −1.

If q = −1, then p3 = 0, so p = 0.

If q = −2, then p3 = −1, so p = −1.

Hence there are three integer solutions: (p, q) = (−1, 0), (p, q) = (−1,−2) and (p, q) = (0,−1).

Marks

M1: Checking the conditions for p > q by cubing this condition

A1: Reaching the conclusion p > q implies 2q2 > 1 or similar; logic has to follow later on to get
further marks

A1: Either deduce that p > q unless − 1√
2
6 q 6 1√

2
or that p > q with p and q integers unless

q = 0 (“condition 1”)

M1: Checking the conditions for p < q + 1 by cubing this condition

A1: Reaching the conclusion p < q + 1 implies (q + 1)(q + 2) > 0 or similar argument; again logic
must follow later for further credit
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A1: Deducing p < q + 1 unless −2 6 q 6 −1 (“condition 2”)

A1 ft: Combining conditions to get q < p < q+ 1 unless condition 1 OR condition 2 is met (follow
through conditions, but do not condone use of AND in place of OR); requires correct logic
for this mark

M1: Checking all of their possible values of q to determine possible values of p

A1: At least two correct solutions (dependent on getting the previous M1, so if they aren’t
checking all of their possible q values, they cannot get this mark!)

A1 cso: All three correct (p, q) pairs with correct working (condone lack of “iff” argument earlier
for this final mark)

SC: All three solutions correctly given with no justification that these are all the integer solutions
scores B1 only.

[Total for part (ii): 10 marks]
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Question 9

A particle is projected at an angle θ above the horizontal from a point on a horizontal plane.
The particle just passes over two walls that are at horizontal distances d1 and d2 from the
point of projection and are of heights d2 and d1, respectively. Show that

tan θ =
d21 + d1d2 + d22

d1d2
.

We draw a sketch of the situation:

y

xd1

d2

A

d2

d1

B

v

θ

We let the speed of projection be v and the time from launch be t. We resolve the components
of velocity to find the position (x, y) at time t:

R(→) x = (v cos θ)t (1)

R(↑) y = (v sin θ)t− 1
2gt

2 (2)

At A (distance d1 from the point of projection), we find

(v cos θ)t = d1

(v sin θ)t− 1
2gt

2 = d2

so that

t =
d1

v cos θ

giving
v sin θ

v cos θ
d1 −

1
2gd

2
1

v2 cos2 θ
= d2,

so that

d2 = d1 tan θ − gd21
2v2 cos2 θ

.

This can be rearranged to get
gd21

2v2 cos2 θ
= d1 tan θ − d2. (3)

(An alternative is to first eliminate t from equations (1) and (2) first to get

y = x tan θ − gx2

2v2 cos2 θ
(4)
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and then substitute x = d1 and y = d2 into this formula.)

Likewise, at B we get (on swapping d1 and d2):

gd22
2v2 cos2 θ

= d2 tan θ − d1. (5)

Multiplying (3) by d22 gives the same left hand side as when we multiply (5) by d21, so that

(d1 tan θ − d2)d22 = (d2 tan θ − d1)d21.

Expanding this gives
d1d

2
2 tan θ − d32 = d21d2 tan θ − d31.

Collecting terms gives:
(d1d

2
2 − d21d2) tan θ = d32 − d31,

and we can factorise this (recalling that a3 − b3 = (a− b)(a2 + ab+ b2)) to get

d1d2(d2 − d1) tan θ = (d2 − d1)(d22 + d2d1 + d21).

Dividing by d1d2(d2 − d1) 6= 0 gives us our desired result:

tan θ =
d21 + d1d2 + d22

d1d2
.

Marks

M1: Drawing a sketch to show the setup, and introducing the initial speed v; if no sketch, award
this method mark if next answer marks are awarded

A1 cao: Writing down horizontal and vertical components of displacement (can be awarded if the
general expression is not seen, but the results are used in the next step)

M1: Evaluating these at A (or B) to get equations for d1 and d2 in terms of t, v, g and θ

M1: Finding the time at which the particle reaches A (or B) in terms of d1 (or d2), θ and v (this
can be awarded if the result is implicitly used to eliminate t)

A1 cao: Eliminating t from the equations to get d2 = d1 tan θ − · · · or equivalent

An alternative approach to the previous three marks is:

M1: Rearranging the x formula to get t = · · · (can be awarded if the result is used implicitly in
the next step)

M1 dep: Substituting t = · · · into the formula for y to get a formula for y in terms of x

A1 cao: Substituting x = d1, y = d2 (or vice versa) to get d2 = d1 tan θ − · · · or equivalent

B1 ft: Writing down the corresponding equation for the second wall

M1: Eliminating v from the pair of equations to get an equation involving d1, d2 and θ only

A1 cao: Deducing a correct equation involving d1, d2 and tan θ only from their earlier equations

M1: Rearranging to find tan θ in terms of d1 and d2

M1 dep: Factorising resulting expression or equation to simplify it

A1 cso (AG): Reaching given equation

[Total for this part: 11 marks]
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Find (and simplify) an expression in terms of d1 and d2 only for the range of the particle.

The range can be found by determining where y = 0, so (v sin θ)t− 1
2gt

2 = 0. This has solutions
t = 0 (the point of projection) and t = (2v/g) sin θ. At this point,

x = (v cos θ)t =
2v2 sin θ cos θ

g

=
2v2 cos2 θ

g
tan θ.

We have written sin θ = cos θ tan θ because equation (3) gives us a formula for the fraction part
of this expression: we get

x =
d21

d1 tan θ − d2
tan θ.

Alternatively, using equation (4), we can solve for y = 0 to get x = 0 or

tan θ =
gx

2v2 cos2 θ
.

Since x = 0 at the start, the other solution gives the range. Using equation (3) to write

g

2v2 cos2 θ
=
d1 tan θ − d2

d21
,

we deduce that

x =
d21 tan θ

d1 tan θ − d2
as before.

We can now simply substitute in our formula for tan θ, simplify a little, and we will be done:

x =

d21

(
d21 + d1d2 + d22

d1d2

)
d1

(
d21 + d1d2 + d22

d1d2

)
− d2

=
d1(d

2
1 + d1d2 + d22)

(d21 + d1d2 + d22)− d22

=
d1(d

2
1 + d1d2 + d22)

d21 + d1d2

=
d21 + d1d2 + d22

d1 + d2

Alternative approach

An entirely different approach to the whole question is as follows. We know that the path of
the projectile is a parabola. Taking axes as in the above sketch, the path passes through the
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three points (0, 0), (d1, d2) and (d2, d1). If the equation of the curve is y = ax2 + bx + c, then
this gives three simultaneous equations:

0 = 0a+ 0b+ c

d2 = d21a+ d1b+ c

d1 = d22a+ d2b+ c.

The first gives c = 0, and we can then solve the other two equations to get a and b. This gives

a =
d22 − d21

d21d2 − d22d1
= −d1 + d2

d1d2

b =
d31 − d32

d21d2 − d22d1
=
d21 + d1d2 + d22

d1d2

Then the gradient is given by dy/dx = 2ax+ b, so at x = 0, the gradient dy/dx = b, which gives
us tan θ (as the gradient is the tangent of angle made with the x-axis). The range is given by
solving y = 0, so x(ax+ b) = 0, giving x = −b/a = (d21 + d1d2 + d22)/(d1 + d2) as before.

Marks

M1: Solving y = 0 to find range (either in equation for y in terms of x or in terms of t)

A1: Finding t at y = 0 in terms of v, θ and g

M1: Finding range by substituting t into x

Alternative for preceding 2 marks if y = x tan θ − . . . is used:

M1: Using x 6= 0 to find correct solution

A1: Deducing gx/2v2 cos2 θ = tan θ

M1: Using (3) to eliminate v and g

A1 ft: Correct expression for range involving d1, d2 and tan θ only

M1: Substituting for tan θ to leave a formula in terms of d1 and d2 only

A1 cao: Correct (unsimplified) formula for range in terms of d1 and d2 only

M1: Simplifying resulting fraction

A1 cao: Simplified expression for range

[Total for this part: 9 marks]
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Question 10

A particle, A, is dropped from a point P which is at a height h above a horizontal plane. A
second particle, B, is dropped from P and first collides with A after A has bounced on the
plane and before A reaches P again. The bounce and the collision are both perfectly elastic.
Explain why the speeds of A and B immediately before the first collision are the same.

Assume they collide at height H < h. The perfectly elastic bounce means that there was no loss
of energy, so A has the same total energy at height H on its upwards journey as it did when
travelling downwards. We can work out the speeds at the point of collision, calling them vA and
vB for A and B respectively. We write M for the mass of A and m for the mass of B (as in the
next part of the question). We have, by conservation of energy

MgH + 1
2Mv2A = Mgh

mgH + 1
2mv

2
B = mgh

so that v2A = 2(gh − gH) and v2B = 2(gh − gH), so |vA| = |vB| and the speeds of A and B are
the same.

Marks

B1: No loss of energy at bounce

M1: Use of conservation of energy to find vA or similar

M1: Determining vA or v2A (ignore the sign of vA if square roots are taken)

A1 (dependent on M marks only; can award even if B0): Correct deduction of result; condone
vA = vB .

[Total for this explanation: 4 marks]

The masses of A and B are M and m, respectively, where M > 3m, and the speed of the
particles immediately before the first collision is u. Show that both particles move upwards
after their first collision and that the maximum height of B above the plane after the first
collision and before the second collision is

h+
4M(M −m)u2

(M +m)2g
.

This begins as a standard collision of particles question, and so I will repeat the advice from
the 2010 mark scheme: ALWAYS draw a diagram for collisions questions; you will do yourself
(and the marker) no favours if you try to keep all of the directions in your head, and you are
very likely to make a mistake. My recommendation is to always have all of the velocity arrows
pointing in the same direction. In this way, there is no possibility of getting the signs wrong

in the Law of Restitution: it always reads v1 − v2 = e(u2 − u1) or
v1 − v2
u2 − u1

= e, and you only

have to be careful with the signs of the given velocities. The algebra will then keep track of the
directions of the unknown velocities for you.

A diagram showing the first collision is as follows.
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Before After

B m

uB = −u

A M

uA = u

B m

vB

A M

vA

Then Conservation of Momentum gives

MuA +muB = MvA +mvB

so

Mu−mu = MvA +mvB,

and Newton’s Law of Restitution gives

vB − vA = 1(uA − uB)

(using e = 1 as the collision is perfectly elastic). Substituting uA = u and uB = −u gives

MvA +mvB = (M −m)u (1)

vB − vA = 2u. (2)

Then solving these equations (by (1)−m× (2) and (1) +M × (2)) gives

vA =
(M − 3m)u

M +m
(3)

vB =
(3M −m)u

M +m
. (4)

To show that both particles move upwards after their first collision, we need to show that vA > 0
and vB > 0. From equation (3) and M > 3m (given in the question), we see that vA > 0; from
equation (4) and 3M −m > 9m−m > 0 (as M > 3m), we see that vB > 0. Thus both particles
move upwards after their first collision.

Marks

B1: Correct Conservation of Momentum (CoM) equation

M1: Using Law of Restitution (LoR) correctly in context (i.e., with e = 1; condone at most one
sign error for this mark)

A1 cao: Correct resulting equation with u substituted appropriately; the signs must be consistent
between the CoM and LoR equations for this mark

M1: Solving equations simultaneously

A1 cao: Correct vA

A1 cao: Correct vB

M1: Condition on at least one of vA and vB for particles to be going upwards

A1 cso: Justification that vA > 0

A1 cso: Justification that vB > 0 (needs more than just stating 3M −m > 0)

[Total for showing both particles move upwards: 9 marks]

To find the maximum height of B between the two collisions, we begin by finding the maximum
height that would be achieved by B following the first collision assuming that there is no second
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collision. We then explain why the second collision occurs during B’s subsequent downward
motion and deduce that it reaches that maximum height between the collisions.

The kinetic energy (KE) of B before the first collision is 1
2mu

2 and after the first collision is

1
2mv

2
B = 1

2m

(
3M −m
M +m

)2

u2,

so that B has a gain in KE of 1
2mv

2
B − 1

2mu
2. When B is again at height h above the plane,

which is where it was dropped from, it now has this gain as its KE. (This is because the KE
just before the first collision has come from the loss of GPE; when the particle is once again at
height h, this original KE (12mu

2) has been converted back into GPE.)

The particle B can therefore rise by a further height of H, where

mgH = 1
2mv

2
B − 1

2mu
2 = 1

2mu
2

((
3M −m
M +m

)2

− 1

)
,

so

H =
u2

2g

(
9M2 − 6Mm+m2

(M +m)2
− M2 + 2Mm+m2

(M +m)2

)
=
u2

2g

(
8M2 − 8Mm

(M +m)2

)
=

4u2

g

(
M(M −m)

(M +m)2

)
.

Thus the maximum height reached by B after the first collision, assuming that the second
collision occurs after B has started falling is

h+H = h+
4M(M −m)u2

(M +m)2g
.

Finally, we have to explain why A does not catch up with B before B begins to fall. But this
is easy: B initially has a greater upward velocity than A (as vB − vA = 2u > 0), so the height
of B is always greater than the height of A. Therefore they can only collide again after A has
bounced on the ground and is in its ascent while B is in its descent.

Alternative approach: using constant acceleration and “suvat”

An alternative approach is to use the formulæ for constant acceleration (“suvat”), as follows.

Just before collision, B has speed u, so the height H of B at this point is given by the “suvat”
equation v2 = u2 + 2as, taking positive to be downwards:

u2 = 02 + 2g(h−H),

giving H = h− u2/2g.

Immediately after the collision, B has velocity upwards given by equation (4) above. At the
maximum height, hmax, the speed of B is zero, so we can determine the maximum height using
v2 = u2 + 2as again; this time, we take positive to be upwards, so a = −g:

02 =

(
(3M −m)u

M +m

)2

− 2g(hmax −H).
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(Note that hmax −H > 0.)

Rearranging this gives

hmax = H +
1

2g

(
(3M −m)u

M +m

)2

= h− u2

2g
+
u2

2g

(
(3M −m)

M +m

)2

= h+
u2

2g

(
(3M −m)2 − (M +m)2

(M +m)2

)
= h+

u2

2g

(
8M2 − 8Mm

(M +m)2

)
= h+

4M(M −m)u2

(M +m)2g

as required.

Marks

B1: Maximum height where velocity is zero

M1: Calculating KE of B before and after collision

A1 ft: Calculating gain in KE correctly (need not be simplified)

M1: Height reached above h found by using: gain in GPE at max height = extra KE gained from
collision

A1 ft: mgH = 1
2mv

2
B − 1

2mu
2

M1: Expanding fractions and simplifying

A1 cso (AG): Calculating max height in form given in question

Alternative: “suvat” approach

B1: Speed is zero at maximum height

M1 A1: Calculating displacement above point of collision

M1 A1: Calculating drop from initial height to point of collision (NB: The candidate must be
clear that this is what they are attempting to do to be awarded these marks)

M1 A1 cso: Correctly (and clearly) combining the height differences to find the required answer

[Total for finding max height of B: 7 marks]
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Question 11

A thin non-uniform bar AB of length 7d has centre of mass at a point G, where AG = 3d.
A light inextensible string has one end attached to A and the other end attached to B. The
string is hung over a smooth peg P and the bar hangs freely in equilibrium with B lower
than A. Show that

3 sinα = 4 sinβ ,

where α and β are the angles PAB and PBA, respectively.

We begin by drawing a diagram of the situation, showing the forces involved (the tension in the
string, which is the same at A and B since the peg is smooth, and the weight of the bar acting
through G). Clearly BG = 4d, which we have shown as well.

We have indicated the angles α, β and φ as defined in the question, and have also introduced
the angle θ as angle AGP . The point M is the foot of the perpendicular from P to AB, which
is used in some of the methods of solution.

A

B

P

G

M

3d

4d

T

T

W

α

β

θ π − θ

π − θ − α
θ − β

A

B

P

G
3d

4d

T

T

W

α
φ

β

φ

π
2 − (α− φ)

π
2 − φ− β

Diagram 1: Using θ for angle
between rod and vertical

Diagram 2: Using φ for angle
between rod and horizontal

Note that we have drawn the sketch with the weight passing through P . This must be the case:
both tensions pass through P and the system is in equilibrium. So taking moments around P
shows that W times the distance of the line of force of W from P must be zero, so that W acts
through P .

The simplest way of showing that 3 sinα = 4 sinβ is to take moments about G:

M (
y
G) T.3d sinα− T.4d sinβ = 0

so that 3 sinα = 4 sinβ.

An alternative approach is to apply the sine rule to the triangles PAG and PBG and resolve
horizontally; this, though, is a somewhat longer-winded method.

Marks

[Mark for weight through P is awarded later if relevant]

M1: Clear diagram
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M1: Taking moments about A, B or G; forces must appear (correctly) in the resulting equation
to be awarded this mark

A1: Correct moment for at least one force

A1 cso (AG): Deducing stated equation

[Total for this part: 4 marks]

Given that cosβ = 4
5 and that α is acute, find in terms of d the length of the string and show

that the angle of inclination of the bar to the horizontal is arctan 1
7 .

From cosβ = 4
5 , we deduce sinβ = 3

5 , and hence sinα = 4
3 sinβ = 4

5 . Thus cosα = ±3
5 , and

since α is acute, cosα = 3
5 .

There are numerous ways of finding the length of the string, l, in terms of d. We present a few
approaches here.

Approach 1: Show that ∠APB = π
2

To find the length of the string, we first find the angle APB.

One method is to note that ∠APB = π − α− β, so

sin(π − α− β) = sin(α+ β)

= sinα cosβ + cosα sinβ

= 4
5 × 4

5 + 3
5 × 3

5

= 1,

so ∠APB = π
2 and the triangle APB is right-angled at P .

Alternatively, as sinα = cosβ, we must have α+ β = π
2 , so ∠APB = π

2 .

Thus AP = AB cosα = 7d.35 = 21
5 d and BP = AB sinα = 7d.45 = 28

5 d, so the string has length
(215 + 28

5 )d = 49
5 d.

Approach 2: Trigonometry with the perpendicular from P

In the triangle APB, we draw a perpendicular from P to AB, meeting AB at M . Then
PM = AP sinα = BP sinβ. (This can also be shown directly by applying the sine rule:
AP/ sinβ = BP/ sinα.)

We also have AB = AM +BM = AP cosα+BP cosβ = 7d.

Now using our known values of sinα, etc., these equations become 4
5AP = 3

5BP so that BP =
4
3AP , and 3

5AP + 4
5BP = 7d.

Combining these gives 3
5AP+ 16

15AP = 7d, so AP = 21
5 d and hence BP = 28

5 d and l = AP+BP =
49
5 d.

Approach 3: Cosine rule

We apply the cosine rule to the triangle APB, and we write x = AP and y = BP for simplicity.
This gives us

x2 = AB2 + y2 − 2AB.y cosβ or

y2 = AB2 + x2 − 2AB.x cosα.
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There are different ways of continuing from here. The most straightforward is probably to begin
by showing that BP = 4

3AP or y = 4
3x as in Approach 2. This then simplifies the two equations

to give

(34y)2 = (7d)2 + y2 − 2(7d).y.45 or

(43x)2 = (7d)2 + x2 − 2(7d).x.35 .

We can then expand and rearrange these quadratics to get

7
16y

2 − 56
5 dy + 49d2 = 0 or

7
9x

2 + 42
5 dx− 49d2 = 0.

Dividing by 7 and clearing fractions (multiplying by 80 and 45 respectively) gives

5y2 − 128dy + 560d2 = 0 or

5x2 + 54dx− 315d2 = 0.

These quadratics turn out to factorise as

(y − 20d)(5y − 28d) = 0 or

(x+ 15d)(5x− 21d) = 0.

The first equation gives two possibilities: y = 20d or y = 28
5 d, whereas the second only gives

one: x = 21
5 d.

For the first equation, y = 20d would imply x = 3
4y = 15d, but then we would have

cosα =
AB2 + x2 − y2

2AB.x
=

49d2 + 225d2 − 400d2

14d.15d
< 0,

which is not possible as α is acute.

So we must have x = 21
5 d and y = 28

5 d, and hence l = x+ y = 49
5 d.

Approach 4: Sine rule

Using the sine rule on the triangle APB, we have

AB

sin(π − α− β)
=

AP

sinβ
=

BP

sinα
.

We use sin(π − φ) = sinφ and the addition (compound angle) formula to write

sin(π − α− β) = sin(α+ β)

= sinα cosβ + cosα sinβ

= 4
5 × 4

5 + 3
5 × 3

5

= 1,

so that the sine rule becomes
7d

1
=
AP

3/5
=
BP

4/5
,

giving AP = 21
5 d, BP = 28

5 d and hence l = AP +BP = 49
5 d.
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Marks

B1: Determining sinβ

M1: Using first part to determine sinα

A1 cao: Correct sinα and cosα

Approach 1 (Show that ∠APB = π
2 ):

M1 M1 A1: Showing ∠APB = π
2

M1 A1: Finding one of AP or BP

A1 cao: Determining the length of the string

Approach 2 (Trigonometry with the perpendicular from P ):

M1 A1 A1: Finding the equations

M1 A1: Finding one of AP or BP

A1 cao: Determining the length of the string

Approach 3 (cosine rule):

[If using this method, only award maximum 2 marks for finding sines and cosines above]

M1 A1: Showing that PB = 4
3AP

M1 (dep) A1 A1: Applying the cosine rule to get a quadratic equation

M1 A1 cao: Deducing the correct root to use (this is not obvious in one of the two cases) and
determining length of string

Approach 4 (sine rule):

M1 A1: Showing that PB = 4
3AP or equivalent

M1: Using sine rule

M1: Expanding sin(π − α− β) and substituting angles to simplify

M1 A1 cao: Determining correct length of string

[Total for finding length of string: 9 marks]

We now find φ, the angle of inclination of the bar to the horizontal. Referring to the above
diagrams, we have φ = π

2 − θ, so tanφ = cot θ.

Here again are several approaches to this problem.

Approach 1: Resolving forces horizontally and vertically

We resolve horizontally to get

R(→) T sin(π − θ − α)− T sin(θ − β) = 0.

Therefore we get
sin(θ + α) = sin(θ − β).

We now use the addition formula for sine to expand these, and then substitute in our values for
sinα, etc., giving:

sin θ cosα+ cos θ sinα = sin θ cosβ − cos θ sinβ

so
3
5 sin θ + 4

5 cos θ = 4
5 sin θ − 3

5 cos θ

giving
7
5 cos θ = 1

5 sin θ.

Dividing by cos θ now gives cot θ = 1
7 , hence the angle made with the horizontal is given by

tanφ = 1
7 , yielding φ = arctan 1

7 as required.
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Alternatively, using φ instead of θ in the original equations, we get

R(→) T sin(π2 + φ− α)− T sin(π2 − φ− β) = 0,

which simplifies (on dividing by T 6= 0 and using sin(π2 − x) = cosx) to

cos(α− φ)− cos(φ+ β) = 0.

The rest of the argument follows as before.

Approach 2: Resolving forces parallel and perpendicular to the rod

We resolve parallel to the rod to get

R(↘) T cosα+W cos θ − T cosβ = 0

and perpendicular to the rod to get

R(↗) T sinα−W sin θ + T sinβ = 0.

Rearranging these gives:

W cos θ = −T cosα+ T cosβ

W sin θ = T sinα+ T sinβ.

Dividing these equations gives

cot θ =
− cosα+ cosβ

sinα+ sinβ

=
−3

5 + 4
5

4
5 + 3

5

= 1
7 .

Since tanφ = cot θ, as we noted above, we have tanφ = 1
7 , so φ = arctan 1

7 as required.

Approach 3: Dropping a perpendicular

In the triangle APB, we draw a perpendicular from P to AB, meeting AB at M . Then
PM = AP sinα = 21

5 d.
4
5 = 84

25d and AM = AP cosα = 21
5 d.

3
5 = 63

25d. As AG = 3d, it follows
that MG = AG−AM = 12

25d.

Then (see the diagram above) we have tan θ = PM/MG = 84
25d
/
12
25d = 7 so that cot θ = tanφ =

1
7 , giving φ = arctan 1

7 as required.

Approach 4: PG bisects ∠APB

As in approach 1 above, we resolve horizontally (using diagram 2) to get

T sin(π2 − (α− φ)− T sin(π2 − φ− β) = 0.

Since both of the angles involved here are acute (as the triangle BGP has an obtuse angle at G),
they must be equal, giving α− φ = φ+ β, so that 2φ = α− β.
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Hence we have

cos 2φ = cosα cosβ + sinα sinβ

= 3
5 .

4
5 + 4

5 .
3
5

= 24
25 .

We therefore deduce using cos 2φ = 2 cos2 φ− 1 that cos2 φ = 49
50 and sin2 φ = 1

50 . It follows that
tan2 φ = sin2 φ/ cos2 φ = 1

49 , giving tanφ = 1
7 (the positive root as φ is acute) or φ = arctan 1

7
as required.

Marks

Approach 1 (resolving forces horizontally and vertically):

B1: Determining angles of forces to horizontal or vertical

M1 A1: Resolving forces horizontally

M1 A1: Expanding using the compound angle formulæ

M1 A1 (AG): Rearranging to find tan θ or equivalent and the required answer

Approach 2 (resolving parallel and perpendicular):

M1 A1: Resolving forces parallel to rod correctly

M1 A1: Resolving forces perpendicular to rod correctly

M1 A1: Dividing equations to find cot θ or equivalent

A1 cao (AG): Reaching given answer arctan 1
7

Approach 3 (dropping a perpendicular):

M1 A1: Determining AM

B1: Stating tan θ = GM/PM

M1 A1 A1: Calculating GM and PM

A1 cao (AG): Reaching the given answer

Approach 4 (dropping a perpendicular):

M1: Deducing angles in triangle in terms of α, β and φ or θ

M1 A1: Showing vertical bisects angle at P

M1 A1: Using compound angle formula to deduce cos 2φ

M1 A1 (AG): Using the double angle formulæ to deduce the given answer

[Total for finding angle with horizontal: 7 marks]
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Question 12

I am selling raffle tickets for £1 per ticket. In the queue for tickets, there are m people each
with a single £1 coin and n people each with a single £2 coin. Each person in the queue
wants to buy a single raffle ticket and each arrangement of people in the queue is equally
likely to occur. Initially, I have no coins and a large supply of tickets. I stop selling tickets if
I cannot give the required change.

(i) In the case n = 1 and m > 1, find the probability that I am able to sell one ticket to
each person in the queue.

I can sell one ticket to each person as long as I have a £1 coin when the single person with a £2
coin arrives, which will be the case as long as they are not the first person in the queue. Thus
the probability is

1− 1

m+ 1
=

m

m+ 1
.

Marks

M1: Argument

A1 cao: Answer; award both marks even if justification is very weak in this part.

[Total for part (i): 2 marks]

(ii) By considering the first three people in the queue, show that the probability that I am

able to sell one ticket to each person in the queue in the case n = 2 and m > 2 is
m− 1

m+ 1
.

This time, I can sell to all the people as long as I have one £1 coin when the first £2 coin is
given to me and I have received at least two £1 coins (in total) by the time the second £2 coin
is offered.

So we consider the first three people in the queue and the coin they bring; in the table below,
“any” means that either coin could be offered at this point. (This called also be represented as
a tree diagram, of course.) The probabilities in black are those of success, the ones in red are
for the cases of failure. Only one or the other of these needs to be calculated.

1st 2nd 3rd Success? Probability

£1 £1 any yes
m

m+ 2
× m− 1

m+ 1
=

(
m

2

)/(
m+ 2

2

)
£1 £2 £1 yes

m

m+ 2
× 2

m+ 1
× m− 1

m
=

(
m− 1

1

)/(
m+ 2

2

)
£1 £2 £2 no

m

m+ 2
× 2

m+ 1
× 1

m
= 1

/(
m+ 2

2

)
£2 any any no

2

m+ 2
=

(
m+ 1

1

)/(
m+ 2

2

)
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To determine the probabilities in the table, there are two approaches. The first is to find the
probability that the kth person brings the specified coin given the previous coins which have
been brought; this is the most obvious method when this is drawn as a tree diagram. The
second approach is to count the number of possible ways of arranging the remaining coins
and to divide it by the total number of possible arrangements of the m + 2 coins, which is(
m+2
2

)
= 1

2(m+ 2)(m+ 1).

Therefore the probability of success is

m(m− 1)

(m+ 2)(m+ 1)
+

2(m− 1)

(m+ 2)(m+ 1)
=

(m+ 2)(m− 1)

(m+ 2)(m+ 1)
=
m− 1

m+ 1
.

Alternatively, we could calculate the probability of failure (adding up the probabilities in red)
and subtract from 1 to get

1− 2

(m+ 2)(m+ 1)
− 2

m+ 2
= 1− 2

m+ 2
.
1 + (m+ 1)

m+ 2
= 1− 2

m+ 2
=
m− 1

m+ 2
.

Marks

M1: Explaining the situations under which we will have success or those under which we will
have failure (can be implied by table or tree diagram or similar)

M1: Determining the probability for the case £1, £1 . . . (or £1, £2, £2, . . . if considering
failure)

A1 cao: . . . correctly

M1: Determining the probability in the case £1, £2, £1 . . . (or £2, . . . if considering failure)

A1: . . . correctly

M1: Rejecting remaining cases

M1: Adding probabilities and simplifying (and subtracting from 1 if considering failure)

A1 cso (AG): Reaching given answer

[Total for part (ii): 8 marks]

(iii) Show that the probability that I am able to sell one ticket to each person in the queue

in the case n = 3 and m > 3 is
m− 2

m+ 1
.

This time, it turns out that we need to consider the first five people in the queue to distinguish
the two cases which begin with £1, £1, £2, £2; the rest of the method is essentially the same
as in part (ii).

1st 2nd 3rd 4th 5th Success? Probability

£1 £1 £1 any any yes
m

m+ 3
× m− 1

m+ 2
× m− 2

m+ 1
=

(
m

3

)/(
m+ 3

3

)

£1 £1 £2 £1 any yes
m

m+ 3
× m− 1

m+ 2
× 3

m+ 1
× m− 2

m

=

(
m− 1

2

)/(
m+ 3

3

)

£1 £1 £2 £2 £1 yes
m

m+ 3
× m− 1

m+ 2
× 3

m+ 1
× 2

m
× m− 2

m− 1
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=

(
m− 2

1

)/(
m+ 3

3

)

£1 £1 £2 £2 £2 no
m

m+ 3
× m− 1

m+ 2
× 3

m+ 1
× 2

m
× 1

m− 1

= 1

/(
m+ 3

3

)

£1 £2 £1 £1 any yes
m

m+ 3
× 3

m+ 2
× m− 1

m+ 1
× m− 2

m

=

(
m− 1

2

)/(
m+ 3

3

)

£1 £2 £1 £2 £1 yes
m

m+ 3
× 3

m+ 2
× m− 1

m+ 1
× 2

m
× m− 2

m− 1

=

(
m− 2

1

)/(
m+ 3

3

)

£1 £2 £1 £2 £2 no
m

m+ 3
× 3

m+ 2
× m− 1

m+ 1
× 2

m
× 1

m− 1

= 1

/(
m+ 3

3

)

£1 £2 £2 any any no
m

m+ 3
× 3

m+ 2
× 2

m+ 1
=

(
m

1

)/(
m+ 3

3

)

£2 any any any any no
3

m+ 3
=

(
m+ 2

2

)/(
m+ 3

3

)

(Alternatively, the four cases beginning £1, £2 can be regarded as £1, £2 followed by 2 people
with £2 coins and m−1 people with £1 coins, bringing us back into the case of part (ii). So the
probability of success in these cases is m

m+3 × 3
m+2 × m−2

m , where the final fraction comes from
the result of part (ii).)

Therefore the probability of success is

1

(m+ 3)(m+ 2)(m+ 1)

(
m(m− 1)(m− 2) + 3(m− 1)(m− 2)+

6(m− 2) + 3(m− 1)(m− 2) + 6(m− 2)
)

=
m− 2

(m+ 3)(m+ 2)(m+ 1)

(
m(m− 1) + 6(m− 1) + 12

)
=

m− 2

(m+ 3)(m+ 2)(m+ 1)
(m2 + 5m+ 6)

=
m− 2

m+ 1
.

Similarly, the probability of success can be calculated by considering the probability of failure:
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the probability of success is therefore

1− 6

(m+ 3)(m+ 2)(m+ 1)
− 6

(m+ 3)(m+ 2)(m+ 1)
− 6m

(m+ 3)(m+ 2)(m+ 1)
− 3

m+ 3

= 1− 12 + 6m+ 3(m+ 1)(m+ 2)

(m+ 3)(m+ 2)(m+ 1)

= 1− 3m2 + 15m+ 18

(m+ 3)(m+ 2)(m+ 1)

= 1− 3(m+ 2)(m+ 3)

(m+ 3)(m+ 2)(m+ 1)

= 1− 3

m+ 1

=
m− 2

m+ 1
.

There seems to be a pattern in these results, and one might conjecture that the probability of

being able to sell one ticket to each person in the general case m > n is
m+ 1− n
m+ 1

. This turns

out to be correct, though the proof uses significantly different ideas from those used above.

Marks

M1: Setting up an effective method, either a table considering first five people in queue or a
correctly structured tree diagram covering all necessary cases

M1 indep: Correct method for any case (can award for any correct case even if fewer than five
people considered)

A1: Correct answer for £1, £1, £1 case

A1: Correct answer for £1, £1, £2, £1 case

A1: Correct answer for £1, £1, £2, £2, £1 case

M1: Either referring back to part (ii) or considering remaining two good cases

A1: Correct answer for this case / these cases

M1: Rejecting remaining cases

A1 ft: Correct probability of success (unsimplified sufficient for this mark)

A1 cso (AG): Reaching given answer

(A similar distribution of marks is awarded in the case that the candidate adds the probabilities
of failure and calculates 1− P(failure).)

[Total for part (iii): 10 marks]
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Question 13

In this question, you may use without proof the following result:∫ √
4− x2 dx = 2 arcsin(12x) + 1

2x
√

4− x2 + c .

A random variable X has probability density function f given by

f(x) =


2k −a 6 x < 0

k
√

4− x2 0 6 x 6 2

0 otherwise,

where k and a are positive constants.

(i) Find, in terms of a, the mean of X.

We know that
∫∞
−∞ f(x) dx = 1, so we begin by performing this integration to determine k.

We have ∫ 0

−a
2k dx+

∫ 2

0
k
√

4− x2 dx =
[
2kx

]0
−a + k

[
2 arcsin x

2 + 1
2x
√

4− x2
]2
0

= 2ak + k
(
(2 arcsin 1 + 0)− (2 arcsin 0 + 0)

)
= 2ak + kπ

= k(2a+ π)

= 1,

so k = 1/(2a+ π).

We can now work out the mean of X; we work in terms of k until the very end to avoid ugly
calculations. We can integrate the expression x

√
4− x2 = kx(4 − x2) 1

2 either using inspection
(as we do in the following) or the substitution u = 4 − x2, giving du/dx = −2x, so that the

integral becomes k
∫ 0
4 −1

2u
1
2 du = k

[
−1

3u
3
2

]0
4

= 8
3k.

E(X) =

∫ ∞
−∞

xf(x) dx

=

∫ 0

−a
2kxdx+

∫ 2

0
kx
√

4− x2 dx

=
[
kx2
]0
−a +

[
−k

3 (4− x2) 3
2
]2
0

= (0− ka2) + (0− (−k
3 × 4

3
2 ))

= −ka2 + 8
3k

=
8
3 − a2
2a+ π

=
8− 3a2

3(2a+ π)
.
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Marks

M1: Using
∫

f(x) dx = 1 to find k

M1: Splitting integral and integrating each part

A1: Correct evaluation of definite integral

A1 cao: Correct k

For the rest of the question, follow through an incorrect k except in “cao” or “cso” marks

M1: Splitting correct E(X) integral into two parts correctly

M1: Integrating x
√

4− x2 to get something of the form A(4− x2)
3
2

A1: Correctly integrating both terms (can still be in terms of k)

A1: Correctly evaluating integral (can still be in terms of k)

A1 cao: Correct integral in terms of a alone

[Total for part (i): 9 marks]

(ii) Let d be the value of X such that P(X > d) = 1
10 . Show that d < 0 if 2a > 9π and find

an expression for d in terms of a in this case.

We have d < 0 if and only if P(X > 0) < P(X > d) = 1
10 , so we consider P(X > 0). Using the

above integration (or noting that X is uniform for x < 0), we have

P(X > 0) = 1− P(X < 0)

= 1− 2ak

= 1− 2a

2a+ π

=
π

2a+ π
.

Therefore P(X > 0) < 1
10 if and only if

π

2a+ π
<

1

10
;

that is 10π < 2a+ π, or 2a > 9π. Putting these together gives d < 0 if and only if 2a > 9π.

In this case, as d < 0, we have

P(X > d) = 1− P(X < d) = 1− 2k(d− (−a)),

so 1− 2k(d+ a) = 1
10 , so d+ a = 9

10/2k, giving

d =
9

20k
− a

=
9(2a+ π)

20
− a

=
9π − 2a

20
.

Note that, since 2a > 9π, this gives us d < 0 as we expect.

An alternative approach is to calculate the cumulative distribution function first. We have

F(x) =


0 x < −a
2k(x+ a) −a 6 x < 0

k
(
2a+ 2 arcsin 1

2x+ 1
2x
√

4− x2
)

0 6 x 6 2

1 x > 2
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(though only the part with −a 6 x 6 0 is actually needed).

Then we solve F(d) = 9
10 . If it turns out that d < 0, then we have F(d) = 2k(d+ a) = 9

10 , which
rearranges to give d = (9π − 2a)/20 as above. Now if 2a > 9π, then (9π − 2a)/20 < 0 so that
F ((9π − 2a)/20) = 9

10 and d < 0, as required.

Marks

M1: Converting d < 0 into the condition P(X > 0) < 1
10

M1: Using uniformity or other approach to find P(X > 0)

A1: Finding P(X > 0) in terms of a alone

M1: Using this in the inequality P(X > 0) < 1
10 to find a condition on a

A1 cso: Deducing that d < 0 if given inequality 2a > 9π holds; award also if the reverse
implication is proven instead

M1: Finding an expression for P(X > d) or P(X < d) in this case

A1 cso: Find d in terms of a correctly

Alternative approach via cdf

M1 A1: Find cdf for −a < x < 0

M1: Rearranging F (d) = 9
10 to get d in terms of a, assuming d < 0 explicitly

A1: Reaching d = (9π − 2a)/20

M1 A1: This works if or only if 2a > 9π (at least one direction of argument)

A1 cso: Correct direction of argument: if 2a > 9π then d < 0

[Total for part (ii): 7 marks]

(iii) Given that d =
√

2, find a.

We note that now d > 0, so we have to integrate to find a explicitly. We get

P(X >
√

2) =

∫ 2

√
2
k
√

4− x2 dx =
[
2 arcsin x

2 + 1
2x
√

4− x2
]2√

2

= k
(
(2 arcsin 1 + 0)− (2 arcsin

√
2
2 +

√
2
2

√
4− 2)

)
= k(π − π

2 − 1)

= k(π2 − 1)

=
π
2 − 1

2a+ π

= 1
10 .

Thus 10(π2 − 1) = 2a+ π, so that 2a = 4π − 10, giving our desired result: a = 2π − 5.

Alternatively, one could calculate P(X <
√

2) in the same manner and find a such that this
equals 9

10 .

As a check, it is clear that 2a = 4π − 10 < 9π, so d > 0 from part (ii).

Marks

M1: Integrating to find P(X >
√

2) or P(X <
√

2) explicitly

A1: Reaching k(π2 − 1) (possibly with k substituted), or 1− k(π2 − 1) if P(X >
√

2) is calculated

M1: Substituting k and solving to find a

A1 cso: Correct a

[Total for part (iii): 4 marks]
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