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STEP 3 Introduction 
 
The total entry was a marginal increase on that of 2022 (by just over 1%). Two questions were 
attempted by more than 90% of candidates, another two by 80%, and another two by about two 
thirds. The least popular questions were attempted by more than a sixth of candidates. All the 
questions were perfectly answered by at least three candidates (but mostly more than this), with 
one being perfectly answered by eighty candidates. Very nearly 90% of candidates attempted no 
more than 7 questions. 
One general comment regarding all the questions is that candidates need to make sure that they 
read the question carefully, paying particular attention to command words such as “hence” and 
“show that”.   

  



Question 1 
 
Although this was a very popular question, being attempted by nearly 93% of the candidature, it was 
very narrowly beaten into second place by question 5. It was the third most successfully attempted 
with a mean score of approximately 9.5/20.   

Most candidates found the equation of the line, and of the circle and then solved simultaneously in 
part (i) to find common points, rather than using the perpendicular distance from a line formula; 
some using the distance formula misquoted it, with a common error being failure to include the 
modulus signs. Then they generally applied use of the discriminant, but with varying success.   

In part (ii), most candidates successfully expressed the given expression as a quadratic in q, obtained 
the determinant and the two required expressions using Vieta’s formulas, but failed to fully 
demonstrate the inequality.   

Attempts at part (iii) were frequently inelegant and involved repeating work from previous parts of 
the question, rather than using the results of part (i) and (ii). 

  



Question 2 

This was the fifth most popular question on the paper, being attempted by about two thirds of the 
candidates, just a few more than question 8. However, it was the most successfully attempted with a 
mean score of over 12/20. Many candidates produced excellent responses to this question, and a 
number scored a perfect 20/20.   

The two curves were generally well sketched in part (i), with the commonest fault being failure to 
obtain values for r at the points where 𝜃𝜃 = 0, 1

2
𝜋𝜋,𝜋𝜋 .   

The derivation of the required result in (i) for the point of intersection as well as the result for the 
area of A in part (ii) were generally well done.   

Similarly, in part (iii) the area of  B was well attempted, although algebraic errors were more 
common here with the required result not being given in the question, unlike the area of A in part 
(ii).   

Part iv) was found to be the most difficult part of the question, though marks for finding expressions 
for S and T were generally obtained. After this, the first challenge was to notice that 𝛼𝛼 → 0,  and it 
was important to justify this observation using the expression   tan(𝛼𝛼) = 1

𝑘𝑘
  from part (i). A small 

number of candidates made heuristic arguments that 𝛼𝛼 → 0, using their sketches - however, this 
was not acceptable for the mark without further justification. The next challenge was to compute 
the limits rigorously, and candidates found this to be the most challenging aspect of the question. 
Common mistakes included not noticing that 𝛼𝛼 depended on k, and substituting 𝛼𝛼 = 0 prematurely, 
which, for example, led to the erroneous conclusion that 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝛼𝛼) → 0. 

  



Question 3 

This was the least popular of the Pure questions, being attempted by just under 45% of the 
candidates.  Furthermore, it was not well answered yielding a mean score of 6/20.   

Many incorrectly treated a and b as real numbers in part (i) which rendered the question very 
simple. On the other hand, there were some that correctly simplified their working by ‘ignoring’ a in 
each number and then translating the triangle by a after. The second part of (i) was often well-
answered.   

Most attempts at part (ii) were decent. Students that attempted it recognised that the roots should 
be written using a, b, s from part (i) and wrote down the sum/product of roots formulae for p and q. 
A few did not write down the equation for the coefficient of z2, and without this it was not possible 
for them to earn further credit for simplifying p and q. Sign errors in q were not uncommon.   

In part (iii), there was a large variety among the sketches seen. Only a few candidates specified the 
leading order behaviour at infinity. A fair number of candidates did not reflect the nature of the 
point of inflection in their drawing. Some did not specify intercepts. Pretty nearly all recognised the 
asymptote at -1/9.   

In part (iv), the majority that had successfully drawn the sketch in part (iii) managed to successfully 
satisfy the logic, although some failed to obtain the reality of the expression even though this was 
explicitly required. 

  



Ques�on 4 
 
This was only marginally more popular than question 3 and was the least successfully attempted 
question on the paper with a mean score of 5/20.   

In the vast majority of cases, there was no substantially correct attempt except in part (i).  Those 
that used de Moivre’s theorem, expanded binomially, equated real parts and replaced sin2𝑟𝑟 𝜃𝜃  by  
(cos2 𝜃𝜃 − 1)𝑟𝑟 , generally scored well in this part, but marks could not be credited where 
mathematical steps were glossed over when the question stated, ‘Show that’. Some attempted use 
of proof by induction, but their conclusions were not supported by their mathematical argument.   

Many attempting part (ii) wrote down the coefficient required but made no further progress, or 
made the expansion and went no further. There were some that did substitute +1 and -1, and solved 
this part.   

Part (iii) was solved generally by those that had made the substitutions in (ii) and saw that 
differentiation might be useful.   

Part (iv) could be answered using the given results from the previous parts of the question, however 
this part was almost exclusively only attempted by candidates that had had a reasonable level of 
success on the previous three parts. Those candidates that set out a careful and organised solution 
were more successful in part (iv). 

  



Ques�on 5 
 
Whilst this was the most popular question, it was only the sixth most successful with a mean mark of 
a little under 9/20. Many of the candidates made substantial attempts at parts (i) and (ii) but found it 
more challenging to make progress with part (iii). Two common general errors were lack of precision 
when handling inequalities, and working backwards from a required result without demonstrating 
that the logic was reversible.   

In part (i), a small number of candidates rearranged the first equation to remove denominators then 
wrote the required result without adequate intermediate steps of working. There were a very small 
number of arithmetic errors when finding the pairs of x and y.   

In (ii) many candidates commented that as 𝑝𝑝 and 𝑞𝑞 were prime then the only possible factors of 𝑝𝑝𝑞𝑞 
were 1,𝑝𝑝, 𝑞𝑞 and 𝑝𝑝𝑞𝑞 and went on to test each of these as possible values for 𝑝𝑝 + 𝑞𝑞 + 𝑘𝑘. Many 
candidates were able to form a relevant equation involving 𝑝𝑝 and 𝑞𝑞 and whilst most factorised it, 
similarly to part (i), a small number attempted alternative approaches. The most successful of these 
was to write 𝑝𝑝 as a function of 𝑞𝑞 and rewrite the improper fraction to see that 𝑞𝑞 − 2 must divide 3. A 
small number of candidates spotted that 𝑝𝑝 and 𝑞𝑞 were the solutions to the quadratic equation 𝑡𝑡2 −
(𝑘𝑘 + 1)𝑡𝑡 + (2𝑘𝑘 + 1) = 0 but from here few were able to fully justify that the only solutions for 
(𝑝𝑝, 𝑞𝑞) came from 𝑘𝑘 = 7.   

The first two results of part (iii) caused much confusion.  Relatively few candidates realised at the 
start of their attempts that these were equivalent to 𝑞𝑞 < 𝑘𝑘 and 𝑝𝑝 < 𝑘𝑘. Those who did recognise this 
completed part (iii) with relative ease. For the second part, a pleasing number of candidates realised 
that (𝑝𝑝 + 𝑞𝑞)3 would be a useful expression to consider and those who did usually managed to get to 
the difference of two cubes expression necessary to make progress. Some candidates were unsure 
where to go next but a good number realised the importance of the printed inequalities and 
correctly deduced that 𝑝𝑝 + 𝑞𝑞 − 𝑘𝑘 must be 1 or 3. From here candidates often managed to rule out 
one case but ruling out both successfully was relatively rare. 

  



Ques�on 6 
 
The fourth most popular question being attempted by just over three quarters of the candidates, it 
was the second most successful with a mean of just over half marks. The best responses involved 
clear algebra and working, with the given results fully justified. Many candidates picked up marks by 
accurate differentiation, whilst the best candidates were able to sketch graphs showing all the main 
features and could carefully justify results. Many parts of the question asked candidates to show a 
given result, which meant that candidates needed to ensure they showed sufficient working before 
reaching the given result.  In part (i) and part (ii)(b) candidates were required to use a specified 
method; candidates who did not use this method did not gain all the marks. 

There were some good answers to part (ii), but many candidates failed to show a stationary point of 
inflection at the origin, possibly as they assumed that they had shown the graph was strictly 
increasing rather than increasing. Failing to show the asymptote limits was another common 
mistake.   

Part (ii) (a) was found to be the hardest. Many candidates did not justify their results (such as the 
behaviour of g(x) or g’(x) as x tends to infinity). Some candidates drew graphs to help justify their 
result, but these generally did not explain why their graphs looked as they did. However, part (ii)(b) 
was generally done well, as was (c) by those that attempted it.   

Many candidates failed to gain the marks in part (d), mainly through failing to consider the 

symmetry of cosh
2𝑥𝑥

1+𝑥𝑥2
. 

Candidates found the graph in part (e) easier to sketch than the one in part (i). The most common 
mistake here was to have the graph reflected, with g(x) positive when x is positive, incorrectly. 

  



Question 7 

This was the third most popular question and was only marginally less successfully attempted than 
questions 1 and 11 with over 9.4/20 the mean mark. It was generally answered well by candidates, 
with many candidates earning more than half the marks for this question and many candidates 
earning full, or close to full, marks.   

The majority of candidates successfully earned full credit in part (i).   

They also did well on part (ii) though quite a number did not use (g(𝑥𝑥) − 𝑥𝑥)2 ≥ 0 when justifying 
why g(𝑥𝑥) = 𝑥𝑥, or incorrectly stated that (g(𝑥𝑥) − 𝑥𝑥)2 > 0 .   

In part (iii), candidates who integrated 2∫ 𝑥𝑥h′(𝑥𝑥)d𝑥𝑥1
0  by parts generally went on to earn full, or close 

to full, marks for this part.  A number of candidates began by writing down the equation from (ii) 
with h′(𝑥𝑥) in place of g(𝑥𝑥).  In some cases, candidates successfully ‘worked backwards’, cancelling 
down each side to verify their initial equality, however less successful attempts simply assumed the 
initial equation, without justification.   

Many candidates observed that part (iv) could be solved by considering the integral 

∫ �e
1
2𝑎𝑎𝑥𝑥 k(𝑥𝑥)− e−

1
2𝑎𝑎𝑥𝑥�

21
0 d𝑥𝑥. Sadly, many candidates failed to factorise the resulting quadratic in 1

𝑎𝑎
 , 

and another common error was simply to set the quadratic equal to zero without valid justification.  
Many, too, tried (unsuccessfully) to solve using integration by parts.   

  



Question 8 

This was only a little less popular than question 2 and was only answered with moderate success 
having a mean score of 7.3/20.   

Part (i) was mostly well answered, although some candidates lost marks by not being thorough in 
demonstrating the inequality, or by using a characteristic equation and failing to verify their solution 
as required.   

Part (ii) was found difficult, for although g1 was almost always stated, many struggled to find g2, 
often just flipping the sign of g1. Even when a general solution was found, many candidates used the 
boundary conditions of (i) instead of appreciating the sign change of the derivative at 𝑥𝑥 = 1. 

Part (iii) was done extremely poorly, even by candidates who had the right functions and the 
algebraic relationship between them.   

Candidates could often pick up marks on part (iv), even if they were less successful with the rest of 
the question, though notation of what derivatives were being taken was often ambiguous.   

In attempting to answer part (v), many candidates knew they needed to use the result of part (iv) for 
part (a), although a significant number lost marks for giving no explanation or working. Part (b) 
proved much harder than part (a), since few candidates realized they had to match their function at 
5
4
𝜋𝜋, not at −1

4
𝜋𝜋 again. Some candidates fully solved both (a) and (b) directly via the characteristic 

equation which led to a very lengthy solution. 

  



Question 9 

This question only just beat question 11 to be the least popular question on the paper.  Although its 
mean score was only 6.9/20, it was more successfully attempted than two of the Pure questions and 
the other Mechanics question.   

Parts (i) and (ii) were well answered by a good number of candidates, if candidates once set up the 
problem and then got going. The diagrams were done well, and the derivatives didn’t pose much of 
a problem for most, although there were some errors in the second derivatives and applying the 
chain rule, with candidates forgetting to multiply by �̇�𝜃 to produce 𝜃𝜃2̇.   

Part (iii) was more mixed in terms of good responses. Those who did this by resolving forces 
horizontally and vertically set up the remainder of the question well, but some seemed to struggle 
with the first part and just assumed the equations were true. The biggest problem for a large 
number of candidates here was applying boundary conditions when integrating and justifying the 
choice of boundary conditions.   

Parts (iv) and (v) were answered fairly well.   

Part (vi) lead to a lot of marks lost, as they were required to justify the velocity being negative by 
finding a suitable time to ensure it happens, which most did not do. 

  



Question 10 

The most popular of the Applied questions, it was also the least successfully attempted, and was 
only slightly better attempted than question 4. If a candidate found this question difficult, it tended 
to be from the start, failing to draw a correct diagram of what was going on. If they did set up the 
problem correctly then finding different angles in terms of the given angle 𝛽𝛽 proved problematic. 
This meant that often sin was found instead of cos and vice versa, within attempted solutions.  

Many successfully took moments about A and resolved forces vertically and horizontally, but most 
were unable to use these to produce the inequality required in part (i).   

Those few that did well in part (i) generally also did well in part (ii), with only one adjustment to the 
diagram needed, and the resulting algebra was worked through with little issue. The hint for the 
final part was used well by candidates, but only a few managed to turn the resulting square into a 
minimum value for 𝜇𝜇.  

  



Question 11 

Although it was unpopular, those that attempted this scored better than on other Applied questions 
and, indeed, five of the Pure questions. Most candidates recognised that the expression on the left 
in the stem could be separated into two sums, one of which would produce e𝑥𝑥 − 1 while the other 
would produce 𝑥𝑥e𝑥𝑥.  

A small number of candidates falsely seemed to assume that since 

�  
∞

𝑘𝑘=0

𝑥𝑥𝑘𝑘

𝑘𝑘!
= e𝑥𝑥 

it immediately follows that 

� (𝑘𝑘 + 1)
𝑥𝑥𝑘𝑘

𝑘𝑘!

∞

𝑘𝑘=0
= (𝑥𝑥 + 1)e𝑥𝑥 

Some candidates chose to write out the sums without using summation notation, which made some 
parts of the justification more difficult to express clearly. 

In part (i) most candidates were able to work out the value of P(𝐷𝐷 = 0) and a large number were 
able to give some justification of the first formula for E(𝐷𝐷). Many however did not manage to justify 
fully how all parts of the required expression were deduced and in a question in which the answer to 
be reached is known, it is important that solutions clearly express the steps that are involved. In 
particular, many candidates simply stated that the sum over values of 𝑘𝑘 ran from 𝑑𝑑 to infinity 
without any comment that this is because there had to be at least 𝑑𝑑 sides on the die. Similarly, many 
candidates failed to express the clear reasoning required to show the second form of E(𝐷𝐷). 

Candidates were generally successful in using the formula for E(𝐷𝐷) to complete part (i)(c) and the 
majority recognised the significance of the result in the stem to the work here. 

Many of the candidates who attempted part (ii) were able to make good progress, although there 
were some who failed to understand the sequence in which the events take place in this second 
situation. Most were able to find an initial expression for the value of P(𝑍𝑍 = 0) and the majority 
recognised that this was a sum of a geometric series. However, several candidates calculated the 
sum to infinity instead of the required sum of 𝑘𝑘 terms and some of those who correctly calculated 
the sum of 𝑘𝑘 terms then made errors when dealing with the powers in the simplification. 

Many of the candidates who attempted to calculate E(𝑍𝑍) were able to reach a correct form, but 
relatively few recognised that changing the order of summation (as in part (i)) would again help to 
simplify the expression. Those who found the correct expression were generally able to justify that       
E(𝑍𝑍) > E(𝐷𝐷), although some did not comment on the fact that the exponential term must be 
positive as part of their justification. 

  



Question 12 

This was only a little more popular than questions 9 and 11, and it was the seventh most successfully 
attempted with a mean score of 7.4/20 . While there were a number of attempts that did not 
manage to make any significant progress, those who were able to analyse the situation were able to 
make very good progress.  

When finding the probability in part (i), the most common methods employed were to count the 
number of ways in which the outcome could be achieved or to create a product of individual 
probabilities by considering the socks being taken one at a time.   

Answers to part (ii) were generally well done, with most candidates providing a good explanation of 
the role of each part of the required formula.   

For the final part, most candidates chose to use algebra to show the given result, and this was 
generally done successfully, although a small number of candidates did not show fully the steps that 
were being taken. Almost all candidates who reached this point were able to apply the result shown 
to the formula for the expectation and most realised that several factors could be moved outside the 
sum. Only a small number did not realise that the summation that remained was the sum of the 
probabilities of all possible outcomes for that random variable. 
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1.  (i)  The line through P and Q is 
𝑦𝑦 − 𝑎𝑎𝑝𝑝2

𝑥𝑥 − 2𝑎𝑎𝑝𝑝
=
𝑦𝑦 − 𝑎𝑎𝑞𝑞2

𝑥𝑥 − 2𝑎𝑎𝑞𝑞
 

Alternatives  
𝑦𝑦 − 𝑎𝑎𝑝𝑝2

𝑥𝑥 − 2𝑎𝑎𝑝𝑝
=
𝑎𝑎𝑝𝑝2 − 𝑎𝑎𝑞𝑞2

2𝑎𝑎𝑝𝑝 − 2𝑎𝑎𝑞𝑞
=
𝑝𝑝 + 𝑞𝑞

2
 

𝑦𝑦 − 𝑎𝑎𝑞𝑞2

𝑥𝑥 − 2𝑎𝑎𝑞𝑞
=
𝑎𝑎𝑝𝑝2 − 𝑎𝑎𝑞𝑞2

2𝑎𝑎𝑝𝑝 − 2𝑎𝑎𝑞𝑞
=
𝑝𝑝 + 𝑞𝑞

2
 

or multiplied to remove denominators. 

  
      M1 

 

(𝑦𝑦 − 𝑎𝑎𝑝𝑝2)(𝑥𝑥 − 2𝑎𝑎𝑞𝑞) = (𝑦𝑦 − 𝑎𝑎𝑞𝑞2)(𝑥𝑥 − 2𝑎𝑎𝑝𝑝) 

(2𝑎𝑎𝑝𝑝 − 2𝑎𝑎𝑞𝑞)𝑦𝑦 + 2𝑎𝑎2(𝑝𝑝2𝑞𝑞 − 𝑝𝑝𝑞𝑞2) = (𝑎𝑎𝑝𝑝2 − 𝑎𝑎𝑞𝑞2)𝑥𝑥 

P and Q are distinct thus  𝑝𝑝 ≠ 𝑞𝑞  and so 𝑝𝑝 − 𝑞𝑞 ≠ 0 

Therefore  2𝑦𝑦 + 2𝑎𝑎𝑝𝑝𝑞𝑞 = (𝑝𝑝 + 𝑞𝑞)𝑥𝑥  that is  (𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 2𝑦𝑦 − 2𝑎𝑎𝑝𝑝𝑞𝑞 = 0   

       A1 

The perpendicular distance of (0,3𝑎𝑎) from the line PQ is  2𝑎𝑎 which requires 

�
−6𝑎𝑎 − 2𝑎𝑎𝑝𝑝𝑞𝑞

�((𝑝𝑝 + 𝑞𝑞)2 + 4)
� = 2𝑎𝑎 

       M1 A1 A1 A1 

that is  (𝑝𝑝𝑞𝑞 + 3)2 = (𝑝𝑝 + 𝑞𝑞)2 + 4    M1 A1 

i.e.  (𝑝𝑝 + 𝑞𝑞)2 = 𝑝𝑝2𝑞𝑞2 + 6𝑝𝑝𝑞𝑞 + 9 − 4 = 𝑝𝑝2𝑞𝑞2 + 6𝑝𝑝𝑞𝑞 + 5  (*) 

        A1*  (9) 

Alternatives M1A1 as before 

(I)  (𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 2𝑦𝑦 − 2𝑎𝑎𝑝𝑝𝑞𝑞 = 0   meets  𝑥𝑥2 + (𝑦𝑦 − 3𝑎𝑎)2 = 4𝑎𝑎2 when 

4(𝑦𝑦 + 𝑎𝑎𝑝𝑝𝑞𝑞)2 + (𝑝𝑝 + 𝑞𝑞)2(𝑦𝑦2 − 6𝑎𝑎𝑦𝑦 + 5𝑎𝑎2) = 0 

       M1 A1 

(4 + (𝑝𝑝 + 𝑞𝑞)2)𝑦𝑦2 − (6𝑎𝑎(𝑝𝑝 + 𝑞𝑞)2 − 8𝑎𝑎𝑝𝑝𝑞𝑞)𝑦𝑦 + (5𝑎𝑎2(𝑝𝑝 + 𝑞𝑞)2 + 4𝑎𝑎2𝑝𝑝2𝑞𝑞2) = 0 

       A1 

Thus using (𝑝𝑝 + 𝑞𝑞)2 = 𝑝𝑝2𝑞𝑞2 + 6𝑝𝑝𝑞𝑞 + 5 ,    M1 

(𝑝𝑝𝑞𝑞 + 3)2𝑦𝑦2 − 2𝑎𝑎(𝑝𝑝𝑞𝑞 + 3)(3𝑝𝑝𝑞𝑞 + 5)𝑦𝑦 + 𝑎𝑎2(3𝑝𝑝𝑞𝑞 + 5)2 = 0 

which is a perfect square,    A1 



so  (𝑝𝑝𝑞𝑞 + 3)𝑦𝑦 − 𝑎𝑎(3𝑝𝑝𝑞𝑞 + 5) = 0  which only has a single root so the line is a tangent.  A1 A1* 

(II)  Foot of perpendicular from  (0,3𝑎𝑎)  to  (𝑝𝑝 + 𝑞𝑞)𝑥𝑥 − 2𝑦𝑦 − 2𝑎𝑎𝑝𝑝𝑞𝑞 = 0  is at intersection with 
(𝑝𝑝 + 𝑞𝑞)𝑦𝑦 + 2𝑥𝑥 = 3𝑎𝑎(𝑝𝑝 + 𝑞𝑞) M1 A1 

So solving  (𝑝𝑝 + 𝑞𝑞)2𝑦𝑦 + 4𝑦𝑦 + 4𝑎𝑎𝑝𝑝𝑞𝑞 = 3𝑎𝑎(𝑝𝑝 + 𝑞𝑞)2 A1 

𝑦𝑦 = 3𝑎𝑎(𝑝𝑝+𝑞𝑞)2−4𝑎𝑎𝑝𝑝𝑞𝑞
(𝑝𝑝+𝑞𝑞)2+4

    and  𝑥𝑥 = (𝑝𝑝+𝑞𝑞)
2

�3𝑎𝑎 − 3𝑎𝑎(𝑝𝑝+𝑞𝑞)2−4𝑎𝑎𝑝𝑝𝑞𝑞
(𝑝𝑝+𝑞𝑞)2+4

� = 2𝑎𝑎(𝑝𝑝+𝑞𝑞)(3+𝑝𝑝𝑞𝑞)
(𝑝𝑝+𝑞𝑞)2+4

  

       A1 

and so the square of the distance is M1 A1 

�
2𝑎𝑎(𝑝𝑝 + 𝑞𝑞)(3 + 𝑝𝑝𝑞𝑞)

(𝑝𝑝 + 𝑞𝑞)2 + 4
�
2

+ �
4𝑎𝑎(3 + 𝑝𝑝𝑞𝑞)

(𝑝𝑝 + 𝑞𝑞)2 + 4
�
2

= �
2𝑎𝑎(3 + 𝑝𝑝𝑞𝑞)

(𝑝𝑝 + 𝑞𝑞)2 + 4
�
2

(4 + (𝑝𝑝 + 𝑞𝑞)2) 

=
(3 + 4𝑎𝑎2𝑝𝑝𝑞𝑞)2

(4 + (𝑝𝑝 + 𝑞𝑞)2) = 4𝑎𝑎2 

using given condition.  A1* 

(III)  Method is possible by differentiation of circle equation.  Partial or incorrect solution by this 
method zero marks; completely correct solution full marks; completely correct solution except minor 
inaccuracy, withhold one accuracy mark and final accuracy mark. 

(ii)  (*) can be re-written 

𝑞𝑞2(𝑝𝑝2 − 1) + 4𝑝𝑝𝑞𝑞 + (5 − 𝑝𝑝2) = 0 

        M1 

Considering this as a quadratic equation for 𝑞𝑞 , to be two distinct roots, 𝑝𝑝2 − 1 ≠ 0  (it is given that 
𝑝𝑝2 ≠ 1) E1 and the discriminant needs to be positive.  

 
16𝑝𝑝2 − 4(𝑝𝑝2 − 1)(5 − 𝑝𝑝2) = 4(𝑝𝑝4 − 2𝑝𝑝2 + 5) = 4(𝑝𝑝2 − 1)2 + 16 > 0 

as required.  M1 A1 

𝑞𝑞1 + 𝑞𝑞2 = −4𝑝𝑝
(𝑝𝑝2−1)  ,  𝑞𝑞1𝑞𝑞2 = �5−𝑝𝑝2�

(𝑝𝑝2−1)   A1  A1  (6) 

(iii)  Given P, with 𝑝𝑝2 ≠ 1 , by (ii) points Q1 and Q2 can be defined with parameters 𝑞𝑞1 and 𝑞𝑞2 where 
𝑞𝑞1 and 𝑞𝑞2 are the roots of (*).  So by (i), PQ1 and PQ2  are tangents to the circle centre (0,3𝑎𝑎) radius 
2𝑎𝑎 . E1  

The perpendicular distance of (0,3𝑎𝑎) from the line Q1Q2 is 

�
−6𝑎𝑎 − 2𝑎𝑎𝑞𝑞1𝑞𝑞2

�((𝑞𝑞1 + 𝑞𝑞2)2 + 4)
� =

�

� −6𝑎𝑎 − 2𝑎𝑎 (5 − 𝑝𝑝2)
(𝑝𝑝2 − 1)

��� −4𝑝𝑝
(𝑝𝑝2 − 1)�

2
+ 4�

�

�
= 2𝑎𝑎 �

3(𝑝𝑝2 − 1) + (5 − 𝑝𝑝2)

�16𝑝𝑝2 + 4(𝑝𝑝2 − 1)2
� 

  M1 A1 



= 2𝑎𝑎 �
2𝑝𝑝2 + 2

�4𝑝𝑝4 + 16𝑝𝑝2 + 4
� = 2𝑎𝑎 

        A1 

Alternative  Q1Q2 is the third such line provided that  (𝑞𝑞1𝑞𝑞2 + 3)2 = (𝑞𝑞1 + 𝑞𝑞2)2 + 4 

(𝑞𝑞1𝑞𝑞2 + 3)2 − (𝑞𝑞1 + 𝑞𝑞2)2 − 4 = �
(5 − 𝑝𝑝2)
(𝑝𝑝2 − 1) + 3�

2

− �
−4𝑝𝑝

(𝑝𝑝2 − 1)�
2
− 4

=
4(𝑝𝑝2 + 1)2 − 16𝑝𝑝2 − 4(𝑝𝑝2 − 1)2

(𝑝𝑝2 − 1)2 = 0 

        M1 A1 A1 

Thus PQ1Q2 is the triangle required.    E1 (5) 

 

 

  



2.  (i)   

 

G1 G1 G1 G1 

At intersection, when  𝜃𝜃 = 𝛼𝛼 ,  𝑘𝑘(1 + sin𝜃𝜃) = 𝑘𝑘 + cos𝜃𝜃 

Therefore,  𝑘𝑘 sin𝛼𝛼 = cos𝛼𝛼 , that is,  tan𝛼𝛼 = 1
𝑘𝑘

  B1* (5) 

(ii)  Area A is  

1
2
��𝑘𝑘(1 + sin𝜃𝜃)�2𝑑𝑑𝜃𝜃 =
𝛼𝛼

0

𝑘𝑘2

2
� 1 + 2 sin𝜃𝜃 + sin2 𝜃𝜃 𝑑𝑑𝜃𝜃
𝛼𝛼

0

 

    M1 

=
𝑘𝑘2

2
� 1 + 2 sin𝜃𝜃 +
𝛼𝛼

0

1 − cos 2𝜃𝜃
2

 𝑑𝑑𝜃𝜃 =
𝑘𝑘2

2
 �

3
2
𝜃𝜃 − 2 cos𝜃𝜃 −  

1
4

sin 2𝜃𝜃�
0

𝛼𝛼
 

    dM1    A1 

=
𝑘𝑘2

2 �
3
2
𝛼𝛼 − 2 cos𝛼𝛼 −  

1
4

sin 2𝛼𝛼 + 2� =  
𝑘𝑘2

2 �
3
2
𝛼𝛼 − 2 cos𝛼𝛼 −  

1
2

 sin𝛼𝛼 cos𝛼𝛼 + 2� 

=  
𝑘𝑘2

4
(3𝛼𝛼 − sin𝛼𝛼 cos𝛼𝛼) + 𝑘𝑘2(1− cos𝛼𝛼) 

        A1* (4) 

(iii)  Area B is 

1
2
�(𝑘𝑘 + cos𝜃𝜃)2𝑑𝑑𝜃𝜃 
𝜋𝜋

𝛼𝛼

=
1
2
�𝑘𝑘2 + 2𝑘𝑘 cos𝜃𝜃 +
𝜋𝜋

𝛼𝛼

cos2 𝜃𝜃 𝑑𝑑𝜃𝜃 =
1
2
�𝑘𝑘2 + 2𝑘𝑘 cos𝜃𝜃 +
𝜋𝜋

𝛼𝛼

1 + cos 2𝜃𝜃
2

 𝑑𝑑𝜃𝜃 

 M1         M1 

=
1
2

 �𝑘𝑘2𝜃𝜃 +  2𝑘𝑘 sin𝜃𝜃 +
1
2
𝜃𝜃 +

1
4

sin 2𝜃𝜃�
𝛼𝛼

𝜋𝜋
=

1
2

 �𝑘𝑘2𝜋𝜋 +
𝜋𝜋
2
− 𝑘𝑘2𝛼𝛼 − 2𝑘𝑘 sin𝛼𝛼 −

𝛼𝛼
2
−

1
4

sin 2𝛼𝛼� 

    A1 



=
1
2

 �𝑘𝑘2𝜋𝜋 +
𝜋𝜋
2
− 𝑘𝑘2𝛼𝛼 − 2𝑘𝑘 sin𝛼𝛼 −

𝛼𝛼
2
−  

1
2

 sin𝛼𝛼 cos𝛼𝛼� 

=
1
4

 {2𝑘𝑘2𝜋𝜋 + 𝜋𝜋 − 2𝑘𝑘2𝛼𝛼 − 4𝑘𝑘 sin𝛼𝛼 − 𝛼𝛼 − sin𝛼𝛼 cos𝛼𝛼} 

        A1 (4) 

(iv)  As 𝑘𝑘 → ∞ , 𝛼𝛼 is small as  tan𝛼𝛼 = 1
𝑘𝑘

  so 𝛼𝛼 ≈ sin𝛼𝛼 ≈ tan𝛼𝛼 = 1
𝑘𝑘

   and  cos𝛼𝛼 ≈ 1 − 1
2𝑘𝑘2

  M1 

Area A is  𝑘𝑘
2

+ terms of lower order in   𝑘𝑘  A1 

Area B is  𝑘𝑘
2𝜋𝜋
2

+ terms of lower order in   𝑘𝑘 A1 

So, area R is  𝑘𝑘
2𝜋𝜋
2

+ terms of lower order in   𝑘𝑘  

Area T is 

1
2
�(𝑘𝑘 + cos𝜃𝜃)2𝑑𝑑𝜃𝜃 
𝜋𝜋

0

=
1
4

 (2𝑘𝑘2𝜋𝜋 + 𝜋𝜋) 

or alternatively, use of result from (iii) with 𝛼𝛼 = 0 

which is  𝑘𝑘
2𝜋𝜋
2

+ terms of lower order in   𝑘𝑘  B1 

Thus, as required,  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑅𝑅
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑇𝑇

=
𝑘𝑘2𝜋𝜋

2 +  terms of lower order in   𝑘𝑘
𝑘𝑘2𝜋𝜋

2 +  terms of lower order in   𝑘𝑘
 → 1 

E1 

Area S is  

1
2
��𝑘𝑘(1 + sin𝜃𝜃)�2𝑑𝑑𝜃𝜃 =

𝑘𝑘2

4
× 3𝜋𝜋 + 2𝑘𝑘2 = 𝑘𝑘2 �

3𝜋𝜋
4

+ 2�
𝜋𝜋

0

 

or alternatively, use of result from (ii) with 𝛼𝛼 = 𝜋𝜋 

         B1 

Thus 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑅𝑅
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑆𝑆

 →
𝜋𝜋
2

�3𝜋𝜋
4 + 2�

=
2𝜋𝜋

3𝜋𝜋 + 8
  

        A1 (7) 

 

 

  



3.  (i)  𝑠𝑠𝑠𝑠i represents a vector perpendicular to the vector represented by 𝑠𝑠.  E1  Thus, the two points 
represented by 𝑎𝑎 ± 𝑠𝑠𝑠𝑠i are equidistant from the point represented by 𝑎𝑎 E1 and they are joined to it 
by vectors which are perpendicular to that joining it to 𝐶𝐶 so they form a base of a triangle which has 
altitude from 𝑎𝑎 to 𝑎𝑎 + 𝑠𝑠 and has two equal length sides, by Pythagoras. E1 (3) 

Alternative  Distance  𝑎𝑎 + 𝑠𝑠  to  𝑎𝑎 + 𝑠𝑠𝑠𝑠i  is |(𝑎𝑎 + 𝑠𝑠𝑠𝑠i) − (𝑎𝑎 + 𝑠𝑠)| = |𝑠𝑠||𝑠𝑠i − 1| = |𝑠𝑠|√𝑠𝑠2 + 1  as s is 
real, E1 and distance  𝑎𝑎 + 𝑠𝑠  to  𝑎𝑎 − 𝑠𝑠𝑠𝑠i  is  |(𝑎𝑎 − 𝑠𝑠𝑠𝑠i)− (𝑎𝑎 + 𝑠𝑠)| = |𝑠𝑠||−𝑠𝑠i − 1| = |𝑠𝑠|√𝑠𝑠2 + 1  , E1 
so two equal length sides.  E1 

𝑎𝑎 is represented by the midpoint of the base. B1 𝑠𝑠 is represented by the vector joining the midpoint 
of the base to the other vertex.  B1 𝑠𝑠 is the scale factor that the magnitude of the altitude is 
multiplied by to obtain half the base. B1 

 (3) 

(ii)  We require complex 𝑎𝑎 and 𝑠𝑠 and real 𝑠𝑠 such that 

 
(𝑎𝑎 + 𝑠𝑠𝑠𝑠i) + (𝑎𝑎 − 𝑠𝑠𝑠𝑠i) + (𝑎𝑎 + 𝑠𝑠) = 0 ⇒ 𝑠𝑠 = −3𝑎𝑎 

       M1  A1 

and 

(𝑎𝑎 + 𝑠𝑠𝑠𝑠i)(𝑎𝑎 − 𝑠𝑠𝑠𝑠i) + (𝑎𝑎 − 𝑠𝑠𝑠𝑠i)(𝑎𝑎 + 𝑠𝑠) + (𝑎𝑎 + 𝑠𝑠)(𝑎𝑎 + 𝑠𝑠𝑠𝑠i) = 𝑝𝑝 

           

so 
𝑎𝑎2 + 𝑠𝑠2𝑠𝑠2 + 2𝑎𝑎(𝑎𝑎 + 𝑠𝑠) = 𝑝𝑝 ⇒ 3𝑎𝑎2(3𝑠𝑠2 − 1) = 𝑝𝑝 

         A1 

and 

(𝑎𝑎 + 𝑠𝑠𝑠𝑠i)(𝑎𝑎 − 𝑠𝑠𝑠𝑠i)(𝑎𝑎 + 𝑠𝑠) = −𝑞𝑞 ⇒ −2𝑎𝑎3(9𝑠𝑠2 + 1) = −𝑞𝑞 

         A1 



Therefore 

𝑝𝑝3

𝑞𝑞2
=

[3𝑎𝑎2(3𝑠𝑠2 − 1)]3

[2𝑎𝑎3(9𝑠𝑠2 + 1)]2 =
27(3𝑠𝑠2 − 1)3

4(9𝑠𝑠2 + 1)2  

         A1* (5) 

(iii) 

𝑦𝑦 =
(3𝑥𝑥 − 1)3

(9𝑥𝑥 + 1)2 

has 𝑥𝑥 intercept at �1
3

 , 0� , 𝑦𝑦 intercept at (0 ,−1) G1  a vertical asymptote at  𝑥𝑥 = −1
9
  and an 

asymptote 𝑦𝑦 = 1
3
𝑥𝑥 −11

27
 as 𝑥𝑥 → ±∞ . G1 

 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=
(9𝑥𝑥 + 1)29(3𝑥𝑥 − 1)2 − (3𝑥𝑥 − 1)318(9𝑥𝑥 + 1)

(9𝑥𝑥 + 1)4  

=
9(3𝑥𝑥 − 1)2(9𝑥𝑥 + 1 − 6𝑥𝑥 + 2)

(9𝑥𝑥 + 1)3 =
27(3𝑥𝑥 − 1)2(𝑥𝑥 + 1)

(9𝑥𝑥 + 1)3  

M1 A1 

Thus, the stationary points are a maximum at  (−1,−1) and a point of inflection at  �1
3

 , 0�.  G1  G1

   (6) 

(iv)  If the roots of  𝑧𝑧3 + 𝑝𝑝𝑧𝑧 + 𝑞𝑞 = 0  represent the vertices of an isosceles triangle, then by (ii),        
𝑝𝑝3

𝑞𝑞2
 must be real E1 and as  𝑠𝑠2 > 0 , from (iii)  𝑝𝑝

3

𝑞𝑞2
> 27

4
× −1 = −27

4
  E1 as  𝑦𝑦 = (3𝑥𝑥−1)3

(9𝑥𝑥+1)2  is increasing for 

𝑥𝑥 > 0 .  E1 (3) 



4.  (i)  By de Moivre, 
cos�(2𝑛𝑛 + 1)𝜃𝜃� + i sin�(2𝑛𝑛 + 1)𝜃𝜃� = (cos𝜃𝜃 + i sin𝜃𝜃)2𝑛𝑛+1 

Expanding by the binomial theorem and equating real parts 

cos�(2𝑛𝑛 + 1)𝜃𝜃� = cos2𝑛𝑛+1 𝜃𝜃 − �2𝑛𝑛 + 1
2 � cos2𝑛𝑛−1 𝜃𝜃 sin2 𝜃𝜃 + ⋯+ (−1)𝑛𝑛 �2𝑛𝑛 + 1

2𝑛𝑛 � cos𝜃𝜃 sin2𝑛𝑛 𝜃𝜃 

         M1 A1 

= cos2𝑛𝑛+1 𝜃𝜃 + �2𝑛𝑛 + 1
2 � cos2𝑛𝑛−1 𝜃𝜃 (cos2 𝜃𝜃 − 1) + ⋯+ �2𝑛𝑛 + 1

2𝑛𝑛 � cos𝜃𝜃 (cos2 𝜃𝜃 − 1)𝑛𝑛 

         M1 

= ��2𝑛𝑛 + 1
2𝑎𝑎 � cos2𝑛𝑛+1−2𝑟𝑟 𝜃𝜃

𝑛𝑛

𝑟𝑟=0

(cos2 𝜃𝜃 − 1)𝑟𝑟 

        A1* (4) 

Notice, for (iv), that this expression only contains odd powers of cos𝜃𝜃 . 

(ii)  The coefficient of  𝑥𝑥2𝑛𝑛+1 in  𝑝𝑝(𝑥𝑥) is 

��2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

 

       B1 

(1 + 𝑥𝑥)2𝑛𝑛+1 = � �2𝑛𝑛 + 1
𝑎𝑎 � 𝑥𝑥𝑟𝑟

2𝑛𝑛+1

𝑟𝑟=0

= ��2𝑛𝑛 + 1
2𝑎𝑎 � 𝑥𝑥2𝑟𝑟

𝑛𝑛

𝑟𝑟=0

+ ��2𝑛𝑛 + 1
2𝑎𝑎 + 1� 𝑥𝑥

2𝑟𝑟+1
𝑛𝑛

𝑟𝑟=0

 

       

Substituting  𝑥𝑥 = 1 , 

22𝑛𝑛+1 = ��2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

+ ��2𝑛𝑛 + 1
2𝑎𝑎 + 1�

𝑛𝑛

𝑟𝑟=0

 

       

and substituting  𝑥𝑥 = −1 ,   M1 

0 = ��2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

−��2𝑛𝑛 + 1
2𝑎𝑎 + 1�

𝑛𝑛

𝑟𝑟=0

 

      A1 

Adding these two results, 

22𝑛𝑛+1 = 2��2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

 

and so the required coefficient is 22𝑛𝑛 as required.  A1* (4) 



(iii)  The coefficient of  𝑥𝑥2𝑛𝑛−1 in  p(𝑥𝑥) is 

�−𝑎𝑎 �2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

 

      B1 

As  

(1 + 𝑥𝑥)2𝑛𝑛+1 = � �2𝑛𝑛 + 1
𝑎𝑎 � 𝑥𝑥𝑟𝑟

2𝑛𝑛+1

𝑟𝑟=0

= ��2𝑛𝑛 + 1
2𝑎𝑎 � 𝑥𝑥2𝑟𝑟

𝑛𝑛

𝑟𝑟=0

+ ��2𝑛𝑛 + 1
2𝑎𝑎 + 1� 𝑥𝑥

2𝑟𝑟+1
𝑛𝑛

𝑟𝑟=0

 

 

 differentiating with respect to 𝑥𝑥 

(2𝑛𝑛 + 1)(1 + 𝑥𝑥)2𝑛𝑛 = � 2𝑎𝑎 �2𝑛𝑛 + 1
2𝑎𝑎 � 𝑥𝑥2𝑟𝑟−1

𝑛𝑛

𝑟𝑟=0

+ �(2𝑎𝑎 + 1) �2𝑛𝑛 + 1
2𝑎𝑎 + 1� 𝑥𝑥

2𝑟𝑟
𝑛𝑛

𝑟𝑟=0

 

     M1 

Substituting  𝑥𝑥 = 1 , 

(2𝑛𝑛 + 1)22𝑛𝑛 = � 2𝑎𝑎 �2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

+ �(2𝑎𝑎 + 1) �2𝑛𝑛 + 1
2𝑎𝑎 + 1�

𝑛𝑛

𝑟𝑟=0

 

      M1 

and substituting  𝑥𝑥 = −1 , 

0 = −� 2𝑎𝑎 �2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

+ �(2𝑎𝑎 + 1) �2𝑛𝑛 + 1
2𝑎𝑎 + 1�

𝑛𝑛

𝑟𝑟=0

 

      A1 

Subtracting these two results 

(2𝑛𝑛 + 1)22𝑛𝑛 = 2� 2𝑎𝑎 �2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

= 4�𝑎𝑎�2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

 

and so the required coefficient is  

−(2𝑛𝑛 + 1)22𝑛𝑛 ÷ 4 = −(2𝑛𝑛 + 1)22𝑛𝑛−2 

      A1* (5) 

Alternative  

�−𝑎𝑎�2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

= −�𝑎𝑎 
(2𝑛𝑛 + 1)!

(2𝑛𝑛 − 2𝑎𝑎 + 1)! (2𝑎𝑎)!

𝑛𝑛

𝑟𝑟=0

= −
2𝑛𝑛 + 1

2
�

(2𝑛𝑛)!
(2𝑛𝑛 − 2𝑎𝑎 + 1)! (2𝑎𝑎 − 1)!

𝑛𝑛

𝑟𝑟=1

 

 

      M1 



= −
2𝑛𝑛 + 1

2
�� 2𝑛𝑛

2𝑎𝑎 − 1�
𝑛𝑛

𝑟𝑟=1

= −
2𝑛𝑛 + 1

2
�� 2𝑛𝑛

2𝑎𝑎 + 1�
𝑛𝑛−1

𝑟𝑟=0

 

M1 

 

As in (ii),  

�� 2𝑛𝑛
2𝑎𝑎 + 1�

𝑛𝑛−1

𝑟𝑟=0

=
1
2

22𝑛𝑛 

A1 

so  

�−𝑎𝑎�2𝑛𝑛 + 1
2𝑎𝑎 �

𝑛𝑛

𝑟𝑟=0

= −
2𝑛𝑛 + 1

2
1
2

22𝑛𝑛 = −(2𝑛𝑛 + 1)22𝑛𝑛−2 

      A1* (5) 

 

(iv)  Suppose 
q(𝑥𝑥) = 𝑎𝑎𝑥𝑥𝑛𝑛 + 𝑠𝑠𝑥𝑥𝑛𝑛−1 + 𝑐𝑐𝑥𝑥𝑛𝑛−2 + ⋯ 

then 
p(𝑥𝑥) = (𝑥𝑥 + 1)[𝑎𝑎𝑥𝑥𝑛𝑛 + 𝑠𝑠𝑥𝑥𝑛𝑛−1 + 𝑐𝑐𝑥𝑥𝑛𝑛−2 + ⋯ ]2 

= (𝑥𝑥 + 1)(𝑎𝑎2𝑥𝑥2𝑛𝑛 + 2𝑎𝑎𝑠𝑠𝑥𝑥2𝑛𝑛−1 + (𝑠𝑠2 + 2𝑎𝑎𝑐𝑐)𝑥𝑥2𝑛𝑛−2 + ⋯ ) 

= 𝑎𝑎2𝑥𝑥2𝑛𝑛+1 + (𝑎𝑎2 + 2𝑎𝑎𝑠𝑠)𝑥𝑥2𝑛𝑛 + (𝑠𝑠2 + 2𝑎𝑎𝑐𝑐 + 2𝑎𝑎𝑠𝑠)𝑥𝑥2𝑛𝑛−1 + ⋯ 

      M1 A1 

Thus  𝑎𝑎2 = 22𝑛𝑛,  𝑎𝑎2 + 2𝑎𝑎𝑠𝑠 = 0 , and  𝑠𝑠2 + 2𝑎𝑎𝑐𝑐 + 2𝑎𝑎𝑠𝑠 = −(2𝑛𝑛 + 1)22𝑛𝑛−2  dM1  A1 

Therefore  𝑎𝑎 = 2𝑛𝑛 (as  𝑎𝑎 > 0 ),  B1 

  

𝑠𝑠 =
−𝑎𝑎
2

= −2𝑛𝑛−1 

      A1 

 

and  
22𝑛𝑛−2 + 2𝑛𝑛+1𝑐𝑐 − 22𝑛𝑛 = −(2𝑛𝑛 + 1)22𝑛𝑛−2 

so 

2𝑛𝑛−3 + 𝑐𝑐 − 2𝑛𝑛−1 = −(2𝑛𝑛 + 1)2𝑛𝑛−3 

𝑐𝑐 = 2𝑛𝑛−3(4 − 1 − 2𝑛𝑛 − 1) = 2𝑛𝑛−2(1− 𝑛𝑛) 

as required.       A1*(7) 



5. (i)  
1
𝑥𝑥

+  
2
𝑦𝑦

=
2
7

 

7𝑦𝑦 + 14𝑥𝑥 = 2𝑥𝑥𝑦𝑦 

2𝑥𝑥𝑦𝑦 − 7𝑦𝑦 − 14𝑥𝑥 + 49 = 49 

(2𝑥𝑥 − 7)(𝑦𝑦 − 7) = 49 

       B1* 

Thus  2𝑥𝑥 − 7 = 1 , 𝑦𝑦 − 7 = 49 , or  2𝑥𝑥 − 7 = 7 , 𝑦𝑦 − 7 = 7 , or 2𝑥𝑥 − 7 = 49 , 𝑦𝑦 − 7 = 1 

       M1 

and so  (𝑥𝑥,𝑦𝑦) = (4, 56) , (7, 14) , or  (28, 8)  A1 (3) 

(ii)  
𝑝𝑝2 + 𝑝𝑝𝑞𝑞 + 𝑞𝑞2 = 𝑛𝑛2 

𝑝𝑝2 + 2𝑝𝑝𝑞𝑞 + 𝑞𝑞2 − 𝑛𝑛2 = 𝑝𝑝𝑞𝑞 

(𝑝𝑝 + 𝑞𝑞)2 − 𝑛𝑛2 = 𝑝𝑝𝑞𝑞 

(𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛)(𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛) = 𝑝𝑝𝑞𝑞 

       B1* 

𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛 ≠ 𝑝𝑝  and  𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛 ≠ 𝑞𝑞  as  𝑝𝑝 , 𝑞𝑞 ,  and  𝑛𝑛  are all positive.   𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛 > 𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛  so  
𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛 ≠ 1  as that would require 𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 = 𝑝𝑝𝑞𝑞 > 1. M1 

Thus  𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛 = 𝑝𝑝𝑞𝑞  and 𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 = 1  as required.  A1* 

Therefore  𝑝𝑝 + 𝑞𝑞 + 𝑝𝑝 + 𝑞𝑞 − 1 = 𝑝𝑝𝑞𝑞      M1 

𝑝𝑝𝑞𝑞 − 2𝑝𝑝 − 2𝑞𝑞 + 4 = 3 

(𝑝𝑝 − 2)(𝑞𝑞 − 2) = 3 

       dM1 

Thus  𝑝𝑝 − 2 = 1 , 𝑞𝑞 − 2 = 3 , or  𝑝𝑝 − 2 = 3  ,  𝑞𝑞 − 2 = 1 

Alternative (I) 
𝑝𝑝𝑞𝑞 − 2𝑝𝑝 − 2𝑞𝑞 + 4 = 3 

𝑝𝑝𝑞𝑞 − 2𝑝𝑝 − 2𝑞𝑞 + 1 = 0 

𝑝𝑝(𝑞𝑞 − 2) = 2𝑞𝑞 − 1 

𝑝𝑝 =
2𝑞𝑞 − 1
𝑞𝑞 − 2

= 2 +
3

𝑞𝑞 − 2
 

as  𝑞𝑞 ≠ 2  (𝑞𝑞 = 2 would yield -4+4-3=0)                 so  𝑞𝑞 − 2 = 1 𝑜𝑜𝑎𝑎 3  E1 

and so  (𝑝𝑝, 𝑞𝑞) = (3,5) , or (5,3)    A1 (6) 

 



Alternative (II)   𝑝𝑝 + 𝑞𝑞 + 𝑛𝑛 = 𝑝𝑝𝑞𝑞  and 𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 = 1  yield  𝑝𝑝 + 𝑞𝑞 = 𝑛𝑛 + 1 and  𝑝𝑝𝑞𝑞 = 2𝑛𝑛 + 1 

Therefore, p and q are solutions of  𝑡𝑡2 − (𝑛𝑛 + 1)𝑡𝑡 + (2𝑛𝑛 + 1) = 0 

Hence  𝑡𝑡 = (𝑛𝑛+1)±�(𝑛𝑛+1)2−4(2𝑛𝑛+1)
2

= (𝑛𝑛+1)±�(𝑛𝑛−3)2+12
2

 

For integer t we require that  (𝑛𝑛 − 3)2 + 12  is a perfect square (in fact an even perfect square). 

Thus the difference of squares between (𝑛𝑛 − 3)2 + 12  and  (𝑛𝑛 − 3)2  is  12.  Successive squares, 𝑧𝑧2 
and (𝑧𝑧 + 1)2  differ by  2𝑧𝑧 + 1 , which for 𝑧𝑧 ≥ 6  is  ≥ 13 .  Thus (𝑛𝑛 − 3) ≤ 5 .  Then, either by listing 
potential solutions exhaustively, or justifying that  (𝑛𝑛 − 3)2 + 12  and  (𝑛𝑛 − 3)2 have to be squares 
differing by 7 + 5  and hence  (𝑛𝑛 − 3)2 = 22 giving  (𝑝𝑝, 𝑞𝑞) = (3, 5) , or (5, 3) .  E1 A1 (6) 

(iii)  If  𝑝𝑝3 + 𝑞𝑞3 + 3𝑝𝑝𝑞𝑞2 = 𝑛𝑛3 , and as  𝑝𝑝 , 𝑞𝑞 ,  and hence  𝑛𝑛  are all positive, then  𝑝𝑝3 < 𝑛𝑛3 and 

  𝑞𝑞3 < 𝑛𝑛3  so  𝑝𝑝 < 𝑛𝑛  and  𝑞𝑞 < 𝑛𝑛   , E1  and hence  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 < 𝑝𝑝  and  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 < 𝑞𝑞  . A1* 

If 

𝑝𝑝3 + 𝑞𝑞3 + 3𝑝𝑝𝑞𝑞2 + 3𝑝𝑝2𝑞𝑞 = 𝑛𝑛3 + 3𝑝𝑝2𝑞𝑞 

  M1 

(𝑝𝑝 + 𝑞𝑞)3 − 𝑛𝑛3 = 3𝑝𝑝2𝑞𝑞 

  dM1 

 

(𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛)((𝑝𝑝 + 𝑞𝑞)2 + (𝑝𝑝 + 𝑞𝑞)𝑛𝑛 + 𝑛𝑛2) = 3𝑝𝑝2𝑞𝑞 

   A1 

As  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 < 𝑝𝑝  and  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 < 𝑞𝑞  ,  so  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 = 1  or  3 A1 

If  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 = 1  then (𝑛𝑛 + 1)3 − 𝑛𝑛3 = 3𝑝𝑝2𝑞𝑞 and hence  3𝑛𝑛2 + 3𝑛𝑛 + 1 = 3𝑝𝑝2𝑞𝑞 M1 which is not 
possible as LHS is not a multiple of 3 and RHS is. E1 

If  𝑝𝑝 + 𝑞𝑞 − 𝑛𝑛 = 3 , then  (𝑛𝑛 + 3)3 − 𝑛𝑛3 = 3𝑝𝑝2𝑞𝑞  and hence  9𝑛𝑛2 + 27𝑛𝑛 + 27 = 3𝑝𝑝2𝑞𝑞 , that is 

  3(𝑛𝑛2 + 3𝑛𝑛 + 3) = 𝑝𝑝2𝑞𝑞.  M1 So  𝑝𝑝  or  𝑞𝑞  must divide  3 and hence must be  3  as  𝑝𝑝  and  𝑞𝑞  are 
prime. E1 

If   𝑝𝑝 = 3 ,  then  𝑞𝑞 − 𝑛𝑛 = 0  but  𝑞𝑞 < 𝑛𝑛   and vice versa if  𝑞𝑞 = 3 E1* (11) 

  



6. (i)  

𝑎𝑎𝑥𝑥 = 1 + 𝑥𝑥 +
𝑥𝑥2

2!
+
𝑥𝑥3

3!
+⋯ 

cosh𝑥𝑥 =
1
2

(𝑎𝑎𝑥𝑥 + 𝑎𝑎−𝑥𝑥) =
1
2

 �1 + 𝑥𝑥 +
𝑥𝑥2

2!
+
𝑥𝑥3

3!
+ ⋯+ 1 − 𝑥𝑥 +

𝑥𝑥2

2!
−
𝑥𝑥3

3!
+⋯� = 1 +

𝑥𝑥2

2!
+ ⋯  

cosh2 𝑥𝑥 = �1 +
𝑥𝑥2

2!
+
𝑥𝑥4

4!
+ ⋯ �

2

= 1 + 𝑥𝑥2 +
𝑥𝑥4

3
+ ⋯ ≥ 1 + 𝑥𝑥2  

   B1* 

as all terms are of even degree with positive coefficients. 

Alternative  

cosh𝑥𝑥 =
1
2

(𝑎𝑎𝑥𝑥 + 𝑎𝑎−𝑥𝑥) = 1 +
𝑥𝑥2

2!
+ ⋯ ≥ 1 +

𝑥𝑥2

2!
 

cosh2 𝑥𝑥 ≥ �1 +
𝑥𝑥2

2!�
2

= 1 + 𝑥𝑥2 +
𝑥𝑥4

4
≥ 1 + 𝑥𝑥2 

   B1* 

f(𝑥𝑥) = tan−1 𝑥𝑥 − tanh𝑥𝑥 

f ′(𝑥𝑥) =
1

1 + 𝑥𝑥2
− sech2 𝑥𝑥 =

cosh2 𝑥𝑥 −  (1 + 𝑥𝑥2)
(1 + 𝑥𝑥2) cosh2 𝑥𝑥

 

   M1 

We have shown that the numerator   cosh2 𝑥𝑥 −  (1 + 𝑥𝑥2) ≥ 0  and the denominator is positive so 
f ′(𝑥𝑥) ≥ 0 and hence the function f is increasing.  E1* 

 

When  𝑥𝑥 = 0 , f(𝑥𝑥) = f ′(𝑥𝑥) = 0  and for all other 𝑥𝑥 , f ′(𝑥𝑥) > 0    

f(−𝑥𝑥) = −f(𝑥𝑥) 

    G1 

As  𝑥𝑥 → ±∞ , f(𝑥𝑥) → ± �𝜋𝜋
2
− 1� respectively.    G1 (5) 

 



(ii) (a) 

g(𝑥𝑥) = tan−1 𝑥𝑥 −
1
2
𝜋𝜋 tanh 𝑥𝑥 

g′(𝑥𝑥) =
1

1 + 𝑥𝑥2
−

1
2
𝜋𝜋 sech2 𝑥𝑥 =

2 cosh2 𝑥𝑥 −𝜋𝜋 (1 + 𝑥𝑥2)
2 (1 + 𝑥𝑥2) cosh2 𝑥𝑥

 

    M1 

As in (i), the denominator is positive.  When  𝑥𝑥 = 0 , the numerator = 2 − 𝜋𝜋 < 0 .  A1 

The numerator= (2 − 𝜋𝜋)(1 + 𝑥𝑥2) + 2 �𝑥𝑥
4

3
+ ⋯� → ∞  as 𝑥𝑥 → ∞ . M1     Thus, there is a value of  

𝑥𝑥 ≠ 0 for which g′(𝑥𝑥) = 0  and as g′(𝑥𝑥) is an even function, there is also the value  −𝑥𝑥 . E1  Hence, 
there are at least two stationary points for g .   (4) 

Alternative 

g(0) = 0  E1 and  g(𝑥𝑥) → 0  as  𝑥𝑥 → ∞   E1 and  g(𝑥𝑥)  is not identically zero E1 so there must be a 
stationary point for positive x, and similarly for negative. E1 

 

(b)  
𝑑𝑑
𝑑𝑑𝑥𝑥

[(1 + 𝑥𝑥2) sinh𝑥𝑥 − 𝑥𝑥 cosh𝑥𝑥] = (1 + 𝑥𝑥2) cosh𝑥𝑥 + 2𝑥𝑥 sinh𝑥𝑥 − 𝑥𝑥 sinh𝑥𝑥 − cosh𝑥𝑥 

   M1 

= 𝑥𝑥2 cosh𝑥𝑥 + 𝑥𝑥 sinh𝑥𝑥 ≥ 0 

for  𝑥𝑥 ≥ 0                                     A1 

as  𝑥𝑥2 ≥ 0  and  cosh𝑥𝑥 ≥ 1 for all 𝑥𝑥 and sinh𝑥𝑥 ≥ 0 for  𝑥𝑥 ≥ 0                E1                     

 

When  𝑥𝑥 = 0 ,  (1 + 𝑥𝑥2) sinh𝑥𝑥 − 𝑥𝑥 cosh𝑥𝑥 = 0  and we have shown  (1 + 𝑥𝑥2) sinh𝑥𝑥 − 𝑥𝑥 cosh𝑥𝑥  is 
increasing for  𝑥𝑥 ≥ 0 , thus  (1 + 𝑥𝑥2) sinh𝑥𝑥 − 𝑥𝑥 cosh𝑥𝑥 is non-negative for  𝑥𝑥 ≥ 0 . E1 (4) 

(c)  
𝑑𝑑
𝑑𝑑𝑥𝑥

 �
cosh2 𝑥𝑥
1 + 𝑥𝑥2

� =
(1 + 𝑥𝑥2)2 cosh𝑥𝑥 sinh𝑥𝑥 − 2𝑥𝑥 cosh2 𝑥𝑥

(1 + 𝑥𝑥2)2 =
2 cosh𝑥𝑥 �(1 + 𝑥𝑥2) sinh𝑥𝑥 − 𝑥𝑥 cosh𝑥𝑥�

(1 + 𝑥𝑥2)2  

      M1 A1 

2cosh𝑥𝑥
(1+𝑥𝑥2)2 > 0 for all  𝑥𝑥  and by (b) (1 + 𝑥𝑥2) sinh𝑥𝑥 − 𝑥𝑥 cosh𝑥𝑥 ≥ 0 for  𝑥𝑥 ≥ 0  

so cosh
2 𝑥𝑥

1+𝑥𝑥2
 is increasing for  𝑥𝑥 ≥ 0 .      E1 (3) 

(d)   
                             

g′(𝑥𝑥) =
1

1 + 𝑥𝑥2
−

1
2
𝜋𝜋 sech2 𝑥𝑥 =

1
cosh2 𝑥𝑥

�
cosh2 𝑥𝑥
1 + 𝑥𝑥2

−
1
2
𝜋𝜋� 

  



By (c) , g′ is increasing for 𝑥𝑥 ≥ 0 , and thus there is exactly one value of  𝑥𝑥  for 𝑥𝑥 > 0 that   g′(𝑥𝑥) = 0  

 

Similarly, as g′ is an even function, there is exactly one value of  𝑥𝑥  for 𝑥𝑥 < 0 that   g′(𝑥𝑥) = 0 

Thus there are exactly two stationary points.  E1 (1) 

(e) 

 

G3 (3) 

 

 

  



7. (i) 

Let  𝑥𝑥 = 𝑢𝑢2 , 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 2𝑢𝑢 , √𝑥𝑥 = 𝑢𝑢 M1 

� f�√𝑥𝑥� 𝑑𝑑𝑥𝑥 = � f(𝑢𝑢)
1

0

 2𝑢𝑢 𝑑𝑑𝑢𝑢 = 2
1

0

�𝑥𝑥f(𝑥𝑥)
1

0

 𝑑𝑑𝑥𝑥 

as required. A1* (2) 

(ii) 

�(g(𝑥𝑥) − 𝑥𝑥)2
1

0

𝑑𝑑𝑥𝑥 = ��g(𝑥𝑥)�2 𝑑𝑑𝑥𝑥 − 2�𝑥𝑥
1

0

1

0

g(𝑥𝑥) 𝑑𝑑𝑥𝑥 + �𝑥𝑥2
1

0

𝑑𝑑𝑥𝑥  

 M1 

= � g�√𝑥𝑥� 𝑑𝑑𝑥𝑥 −
1
3

1

0

− 2�𝑥𝑥
1

0

g(𝑥𝑥) 𝑑𝑑𝑥𝑥 + �𝑥𝑥2
1

0

𝑑𝑑𝑥𝑥 

= 2�𝑥𝑥
1

0

g(𝑥𝑥) 𝑑𝑑𝑥𝑥 −
1
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 − 2�𝑥𝑥
1

0

g(𝑥𝑥) 𝑑𝑑𝑥𝑥 + �
𝑥𝑥3

3
�
0

1

 

   M1 

= 0 −
1
3

+
1
3

= 0 

   A1* 

(g(𝑥𝑥) − 𝑥𝑥)2 ≥ 0  

So, the area under the graph of  𝑦𝑦 = (g(𝑥𝑥) − 𝑥𝑥)2 ≥ 0 , and the area can only equal zero if  
(g(𝑥𝑥) − 𝑥𝑥)2 = 0 for  0 ≤ 𝑥𝑥 ≤ 1  , that is  g(𝑥𝑥) = 𝑥𝑥 .   E1 (4) 

(iii)  

�(h′(𝑥𝑥)− 𝑥𝑥)2
1

0

𝑑𝑑𝑥𝑥 = ��h′(𝑥𝑥)�2
1

0

− 2𝑥𝑥h′(𝑥𝑥) + 𝑥𝑥2 𝑑𝑑𝑥𝑥 

   M1 

We are given that 

��h′(𝑥𝑥)�2
1

0

= 2h(1)− 2� h(𝑥𝑥)
1

0

 𝑑𝑑𝑥𝑥 −
1
3

 

Integrating by parts 

�2𝑥𝑥h′(𝑥𝑥)
1

0

𝑑𝑑𝑥𝑥 =  [2𝑥𝑥h(𝑥𝑥)]01 − 2�h(𝑥𝑥)
1

0

 𝑑𝑑𝑥𝑥 = 2h(1)− 2�h(𝑥𝑥)
1

0

 𝑑𝑑𝑥𝑥 

  M1 A1 



and  

�𝑥𝑥2
1

0

𝑑𝑑𝑥𝑥 = �
𝑥𝑥3

3
�
0

1

=
1
3

 

 

So, 

�(h′(𝑥𝑥)− 𝑥𝑥)2
1

0

𝑑𝑑𝑥𝑥 = 2h(1) − 2�h(𝑥𝑥)
1

0

 𝑑𝑑𝑥𝑥 −
1
3
− �2h(1) − 2�h(𝑥𝑥)

1

0

 𝑑𝑑𝑥𝑥�+
1
3

= 0 

      A1 

As in (ii) with g,  h′(𝑥𝑥) = 𝑥𝑥 .  Thus  h(𝑥𝑥) = 1
2
𝑥𝑥2 + 𝑐𝑐  but  h(0) = 0  so  𝑐𝑐 = 0  and thus h(𝑥𝑥) = 1

2
𝑥𝑥2  

                         E1 M1 A1    A1 (8) 

(iv)  

��𝑎𝑎
1
2𝑎𝑎𝑥𝑥 𝑘𝑘(𝑥𝑥) − 𝑎𝑎−

1
2𝑎𝑎𝑥𝑥�

21

0

𝑑𝑑𝑥𝑥 = �𝑎𝑎𝑎𝑎𝑥𝑥�k(𝑥𝑥)�2
1

0

− 2k(𝑥𝑥) + 𝑎𝑎−𝑎𝑎𝑥𝑥 𝑑𝑑𝑥𝑥 

                                                               M1 dM1 

= 2� k(𝑥𝑥) 𝑑𝑑𝑥𝑥 +
𝑎𝑎−𝑎𝑎

𝑎𝑎

1

0

−
1
𝑎𝑎2

−
1
4
− 2� k(𝑥𝑥) 𝑑𝑑𝑥𝑥 − �

𝑎𝑎−𝑎𝑎

𝑎𝑎 �
0

11

0

 

=
𝑎𝑎−𝑎𝑎

𝑎𝑎
−

1
𝑎𝑎2

−
1
4
−
𝑎𝑎−𝑎𝑎

𝑎𝑎
+

1
𝑎𝑎

= −
1
𝑎𝑎2

+
1
𝑎𝑎
−

1
4

= −
4 − 4𝑎𝑎 + 𝑎𝑎2

4𝑎𝑎2
= −

(2 − 𝑎𝑎)2

4𝑎𝑎2
 

                                                      A1     A1 

As before,  ∫ �𝑎𝑎
1
2𝑎𝑎𝑥𝑥 k(𝑥𝑥) − 𝑎𝑎−

1
2𝑎𝑎𝑥𝑥�

21
0 𝑑𝑑𝑥𝑥 ≥ 0  but  − (2−𝑎𝑎)2

4𝑎𝑎2
≤ 0 

Therefore,  ∫ �𝑎𝑎
1
2𝑎𝑎𝑥𝑥 k(𝑥𝑥)− 𝑎𝑎−

1
2𝑎𝑎𝑥𝑥�

21
0 𝑑𝑑𝑥𝑥 = 0   and  (2−𝑎𝑎)2

4𝑎𝑎2
= 0 E1 

Thus   𝑎𝑎
1
2𝑎𝑎𝑥𝑥 k(𝑥𝑥) − 𝑎𝑎−

1
2𝑎𝑎𝑥𝑥 = 0  and  2 − 𝑎𝑎 = 0 

So  𝑎𝑎 = 2  and  k(𝑥𝑥) = 𝑎𝑎−𝑎𝑎𝑥𝑥 = 𝑎𝑎−2𝑥𝑥 A1 (6) 

  



8.  (i)  
𝑦𝑦 = 𝑥𝑥𝑎𝑎−𝑥𝑥 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑎𝑎−𝑥𝑥 − 𝑥𝑥𝑎𝑎−𝑥𝑥 = (1 − 𝑥𝑥)𝑎𝑎−𝑥𝑥 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= −𝑎𝑎−𝑥𝑥 − (1 − 𝑥𝑥)𝑎𝑎−𝑥𝑥 = (𝑥𝑥 − 2)𝑎𝑎−𝑥𝑥 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

+ 2
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

+ 𝑦𝑦 = (𝑥𝑥 − 2)𝑎𝑎−𝑥𝑥 + 2(1 − 𝑥𝑥)𝑎𝑎−𝑥𝑥 +  𝑥𝑥𝑎𝑎−𝑥𝑥 = 0 

 M1 A1 

𝑥𝑥 = 0, 𝑦𝑦 = 𝑥𝑥𝑎𝑎−𝑥𝑥 = 0,
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= (1 − 𝑥𝑥)𝑎𝑎−𝑥𝑥 = 1 

  B1* 

For  𝑥𝑥 ≤ 1 , (1 − 𝑥𝑥) ≥ 0 ,  𝑎𝑎−𝑥𝑥 > 0  ,  so    𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

= (1 − 𝑥𝑥)𝑎𝑎−𝑥𝑥 ≥ 0  E1 (4) 

(ii)  From (i), 
g1(𝑥𝑥) = 𝑥𝑥𝑎𝑎−𝑥𝑥 

 B1 

Consider  
𝑦𝑦 = g2(𝑥𝑥) = (𝑎𝑎 + 𝑠𝑠𝑥𝑥)𝑎𝑎𝑥𝑥 

  for  𝑥𝑥 ≥ 1  B1 

Then  g2  must be a solution of   𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑥𝑥2
− 2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
+ 𝑦𝑦 = 0  ,   g1(1) = g2(1) ,  and   g′1(1) = g′2(1) 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑠𝑠𝑎𝑎𝑥𝑥 + (𝑎𝑎 + 𝑠𝑠𝑥𝑥)𝑎𝑎𝑥𝑥 = �(𝑎𝑎 + 𝑠𝑠) + 𝑠𝑠𝑥𝑥�𝑎𝑎𝑥𝑥 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= 𝑠𝑠𝑎𝑎𝑥𝑥 + �(𝑎𝑎 + 𝑠𝑠) + 𝑠𝑠𝑥𝑥�𝑎𝑎𝑥𝑥 = �(𝑎𝑎 + 2𝑠𝑠) + 𝑠𝑠𝑥𝑥�𝑎𝑎𝑥𝑥 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

− 2
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

+ 𝑦𝑦 = �(𝑎𝑎 + 2𝑠𝑠) + 𝑠𝑠𝑥𝑥�𝑎𝑎𝑥𝑥 − 2�(𝑎𝑎 + 𝑠𝑠) + 𝑠𝑠𝑥𝑥�𝑎𝑎𝑥𝑥 + (𝑎𝑎 + 𝑠𝑠𝑥𝑥)𝑎𝑎𝑥𝑥 = 0 

as required. 

g1(1) = g2(1) ⇒ 𝑎𝑎−1 = (𝑎𝑎 + 𝑠𝑠)𝑎𝑎 

g′1(1) = g′2(1) ⇒ 0 = (𝑎𝑎 + 2𝑠𝑠)𝑎𝑎 

  M1 A1 

So  𝑎𝑎 = −2𝑠𝑠  and thus  𝑠𝑠 = −𝑎𝑎−2 

Hence,  g2(𝑥𝑥) = (2𝑎𝑎−2 − 𝑎𝑎−2𝑥𝑥)𝑎𝑎𝑥𝑥 = (2 − 𝑥𝑥)𝑎𝑎𝑥𝑥−2 A1ft (5) 

(iii)  𝑦𝑦 = g2(𝑥𝑥)  is a reflection of  𝑦𝑦 = g1(𝑥𝑥)  in  𝑥𝑥 = 1 , B1 which can be justified by substituting for 
𝑥𝑥 using   𝑥𝑥′ = 2 − 𝑥𝑥  in   𝑦𝑦 = g1(𝑥𝑥) ,   𝑥𝑥𝑎𝑎−𝑥𝑥 = (2 − 𝑥𝑥′)𝑎𝑎𝑥𝑥′−2 as expected. E1 (2) 

(iv)  If  𝑦𝑦 = k(𝑐𝑐 − 𝑥𝑥)  , then  𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

= −k′(𝑐𝑐 − 𝑥𝑥) , and  𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑥𝑥2
= k′′(𝑐𝑐 − 𝑥𝑥) M1 



So  𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑥𝑥2
− 𝑝𝑝 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
+ 𝑞𝑞𝑦𝑦 = k′′(𝑐𝑐 − 𝑥𝑥) + 𝑝𝑝k′(𝑐𝑐 − 𝑥𝑥) + 𝑞𝑞k(𝑐𝑐 − 𝑥𝑥) = 0   A1 provided that  𝑎𝑎 ≤ 𝑐𝑐 − 𝑥𝑥 ≤ 𝑠𝑠 

i.e.  𝑐𝑐 − 𝑠𝑠 ≤ 𝑥𝑥 ≤ 𝑐𝑐 − 𝑎𝑎  B1 (3) 

(v)  If  h(𝑥𝑥) = 𝑎𝑎−𝑥𝑥 sin𝑥𝑥 , then  h′(𝑥𝑥) = −𝑎𝑎−𝑥𝑥 sin𝑥𝑥 + 𝑎𝑎−𝑥𝑥 cos𝑥𝑥 ,  

so  h′ �𝜋𝜋
4
� = −𝑎𝑎−

𝜋𝜋
4 sin 𝜋𝜋

4
+ 𝑎𝑎−

𝜋𝜋
4 cos 𝜋𝜋

4
= − 1

√2
𝑎𝑎−

𝜋𝜋
4 + 1

√2
𝑎𝑎−

𝜋𝜋
4 = 0  as  required.  B1* 

(a)  Using (iv), the solution for  1
4
𝜋𝜋 ≤ 𝑥𝑥 ≤ 5

4
𝜋𝜋  must be  𝑦𝑦 = 𝑎𝑎−(𝑐𝑐−𝑥𝑥) sin(𝑐𝑐 − 𝑥𝑥)  M1 where 

  −3
4
𝜋𝜋 ≤ (𝑐𝑐 − 𝑥𝑥) ≤ 1

4
𝜋𝜋 .  M1 That is  𝑐𝑐 = 1

2
𝜋𝜋  .  So  𝑦𝑦 = 𝑎𝑎𝑥𝑥−

1
2𝜋𝜋 cos𝑥𝑥  A1 

(b)  Similarly, the solution for  5
4
𝜋𝜋 ≤ 𝑥𝑥 ≤ 9

4
𝜋𝜋  must be   𝑦𝑦 = 𝑎𝑎𝑐𝑐−𝑥𝑥−

1
2𝜋𝜋 cos(𝑐𝑐 − 𝑥𝑥)  where 

1
4
𝜋𝜋 ≤ (𝑐𝑐 − 𝑥𝑥) ≤ 5

4
𝜋𝜋  .  That is 𝑐𝑐 = 5

2
𝜋𝜋 . B1  So 𝑦𝑦 = 𝑎𝑎2𝜋𝜋−𝑥𝑥 sin𝑥𝑥  B1 (6) 

 

  



9.  (i)   

 G1 (1) 

(ii)  
𝑋𝑋 = 𝑥𝑥 + 𝑎𝑎 cos𝜃𝜃 

�̇�𝑋 = �̇�𝑥 − 𝑎𝑎 sin𝜃𝜃 �̇�𝜃 

�̈�𝑋 = �̈�𝑥 − 𝑎𝑎 cos𝜃𝜃  �̇�𝜃2 − 𝑎𝑎 sin𝜃𝜃  �̈�𝜃  

𝑌𝑌 = 𝑦𝑦 − 𝑎𝑎 sin𝜃𝜃 

�̇�𝑌 = �̇�𝑦 − 𝑎𝑎 cos𝜃𝜃  �̇�𝜃 

�̈�𝑌 = �̈�𝑦 + 𝑎𝑎 sin𝜃𝜃  �̇�𝜃2 − 𝑎𝑎 cos𝜃𝜃  �̈�𝜃  

  B1 B1 (2) 

(iii)  The acceleration of A perpendicular to the string is �̈�𝑥  sin𝜃𝜃 + �̈�𝑦  cos𝜃𝜃 , E1 and likewise for B is 
�̈�𝑋  sin𝜃𝜃 + �̈�𝑌  cos𝜃𝜃  so resolving for each in that direction, �̈�𝑥  sin𝜃𝜃 + �̈�𝑦  cos𝜃𝜃 = 0  and             
�̈�𝑋  sin𝜃𝜃 + �̈�𝑌  cos𝜃𝜃 = 0 as only force is parallel to the string. E1 

(alternatively, resolving forces in x,y for both particles, and adding necessary equations gives both 
results – need to show each equation for each E mark) 

Substituting for �̈�𝑋 and  �̈�𝑌  using the results in (i), 

��̈�𝑥 − 𝑎𝑎 cos𝜃𝜃  �̇�𝜃2 − 𝑎𝑎 sin𝜃𝜃  �̈�𝜃� sin𝜃𝜃 + ��̈�𝑦 + 𝑎𝑎 sin𝜃𝜃  �̇�𝜃2 − 𝑎𝑎 cos𝜃𝜃  �̈�𝜃 � cos𝜃𝜃 = 0 

   M1  

(also may just notice 𝒔𝒔𝒔𝒔𝒔𝒔 𝜽𝜽 ��̈�𝑿 − �̈�𝒙� + 𝒄𝒄𝒄𝒄𝒔𝒔 𝜽𝜽 ��̈�𝒀 − �̈�𝒚� = 𝟎𝟎 ) 

Thus 
(�̈�𝑥  sin𝜃𝜃 + �̈�𝑦  cos𝜃𝜃)− 𝑎𝑎�̈�𝜃 = 0 

   A1ft 

and so 𝑎𝑎�̈�𝜃 = 0  , i.e.  �̈�𝜃 = 0   A1 

Integrating, �̇�𝜃 = 𝑘𝑘   Initially,  �̇�𝑦 = 𝑢𝑢  and  �̇�𝑌 = 0  when  𝜃𝜃 = 0  so using  �̇�𝑌 = �̇�𝑦 − 𝑎𝑎 cos𝜃𝜃  �̇�𝜃 , initially 
0 = 𝑢𝑢 − 𝑎𝑎  �̇�𝜃  and so  𝑘𝑘 = 𝑑𝑑

𝑟𝑟
  . M1 A1 



�̇�𝜃 =
𝑢𝑢
𝑎𝑎

 

and so, integrating, 𝜃𝜃 = 𝑑𝑑
𝑟𝑟

 𝑡𝑡 + 𝑐𝑐 , and using the initial conditions,  𝑐𝑐 = 0 

Hence,  

𝜃𝜃 =
𝑢𝑢𝑡𝑡
𝑎𝑎

  

as required.  M1 A1* (9) 

(iv)  Resolving in the x direction for m,  𝑚𝑚�̈�𝑥 = 𝑇𝑇 cos𝜃𝜃 , and for M,  𝑀𝑀�̈�𝑋 = −𝑇𝑇 cos𝜃𝜃  , so adding, 
𝑚𝑚�̈�𝑥 + 𝑀𝑀�̈�𝑋 = 0 .  Likewise in the y direction,  𝑚𝑚�̈�𝑦 = −𝑇𝑇 sin𝜃𝜃 , 𝑀𝑀�̈�𝑌 = 𝑇𝑇 sin𝜃𝜃 , giving  𝑚𝑚�̈�𝑦 + 𝑀𝑀�̈�𝑌 = 0 .        
E1 

Integrating this, 𝑚𝑚�̇�𝑦 + 𝑀𝑀�̇�𝑌 = 𝑚𝑚𝑢𝑢 , using initial conditions.  Integrating again and applying initial 
conditions,  𝑚𝑚𝑦𝑦 + 𝑀𝑀𝑌𝑌 = 𝑚𝑚𝑢𝑢𝑡𝑡.  M1 A1 (3) 

(v)  As  𝑌𝑌 = 𝑦𝑦 − 𝑎𝑎 sin𝜃𝜃 , 𝑚𝑚𝑦𝑦 +𝑀𝑀(𝑦𝑦 − 𝑎𝑎 sin𝜃𝜃) = 𝑚𝑚𝑢𝑢𝑡𝑡 , so 𝑚𝑚𝑦𝑦 + 𝑀𝑀𝑦𝑦 −𝑀𝑀𝑎𝑎 sin �𝑑𝑑𝑢𝑢
𝑟𝑟
� = 𝑚𝑚𝑢𝑢𝑡𝑡 and thus,  

𝑦𝑦 =
1

𝑚𝑚 + 𝑀𝑀
 �𝑚𝑚𝑢𝑢𝑡𝑡 + 𝑀𝑀𝑎𝑎 sin�

𝑢𝑢𝑡𝑡
𝑎𝑎
�� 

 E1 A1* (2) 

(vi)  Differentiating, 

�̇�𝑦 =
1

𝑚𝑚 +𝑀𝑀
 �𝑚𝑚𝑢𝑢 +𝑀𝑀𝑎𝑎 

𝑢𝑢
𝑎𝑎

cos �
𝑢𝑢𝑡𝑡
𝑎𝑎
�� =

𝑢𝑢
𝑚𝑚 +𝑀𝑀

 �𝑚𝑚 + 𝑀𝑀 cos�
𝑢𝑢𝑡𝑡
𝑎𝑎
�� 

  M1 A1 

When  �𝑑𝑑𝑢𝑢
𝑟𝑟
� = 𝜋𝜋 , �̇�𝑦 = 𝑑𝑑

𝑚𝑚+𝑀𝑀
 (𝑚𝑚 −𝑀𝑀) < 0  if  𝑀𝑀 > 𝑚𝑚  as required. 

 E1 (3) 

 

  



10.  

 G3 

(i)  Resolving vertically for the particle  𝑇𝑇 = 𝑘𝑘𝑚𝑚𝑘𝑘 B1 

Taking moments about A for the beam  3𝑚𝑚𝑘𝑘ℎ sin 2𝛽𝛽 = 𝑇𝑇2ℎ cos𝛽𝛽 M1A1 

Thus  𝑘𝑘 = 3 sin𝛽𝛽 A1 (7) 

Resolving horizontally for the beam  𝐹𝐹 = 𝑇𝑇 cos𝛽𝛽 = 𝑘𝑘𝑚𝑚𝑘𝑘 cos𝛽𝛽 M1 

Resolving vertically for the beam  𝑁𝑁 + 𝑇𝑇 sin𝛽𝛽 = 3𝑚𝑚𝑘𝑘 B1 

Thus  𝑁𝑁 = 3𝑚𝑚𝑘𝑘 − 𝑘𝑘𝑚𝑚𝑘𝑘 sin𝛽𝛽 = 3𝑚𝑚𝑘𝑘 − 3𝑚𝑚𝑘𝑘 sin2 𝛽𝛽 = 3𝑚𝑚𝑘𝑘 cos2 𝛽𝛽 A1 

As  𝐹𝐹 ≤ 𝜇𝜇𝑁𝑁 ,  𝑘𝑘𝑚𝑚𝑘𝑘 cos𝛽𝛽 ≤ 𝜇𝜇3𝑚𝑚𝑘𝑘 cos2 𝛽𝛽  so  𝑘𝑘 ≤ 3𝜇𝜇 cos𝛽𝛽 M1 

Thus  𝑘𝑘2 ≤ 9𝜇𝜇2 cos2 𝛽𝛽 = 𝜇𝜇2(9 − 9 sin2 𝛽𝛽) = 𝜇𝜇2(9 −  𝑘𝑘2) = 9𝜇𝜇2 − 𝜇𝜇2𝑘𝑘2 

So  𝑘𝑘2 + 𝜇𝜇2𝑘𝑘2 ≤ 9𝜇𝜇2  and so  𝑘𝑘2 ≤ 9𝜇𝜇2

𝜇𝜇2+1
  as required. M1 A1* (6) 

Alternative 

Considering, total force at A as R, there are three forces acting on the beam which must be 
concurrent, M1 and so line of action of R passes through midpoint of BC, A1 and thus the angle of 

friction must be at least  𝛽𝛽 . A1 𝜇𝜇 ≥ tan𝛽𝛽 =
𝑘𝑘
3�

�1−�𝑘𝑘 3� �
2
  M1 so  𝜇𝜇2 ≥ 𝑘𝑘2

9−𝑘𝑘2
⇒ 𝑘𝑘2 ≤ 9𝜇𝜇2

𝜇𝜇2+1
  M1A1 (6) 

(ii)  From (i)  𝐹𝐹 = 𝑇𝑇 cos𝛽𝛽 = 𝑘𝑘𝑚𝑚𝑘𝑘 cos𝛽𝛽 = 2𝑚𝑚𝑘𝑘 cos𝛽𝛽 B1 

Moments about A for the beam  3𝑚𝑚𝑘𝑘ℎ sin 2𝛽𝛽 + 𝑚𝑚𝑘𝑘𝑥𝑥ℎ sin 2𝛽𝛽 = 𝑇𝑇2ℎ cos𝛽𝛽 = 4𝑚𝑚𝑘𝑘ℎ cos𝛽𝛽 

Hence  3 sin𝛽𝛽 + 𝑥𝑥 sin𝛽𝛽 = 2  and thus  sin𝛽𝛽 = 2
3+𝑥𝑥

 M1A1 

Resolving vertically  𝑁𝑁 + 𝑇𝑇 sin𝛽𝛽 = 3𝑚𝑚𝑘𝑘 +𝑚𝑚𝑘𝑘  and so  𝑁𝑁 = 4𝑚𝑚𝑘𝑘 − 2𝑚𝑚𝑘𝑘 2
3+𝑥𝑥

= 4𝑚𝑚𝑘𝑘 2+𝑥𝑥
3+𝑥𝑥

 

𝐹𝐹2

𝑁𝑁2 =
4𝑚𝑚2𝑘𝑘2 cos2 𝛽𝛽

16𝑚𝑚2𝑘𝑘2
(3 + 𝑥𝑥)2

(2 + 𝑥𝑥)2 =
(3 + 𝑥𝑥)2

4(2 + 𝑥𝑥)2 �1 − �
2

3 + 𝑥𝑥
�
2

� 

=
1

4(2 + 𝑥𝑥)2  ((3 + 𝑥𝑥)2 − 4) =
𝑥𝑥2 + 6𝑥𝑥 + 5

4(2 + 𝑥𝑥)2  



as required. M1 A1* 

1
3
−
𝐹𝐹2

𝑁𝑁2 =
4(2 + 𝑥𝑥)2 − 3(𝑥𝑥2 + 6𝑥𝑥 + 5)

12(2 + 𝑥𝑥)2 =
𝑥𝑥2 − 2𝑥𝑥 + 1
12(2 + 𝑥𝑥)2 =

(𝑥𝑥 − 1)2

12(2 + 𝑥𝑥)2 ≥ 0 

Thus  
𝐹𝐹2

𝑁𝑁2 ≤
1
3

 

and so to be in equilibrium whatever the value of x , we require  𝜇𝜇 ≥ 1
√3

  and hence  1
√3

 is the 

minimum value of  𝜇𝜇 . M1A1(7) 

  



11.   

�
𝑘𝑘 + 1
𝑘𝑘!

 
∞

𝑘𝑘=1
𝑥𝑥𝑘𝑘 = �  

∞

𝑘𝑘=1

𝑥𝑥𝑘𝑘

𝑘𝑘!
+ �  

∞

𝑘𝑘=1

𝑥𝑥𝑘𝑘

(𝑘𝑘 − 1)!
 

  M1 

= �  
∞

𝑘𝑘=0

𝑥𝑥𝑘𝑘

𝑘𝑘!
− 1 + 𝑥𝑥�  

∞

𝑘𝑘=1

𝑥𝑥𝑘𝑘−1

(𝑘𝑘 − 1)!
 

 M1 

= 𝑎𝑎𝑥𝑥 − 1 + 𝑥𝑥�  
∞

𝑘𝑘=0

𝑥𝑥𝑘𝑘

𝑘𝑘!
= 𝑎𝑎𝑥𝑥 − 1 + 𝑥𝑥𝑎𝑎𝑥𝑥 = (𝑥𝑥 + 1)𝑎𝑎𝑥𝑥 − 1 

as required. A1* (3) 

Alternative 

�
𝑘𝑘 + 1
𝑘𝑘!

 
∞

𝑘𝑘=1
𝑥𝑥𝑘𝑘 =

𝑑𝑑
𝑑𝑑𝑥𝑥 �

�
𝑥𝑥𝑘𝑘+1

𝑘𝑘!
 

∞

𝑘𝑘=1
� 

  M1 

=
𝑑𝑑
𝑑𝑑𝑥𝑥 �

𝑥𝑥�
𝑥𝑥𝑘𝑘

𝑘𝑘!
 

∞

𝑘𝑘=0
− 1� =

𝑑𝑑
𝑑𝑑𝑥𝑥 �

𝑥𝑥(𝑎𝑎𝑥𝑥 − 1)� 

  M1 

= (𝑥𝑥 + 1)𝑎𝑎𝑥𝑥 − 1 

as required. A1* (3) 

 

(i) (a)  P(𝐷𝐷 = 0) = P(𝑁𝑁 = 0) = 𝑎𝑎−𝑛𝑛 B1 

(b)  

E(𝐷𝐷) = � 𝑑𝑑 
∞

𝑑𝑑=1
P(𝐷𝐷 = 𝑑𝑑) 

       M1 

P(𝐷𝐷 = 𝑑𝑑) = � P(𝐷𝐷 = 𝑑𝑑|𝑌𝑌 = 𝑘𝑘) 
∞

𝑘𝑘=𝑑𝑑
P(𝑌𝑌 = 𝑘𝑘) = �

1
𝑘𝑘

  
∞

𝑘𝑘=𝑑𝑑

𝑛𝑛𝑘𝑘𝑎𝑎−𝑛𝑛

𝑘𝑘!
 

       M1   

So  

E(𝐷𝐷) = � 𝑑𝑑 �
1
𝑘𝑘

  
∞

𝑘𝑘=𝑑𝑑

𝑛𝑛𝑘𝑘𝑎𝑎−𝑛𝑛

𝑘𝑘!

∞

𝑑𝑑=1
 

as required.      A1*(4) 

�  �   
∞

𝑘𝑘=𝑑𝑑
 

∞

𝑑𝑑=1
= (1,1) + (1,2) + ⋯+ (2,2) + (2,3) + ⋯+ (3,3) + (3,4) + ⋯ 

= (1,1) + (1,2) + (2,2) + (1,3) + (2,3) + (3,3) + ⋯ 



= �   �   
𝑘𝑘

𝑑𝑑=1

∞

𝑘𝑘=1
 

       E1 A1 

So 

E(𝐷𝐷) = � 𝑑𝑑 �
1
𝑘𝑘

  
∞

𝑘𝑘=𝑑𝑑

𝑛𝑛𝑘𝑘𝑎𝑎−𝑛𝑛

𝑘𝑘!

∞

𝑑𝑑=1
= �   �   

𝑘𝑘

𝑑𝑑=1

∞

𝑘𝑘=1
𝑑𝑑 

1
𝑘𝑘

 
𝑛𝑛𝑘𝑘𝑎𝑎−𝑛𝑛

𝑘𝑘!
= �

1
𝑘𝑘

 
𝑛𝑛𝑘𝑘𝑎𝑎−𝑛𝑛

𝑘𝑘!
  � 𝑑𝑑  

𝑘𝑘

𝑑𝑑=1

∞

𝑘𝑘=1
 

        A1*(3) 

(c)  

 

Thus 

E(𝐷𝐷) = �
1
𝑘𝑘

 
𝑛𝑛𝑘𝑘𝑎𝑎−𝑛𝑛

𝑘𝑘!
  
𝑘𝑘(𝑘𝑘 + 1)

2

∞

𝑘𝑘=1
=  
𝑎𝑎−𝑛𝑛

2
 �

𝑘𝑘 + 1
𝑘𝑘!

∞

𝑘𝑘=1
𝑛𝑛𝑘𝑘 =

𝑎𝑎−𝑛𝑛

2 �(𝑛𝑛 + 1)𝑎𝑎𝑛𝑛 − 1� 

     B1    M1 A1 

by using the result of the stem 

=
1
2

 (𝑛𝑛 + 1 − 𝑎𝑎−𝑛𝑛) 

      A1*(4) 

(ii)  (a)  

P(𝑍𝑍 = 0) = � P(𝑍𝑍 = 0|𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑘𝑘)  P(𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑘𝑘) = 
𝑛𝑛

𝑘𝑘=1
�

1
𝑛𝑛

𝑛𝑛

𝑘𝑘=1
 𝑎𝑎−𝑘𝑘 

         M1 

=
1
𝑛𝑛

 𝑎𝑎−1
1 − 𝑎𝑎−𝑛𝑛

1 − 𝑎𝑎−1
=

1 − 𝑎𝑎−𝑛𝑛

𝑛𝑛(𝑎𝑎 − 1) 

        A1 (2) 

(b)  

E(𝑍𝑍) = � 𝑠𝑠
∞

𝑠𝑠=1
P(𝑍𝑍 = 𝑠𝑠) = � 𝑠𝑠

∞

𝑠𝑠=1
�

1
𝑛𝑛

 
𝑛𝑛

𝑘𝑘=1
P(𝑋𝑋𝑘𝑘 = 𝑠𝑠) 

        M1 

=
1
𝑛𝑛
� � 𝑠𝑠P(𝑋𝑋𝑘𝑘 = 𝑠𝑠)

∞

𝑠𝑠=1
 

𝑛𝑛

𝑘𝑘=1
 

       M1 

=
1
𝑛𝑛
� 𝑘𝑘  

𝑛𝑛

𝑘𝑘=1
=

1
𝑛𝑛
𝑛𝑛(𝑛𝑛 + 1)

2
=

1
2

 (𝑛𝑛 + 1) >
1
2

 (𝑛𝑛 + 1 − 𝑎𝑎−𝑛𝑛) = E(𝐷𝐷) 

   A1    A1(4) 

  



12.  (i)  There are �2𝑛𝑛
2𝑘𝑘� ways of choosing 2𝑘𝑘 socks from 2𝑛𝑛 . E1  If there is no pair of socks, then the 

2𝑘𝑘 socks must be of different colours; the colours can be chosen � 𝑛𝑛2𝑘𝑘� ways and for each colour 

there are 2 ways of choosing a sock of that colour.  E1  Hence the probability of no pairs is 

� 𝑛𝑛2𝑘𝑘�22𝑘𝑘

�2𝑛𝑛
2𝑘𝑘�

 

      B1 (3) 

Alternative 

The probability that all socks chosen do not include any pairs is  

2𝑛𝑛
2𝑛𝑛

 ×
2𝑛𝑛 − 2
2𝑛𝑛 − 1

×
2𝑛𝑛 − 4
2𝑛𝑛 − 2

× ⋯×
2𝑛𝑛 − 2(2𝑘𝑘 − 1)

2𝑛𝑛 − 2𝑘𝑘 + 1
 

as having removed 𝑎𝑎 different socks leaves only  2𝑛𝑛 − 2𝑎𝑎 possibilities from the remaining 2𝑛𝑛 − 𝑎𝑎 . 

        E1 

2𝑛𝑛
2𝑛𝑛

 ×
2𝑛𝑛 − 2
2𝑛𝑛 − 1

×
2𝑛𝑛 − 4
2𝑛𝑛 − 2

× ⋯×
2𝑛𝑛 − 2(2𝑘𝑘 − 1)

2𝑛𝑛 − 2𝑘𝑘 + 1
=

22𝑘𝑘𝑛𝑛(𝑛𝑛 − 1)⋯ (𝑛𝑛 − 2𝑘𝑘 + 1)
(2𝑛𝑛)!

(2𝑛𝑛 − 2𝑘𝑘)!�
 

=
22𝑘𝑘𝑛𝑛!

(𝑛𝑛 − 2𝑘𝑘)!
÷

(2𝑛𝑛)!
(2𝑛𝑛 − 2𝑘𝑘)!

= 22𝑘𝑘 ×
𝑛𝑛!

(𝑛𝑛 − 2𝑘𝑘)! (2𝑘𝑘)!
 ÷

(2𝑛𝑛)!
(2𝑛𝑛 − 2𝑘𝑘)! (2𝑘𝑘)!

 

        E1 

=
� 𝑛𝑛2𝑘𝑘�22𝑘𝑘

�2𝑛𝑛
2𝑘𝑘�

 

      B1 (3) 

(ii)  For  𝑋𝑋𝑛𝑛,𝑘𝑘 = 𝑎𝑎 , there must be 2𝑎𝑎 socks that are pairs and 2𝑘𝑘 − 2𝑎𝑎 that are of different colours. E1 

The colours of the pairs can be chosen �𝑛𝑛𝑎𝑎� ways and the colours of the remaining 2𝑘𝑘 − 2𝑎𝑎   

individual socks can be chosen from the remaining  𝑛𝑛 − 𝑎𝑎  colours � 𝑛𝑛 − 𝑎𝑎
2𝑘𝑘 − 2𝑎𝑎� ways E1:  for each 

colour chosen for an individual sock there are two choices of which sock of the pair is chosen.  E1 

 

Hence, 

P�𝑋𝑋𝑛𝑛,𝑘𝑘 = 𝑎𝑎� =
�𝑛𝑛𝑎𝑎� �

𝑛𝑛 − 𝑎𝑎
2𝑘𝑘 − 2𝑎𝑎�22𝑘𝑘−2𝑟𝑟

�2𝑛𝑛
2𝑘𝑘�

=  
�𝑛𝑛𝑎𝑎� �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟)

�2𝑛𝑛
2𝑘𝑘�

 

         A1*(4) 

(iii)  

 



𝑘𝑘(2𝑘𝑘 − 1)
2𝑛𝑛 − 1

P�𝑋𝑋𝑛𝑛−1,𝑘𝑘−1 = 𝑎𝑎 − 1� =
𝑘𝑘(2𝑘𝑘 − 1)

2𝑛𝑛 − 1

�𝑛𝑛 − 1
𝑎𝑎 − 1� �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟)

�2𝑛𝑛 − 2
2𝑘𝑘 − 2�

 

        M1A1 

=
𝑘𝑘(2𝑘𝑘 − 1)(𝑛𝑛 − 1)! (2𝑘𝑘 − 2)! (2𝑛𝑛 − 2𝑘𝑘)! 

(2𝑛𝑛 − 1)(𝑛𝑛 − 𝑎𝑎)! (𝑎𝑎 − 1)! (2𝑛𝑛 − 2)!
 �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

      A1 

=
1

(2𝑛𝑛 − 1)(2𝑛𝑛 − 2)!
𝑘𝑘(2𝑘𝑘 − 1)(2𝑘𝑘 − 2)!

(𝑎𝑎 − 1)!
(𝑛𝑛 − 1)! (2𝑛𝑛 − 2𝑘𝑘)!

(𝑛𝑛 − 𝑎𝑎)!
�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

       M1A1 

=
1

(2𝑛𝑛 − 1)!
𝑘𝑘(2𝑘𝑘 − 1)!

(𝑎𝑎 − 1)!
(𝑛𝑛 − 1)! (2𝑛𝑛 − 2𝑘𝑘)!

(𝑛𝑛 − 𝑎𝑎)!
�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

      M1 

=
2𝑛𝑛

(2𝑛𝑛)!
(2𝑘𝑘)!

2
(𝑛𝑛 − 1)! (2𝑛𝑛 − 2𝑘𝑘)!

(𝑎𝑎 − 1)! (𝑛𝑛 − 𝑎𝑎)!
�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

=
2𝑛𝑛(𝑛𝑛 − 1)!

2(2𝑛𝑛)!
𝑎𝑎(2𝑛𝑛 − 2𝑘𝑘)!
𝑎𝑎! (𝑛𝑛 − 𝑎𝑎)!

(2𝑘𝑘)!
1

�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

= 𝑎𝑎
𝑛𝑛!

𝑎𝑎! (𝑛𝑛 − 𝑎𝑎)!
 
(2𝑛𝑛 − 2𝑘𝑘)! (2𝑘𝑘)!

(2𝑛𝑛)!
 �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

      A1 

= 𝑎𝑎 
�𝑛𝑛𝑎𝑎� �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟)

�2𝑛𝑛
2𝑘𝑘�

= 𝑎𝑎P�𝑋𝑋𝑛𝑛,𝑘𝑘 = 𝑎𝑎�  

     A1*(8) 

Or alternatively, in the OPPOSITE DIRECTION 

𝑎𝑎P�𝑋𝑋𝑛𝑛,𝑘𝑘 = 𝑎𝑎� = 𝑎𝑎 
�𝑛𝑛𝑎𝑎� �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟)

�2𝑛𝑛
2𝑘𝑘�

 

M1A1 

= 𝑎𝑎
𝑛𝑛!

𝑎𝑎! (𝑛𝑛 − 𝑎𝑎)!
 
(2𝑛𝑛 − 2𝑘𝑘)! (2𝑘𝑘)!

(2𝑛𝑛)!
 �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

A1 

=
2𝑛𝑛(𝑛𝑛 − 1)!

2(2𝑛𝑛)!
𝑎𝑎(2𝑛𝑛 − 2𝑘𝑘)!
𝑎𝑎! (𝑛𝑛 − 𝑎𝑎)!

(2𝑘𝑘)!
1

�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

       M1A1 



=
2𝑛𝑛

(2𝑛𝑛)!
(2𝑘𝑘)!

2
(𝑛𝑛 − 1)! (2𝑛𝑛 − 2𝑘𝑘)!

(𝑎𝑎 − 1)! (𝑛𝑛 − 𝑎𝑎)!
�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

       M1 

=
1

(2𝑛𝑛 − 1)!
𝑘𝑘(2𝑘𝑘 − 1)!

(𝑎𝑎 − 1)!
(𝑛𝑛 − 1)! (2𝑛𝑛 − 2𝑘𝑘)!

(𝑛𝑛 − 𝑎𝑎)!
�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

=
1

(2𝑛𝑛 − 1)(2𝑛𝑛 − 2)!
𝑘𝑘(2𝑘𝑘 − 1)(2𝑘𝑘 − 2)!

(𝑎𝑎 − 1)!
(𝑛𝑛 − 1)! (2𝑛𝑛 − 2𝑘𝑘)!

(𝑛𝑛 − 𝑎𝑎)!
�
𝑛𝑛 − 𝑎𝑎

2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

=
𝑘𝑘(2𝑘𝑘 − 1)(𝑛𝑛 − 1)! (2𝑘𝑘 − 2)! (2𝑛𝑛 − 2𝑘𝑘)! 

(2𝑛𝑛 − 1)(𝑛𝑛 − 𝑎𝑎)! (𝑎𝑎 − 1)! (2𝑛𝑛 − 2)!
 �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟) 

=
𝑘𝑘(2𝑘𝑘 − 1)

2𝑛𝑛 − 1

�𝑛𝑛 − 1
𝑎𝑎 − 1� �

𝑛𝑛 − 𝑎𝑎
2(𝑘𝑘 − 𝑎𝑎)�22(𝑘𝑘−𝑟𝑟)

�2𝑛𝑛 − 2
2𝑘𝑘 − 2�

 

      A1 

=
𝑘𝑘(2𝑘𝑘 − 1)

2𝑛𝑛 − 1
P�𝑋𝑋𝑛𝑛−1,𝑘𝑘−1 = 𝑎𝑎 − 1� 

     A1*(8) 

 

 

E�𝑋𝑋𝑛𝑛,𝑘𝑘� = � 𝑎𝑎P�𝑋𝑋𝑛𝑛,𝑘𝑘 = 𝑎𝑎� = � 𝑎𝑎P�𝑋𝑋𝑛𝑛,𝑘𝑘 = 𝑎𝑎� 
𝑘𝑘

𝑟𝑟=1

𝑘𝑘

𝑟𝑟=0
= �

𝑘𝑘(2𝑘𝑘 − 1)
2𝑛𝑛 − 1

P�𝑋𝑋𝑛𝑛−1,𝑘𝑘−1 = 𝑎𝑎 − 1� 
𝑘𝑘

𝑟𝑟=1
 

      M1    M1A1 

=
𝑘𝑘(2𝑘𝑘 − 1)

2𝑛𝑛 − 1
 � P�𝑋𝑋𝑛𝑛−1,𝑘𝑘−1 = 𝑎𝑎� 

𝑘𝑘−1

𝑟𝑟=0
=
𝑘𝑘(2𝑘𝑘 − 1)

2𝑛𝑛 − 1
 

      M1   A1(5) 
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