

GCE

Further Mathematics B MEI

Y422/01: Statistics major

A Level

Mark Scheme for June 2024

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2024

MARKING INSTRUCTIONS

PREPARATION FOR MARKING RM ASSESSOR

- 1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM Assessor Online Training; OCR Essential Guide to Marking.
- 2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
- 3. Log-in to RM Assessor and mark the **required number** of practice responses ("scripts") and the **number of required** standardisation responses.

MARKING

- Mark strictly to the mark scheme.
- 2. Marks awarded must relate directly to the marking criteria.
- 3. The schedule of dates is very important. It is essential that you meet the RM Assessor 50% and 100% (traditional 40% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
- 4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or the RM Assessor messaging system, or by email.

5. Annotations

Annotation	Meaning
√and ≭	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
E	Explanation mark 1
SC	Special case
۸	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.
BP	Blank Page
Seen	
Highlighting	

6. Subject Specific Marking Instructions

a. Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award No Response (NR) if:

• there is nothing written in the answer space

Award Zero '0' if:

anything is written in the answer space and is not worthy of credit (this includes text and symbols).

Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this when reviewing scripts.

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results.

 Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be

various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f. Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)
 - We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
 - When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
 - When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. unless a different level of accuracy
 has been asked for in the question, or the mark scheme specifies an acceptable range.
 NB for Specification A the rubric specifies 3 s.f. as standard, so this statement reads "3 s.f".

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error. Candidates using a value of 9.80, 9.81 or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g. Rules for replaced work and multiple attempts:
 - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
 - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
 - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.

If a candidate corrects the misread in a later part, do not continue to follow through. E marks are lost unless, by chance, the given results are established by equivalent working. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

- i. If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j. If in any case the scheme operates with considerable unfairness consult your Team Leader.

C	Question		Question		Answer	Marks	AO	Guidance
1	(a)		E(X) = 2.9	B1	1.1			
			Var(X) = 2.09	B1	1.1			
				[2]				
1	(b)		Mean = £2450	B1FT	3.3			
			Variance of salary = $500^2 \times 2.09$ (= 522500)	M1	1.1	For $500^2 \times their$ variance Do not allow M1 for use of 2.9		
			Standard deviation = £723 [£722.84]	A1FT	1.1	unless stated to be $Var(X)$. Do not allow M1 for simply $500^2 \times Var(X)$ without substituting in a value for $Var(X)$ Allow 722.8. Do not allow to greater accuracy than the		
				[3]		nearest penny. Do not allow answer given only in surds.		

Ç	Question		Answer	Marks	AO	Guidance
2	(a)		Variance = 0.36	M1	3.3	soi
			Mean = 0.36	A1	1.1	
				[2]		
2	(b)	(i)	P(X=1) = 0.2512	B1	3.4	BC FT their mean
				[1]		Mean = $0.6 P(X = 1) = 0.3293$
2	(b)	(ii)	P(X > 1) = 1 - 0.9488	M1	1.1	Or $[P(X > 1) =] 1 - P(X \le 1)$
			= 0.0512	A1	1.1	FT their mean
				[2]		Mean = $0.6 P(X > 1) = 1 - 0.8781 = 0.1219$
2	(c)		Mean = $20 \times their \ 0.36 \ [= 7.2]$	M1	3.3	
			P(Y < 5) = 0.1555	A1	1.1	BC FT their mean
				[2]		Mean = $0.6 P(Y < 5) = 0.0076$

C	Question	Answer	Marks	AO	Guidance
3	(a)	N(46, 3.1 ²) P(> 50 mins) = 0.0985	B1	1.1	BC
			[1]		
3	(b)	$N(35, 2.4^2) \text{ inv}(0.99) \Rightarrow 40.6 \text{ mins}$	B1	3.1b	BC
			[1]		
3	(c)	$N(46-35-12, 3.1^2+2.4^2+2.2^2)$	B1	3.3	For Normal and mean. Allow mean $= +1$
		N(-1, 20.21)	B 1	1.1	For variance (4.4955 ²) awrt 20.2
		P(<0) = 0.5880	B1	3.4	BC
			[3]		
3	(d)	Time for 1 load ~ $N(35 + 46 + 12, 2.4^2 + 3.1^2 + 2.2^2)$	B1	3.3	For correct distribution soi
		(N(93, 20.21))			
		Mean time for 5 loads ~ N(93, 20.21/5)	M1	1.1	For distribution
		So $P(Mean < 90) = 0.0678$	A1	3.4	BC
			[3]		

Q)uestio	n	Answer	Marks	AO	Guidance
4	(a)		$\frac{1}{2} \times 50 \times 50a = 1$	M1	2.1	Or by integration $\int_0^5 ax dx = 1$
			$a = \frac{1}{1250}$	A1	1.1	
				[2]		
4	(b)		$P(X \le 5) = \frac{1}{2} \times \frac{1}{1250} \times 5 \times 5$	M1	3.4	Or by integration $\int_0^5 \frac{1}{1250} x dx$ Using their a
			$=\frac{1}{100}$	A1	1.1	
				[2]		
4	(c)		$\frac{1}{2} \times \frac{1}{1250} \times m \times m = \frac{1}{2}$	M1	2.1	Or by integration $\int_0^m \frac{1}{1250} x dx$ Using their <i>a</i>
			$m^2 = 1250$	M1	1.1	Using their a $m^2 = \frac{1}{\text{their } a}$
			$m = 35.4 \text{ or } 25\sqrt{2}$ (35.35533) aef	A1	1.1	
				[3]		

Ç	Questio	n	Answer	Marks	AO	Guidance
5	(a)		The sample is large	B1	2.4	Allow ' $n > 20$ ' or greater value than 20
						Do not allow $40 > 30$ oe
			And the central limit theorem states that, for sufficiently large	B1	2.4	Must mention central limit theorem and sample mean for
			sample size, the sample means are approximately Normally			second mark
			distributed			Do not allow 'parent population is Normally distributed' or
						'sample data is Normally distributed' or anything else
						wrong for second B1 even if above is mentioned
				[2]		
5	(b)		Confidence interval does not contain zero	B1*	3.4	Do not allow simply 'All values are positive'
			which suggests that there is a difference in the mean sleep	DB1	2.2b	There must be some uncertainty in the answer.
			score.			Do not allow 'higher' or 'lower'
				[2]		Condone 'change' rather than 'difference'
5	(c)	(i)	Standard error is the standard deviation of the sample mean	B1	1.2	Do not allow standard deviation divided by square root of
						sample size
						Allow standard deviation for \bar{X} . Condone \bar{x}
				[1]		
5	(c)	(ii)	$\left \frac{2.14}{\sqrt{40}} \right (=0.3384)$	B1	1.1	
				[1]		
5	(d)		Interval is given by			
			0.586 ± 1.96	M1	3.4	Accept using <i>t</i> -value of 2.02(2691)
			× 0.3384	M1	1.1	
			$-0.077 < \mu < 1.249$ interval limits are 0.586 ± 0.6633	A1	1.1	Accept based on <i>t</i> -distribution (-0.098, 1.270)
			0.077 × \$ 1.215 mer var mines are 0.000 ± 0.0000	***	1.1	Condone if only mention lower limit. Allow 0.586 – 0.6633
			So in this case the interval does contain zero so this suggests	B1	2.2b	'Yes it has made a difference since it does contain zero' oe
			that there may be no difference in the mean sleep score			Do not FT from incorrect part (b) and do not award if
						incorrect statement seen.
				[4]		

Q	Question	Answer	Marks	AO	Guidance
6	(a)	Because the scatter diagram appears to be curvilinear rather	M1	3.5a	For elliptical or curvilinear
		than elliptical,			For full answer (dependent on first mark)
		there is not enough evidence to suggest that the distribution is	A1	2.4	Condone 'not based on bivariate Normal'
		bivariate Normal.			Do not condone 'the data is not bivariate Normal'
			[2]		Do not condone 'Normal bivariate' rather than bivariate Normal'
6	(b)	The sample must be random	B1	1.2	Do not allow 'Random on random'
			[1]		
6	(c)	DR Age 1 2 3 4 5 6 7 8 9 10 Grip 6 8 7 10 5 9 4 2 3 1	B1	1.1	For any ranking. Could rank in reverse order leading to +0.7212 and still get full marks
		$\sum d^2 = 284$ Spearman's rank coefficient = -0.7212	B1	1.1	ВС
		H ₀ : There is no association between age and grip strength in the population	B1	3.3	B0B0 for correlation Do not allow ρ_s unless defined
		H ₁ : There is negative association between age and grip strength in the population	B1	2.5	Need to see population in one or other of the hypotheses in order to get two B1 marks
		For $n = 10$, 5% 1-tailed critical value is 0.5636	B 1	3.4	
		-0.7212 < -0.5636	M1	1.1	For comparison provided $ rs < 1$. (provided sensibly obtained) Allow $ 0.7212 > 0.5636 $.
		Reject H ₀ . There is sufficient evidence to suggest that there is	A1	2.2b	Dep on H ₁ negative association .
		negative association between age and grip strength (in the			Must be in context.
		population)			Allow 'We can assume that'
					Do not allow correlation. No marks for PMCC test
		Please annotate page 9	[8]		

Q	Question	Answer	Marks	AO	Guidance
7	(a)	Estimate of population mean = 11.07 (11.069)	B1	1.1	
		Estimate of population standard deviation = 3.33 (3.3299)	B1	1.1	
			[2]		
7	(b)	Normal probability plot is roughly straight	B1	1.1	No marks if Wilcoxon suggested
		Very high <i>p</i> -value	B 1	1.1	Allow 'not too low'
		Both suggest that the data may be from a Normal distribution	B1	2.2b	Dep on at least one previous B mark
			[3]		Do not allow 'from bivariate Normal' oe
					Do not allow 'the data is Normally distributed'
7	(c)	H ₀ : the Normal distribution fits the data	B 1	1.2	Do not allow 'The data is Normal'
		Condone H ₀ : the data comes from or follows a Normal			
		distribution	F4.7		
	(1)	Condone H ₀ : Population is Normally distributed	[1]		N 1 C XXVI
7	(d)	DR	24		No marks for Wilcoxon
		H_0 : $\mu = 9.4$ H_1 : $\mu \neq 9.4$	B1	1.1a	Hypotheses in words only must include "population".
		Where μ is the population mean selenium level in carrots from	B1	1.2	For definition in context including "population"
		these fields			
		Test statistic is $\frac{11.069 - 9.4}{3.3299 / \sqrt{10}}$	M1	3.3	FT their mean and/or sd
		3.3299 / √10			For confidence interval method 99.4 \pm Crit value $\times \frac{3.3299}{\sqrt{10}}$
		= 1.585	A1	1.1	BC For confidence interval method 7.018 to 11.782
		Refer to t_9	M1	3.4	No FT if not t_9 . Can be implied by 2.262 or 1.833
		Critical value (2-tailed) at 5% level is 2.262	A1	1.1	Or p -value = $1 - 0.926 = 0.074$. M1 A1
		$1.585 < 2.262$ so not significant (do not reject H_0)	M1	2.2b	Or using p-value $7.4\% > 2.5\%$ Or compare 11.069 with
					confidence limit
					FT their sensibly obtained test statistic and cv (2.262 or
					1.833) for M1 only
		Insufficient evidence to suggest that the selenium level is	A1	3.5a	Answer must be in context.
		different (from 9.4 ng/g)			
		(11011 / 11 11g/g)	[8]		
			[ս]		

	Question		Question		n	Answer		AO	Guidance
1	7	(e)		A Wilcoxon test (or A Wilcoxon signed rank test) Since the population would be unlikely to be Normally distributed.	B1 B1 [2]	1.2 2.2b	Do not allow 'bivariate Normally distributed'		

C	Questic	n	Answer	Marks	AO	Guidance
8	(a)		Label flat A at the point approx. (120, 600)	B1	3.3	B0 unless point labelled A
			Label flat B at the point approx. (90, 1000)	B 1	1.1	B0 unless point labelled B
				[2]		
8	(b)		DR NB: $\bar{x} = \frac{652.5}{11} = 59.318$, $\bar{y} = \frac{5067}{11} = 460.63$			
			$b = \frac{S_{xy}}{S_{xx}} = \frac{315928.2 - (652.5 \times 5067/11)}{41987.35 - 652.5^2/11} = \frac{15362.97}{3282.236}$	M1	1.1a	For attempt at gradient (b)
			$D = \frac{1}{S_{xx}} = \frac{1}{41987.35 - 652.5^2 / 11} = \frac{1}{3282.236}$			Use of 13 instead of 11 can get Max M1A0B1M1A0 which would lead to $y = 6.669x + 55.05$
			= 4.6806	A1	1.1	Allow 4.7 or better
			For correct line (y on x) so equation is $y - \bar{y} = b(x - \bar{x})$	B 1	3.3	
			y - 460.63 = 4.6806(x - 59.318)	M1	1.1	For equation of line
			y = 4.6806x + 182.99	A1	1.1	Condone use of x on y regression line for Max
						M1A0B0M1A0
				[5]		
8	(c)		Area $40 \Rightarrow £370$ thousand	B1	1.1	FT provided y on x. Allow B1B0 if answers given to more
						than nearest whole number of thousands or if thousands
			A 110 (COO d	B1	1.1	omitted and B0B0 if both
			Area $110 \Rightarrow £698$ thousand		1.1	FT provided y on x. n = 13 leads to £321 thousands and £788 thousands
8	(4)		Although prediction for 40 m ² lies within the data	[2] B1	2.25	Allow first B1 for any correct comment about $40 \mathrm{m}^2$
0	(d)		6 1	В1	2.2a	Condone 'Near the centre of the data'
			(interpolation), the points do not lie too close to the line, so it is not too reliable.			Condone comment about the PMCC for first B1
] [and the value of r^2 is 0.585 which is not close to 1 which	B 1	3.5b	Allow second B1 for all 3 correct comments about 40 m ²
			further suggests that the estimate is only moderately reliable.	ы	3.30	and must use r^2 rather than r
			Turner suggests that the estimate is only moderately reliable.			Allow r^2 is reasonably close to 1 and the points are fairly
						close to a straight line
			The prediction for 110 m ² is even less reliable since it is an	B1	3.5b	Max 2 out of 3 if any wrong comments seen
			extrapolation.			The second of th
				[3]		
				[-]		

	Question		Answer	Marks	AO	Guidance
8	(e)		The regression line of <i>x</i> on <i>y</i> would be needed.	B1	3.5b	
			It would not be sensible since the line in part (b) only measures	B1	3.5c	Any suitable context
			the average cost for a given area and not the reverse			The regression line of floor area on price would be needed
						gets B1B1.
						Condone 'the regression coefficient will be calculated using
						$\frac{s_{xy}}{s_{xx}}$ so the line found in part (b) cannot be used' for B1
				[2]		

C	Questio		Marks	AO	Guidance
9	(a)	Road $< 25 = \frac{42 \times 15}{120} = 5.25$ Gravel $< 25 = \frac{42 \times 68}{120} = 23.80$ Road $\ge 25 = \frac{78 \times 15}{120} = 9.75$ Gravel $\ge 25 = \frac{78 \times 68}{120} = 44.20$	B1 B1	3.4 1.1	B1 for any one correct B1 for the other 3 (perhaps by subtraction)
		120	[2]		
9	(b)	$(18-24.05)^2$	M1	1.1	For $\frac{(O-E)^2}{E}$
		24.05 = 1.5219	A1	1.1	Must be given to 4d.p.
			[2]		The state of grider to tarp.
9	(c)	DR			
		 H₀: no association between type of bicycle and (whether the) maximum speed (is 25mph or greater). H₁: some association between type of bicycle and (whether the) maximum speed (is 25mph or greater). 	B1	2.5	For both. Allow independent/not independent. Do NOT allow relationship in place of association
		Test statistic = 7.9503	B1	1.1	BC
		Degrees of freedom = 2	B1	3.3	Can be implied by correct critical value or <i>p</i> -value
		Critical value = 5.991	B1	1.1	Or <i>p</i> -value = 0.0188 Or $X_2^2(7.9503) = 0.9812$
		7.9503 > 5.991 so reject H ₀	M1	2.2b	For comparison (or 0.0188 < 0.05 or 0.9812 > 0.95 oe)
		There is sufficient evidence to suggest that there is some association between type of bicycle and (whether the) maximum speed (is 25mph or greater). Please annotate page 15	A1 [6]	3.5a	Must have correct test statistic and critical value If hypotheses wrong way around allow MAX B0B1B1B1M0A0

Qu	estion	Answer	Marks	AO	Guidance
9	(d)	For the road bike, the contribution of 2.0119 shows that fewer journeys than expected have max speed < 25 mph whereas the contribution of 1.0833 shows that more journeys than expected have max speed ≥ 25 mph.	B1	2.2b	
		For the gravel bike, the levels are as expected.	B1	3.5a	Do not allow comments which suggest that gravel has more over 25 than expected and fewer 25 or less unless mention that contributions are (very) small so effect is very slight
		For the electric bike, the contribution of 2.8264 shows that more journeys than expected have max speed < 25 mph whereas the contribution of 1.5219 shows that fewer journeys than expected have max speed ≥ 25 mph.	B1	3.5a	If B0B0B0 or if more marks gained below then SC B2 for 5 correct comments without mentioning the actual values of the contributions or the size of contributions and no incorrect comments SC B1 for any 2 correct comments without mentioning contributions SCB2 for one correct comment in each case and mentioning actual values of the contributions or the size of contributions.
			[3]		

Q	Question		Answer	Marks	AO	Guidance
10	(a)		E(X) = 3 or $E(Y) = 2$	B1	3.3	Can be implied by $E(Z) = 5$
			E(Z) = 5	B 1	1.1	
				[2]		
10	(b)		$Var(X) = \frac{16}{12} = \frac{4}{3} Var(Y) = \frac{36}{12} = 3$	M1	1.1	For either. Must be considering variances
			$Var(Z) = \frac{16}{12} + \frac{36}{12} = \frac{52}{12} = \frac{13}{3}$	A1	1.1	
			Cts uniform on [0, 10] has var $\frac{100}{12} = \frac{25}{3}$ which is very different	B1	2.2a	Do not allow $\frac{13}{3} \neq \frac{25}{3}$ since question says well modelled.
			(so Ben is wrong)			Allow very different, not very close oe
				[3]		
10	(c)		Estimate of $P(Z > 6) = 0.3$	B 1	1.1	
				[1]		
10	(d)		Distribution is $N(40 \times 5, 40 \times \frac{52}{12})$	M1	3.3	For mean FT their $E(Z)$
			$N(200, \frac{520}{3})$ or $N(200, 173.33)$	A1	1.1	For variance FT their Var(Z) Condone without N(,)
			$P(Total > 210) = 0.224 \ (0.22376)$	B1	1.1	BC Allow equivalent method eg using mean rather than
						total
						B0 if continuity correction attempted
				[3]		

Ç	Question		Answer	Marks	AO	Guidance
11	(a)		For <i>n</i> even, the probability = $\frac{1}{2}$	B1	1.1	
			Number of values of X is $n-24$	M1	3.1a	For $n-24$ seen
			For <i>n</i> odd, the number that are less than $\frac{n+25}{2}$ is $\frac{n-25}{2}$	M1	3.1a	For $\frac{n-25}{2}$ seen
			For <i>n</i> odd, the probability = $\frac{n-25}{2(n-24)}$	A1	1.1	If odd and even answers reversed allow B0M1M1A0
				[4]		
11	(b)		$Var(X) = \frac{1}{12}((n-24)^2 - 1)$	B1	3.1a	For correct use of formula
			Var of mean of 100 values = $\frac{1}{1200}((n-24)^2-1)$	B1	2.1	For division of their Var by 100
			$= \left(\frac{1}{1200}(n^2 - 48n + 575)\right)$			
				[2]		
11	(c)		Mean = $\frac{75+25}{2}$ = 50	B1	1.1	
			Variance = $\frac{((75-24)^2-1)}{1200} = \frac{2600}{1200} = \frac{13}{6} = 2.1666$	M1	3.1a	For substituting $n = 75$ into their variance from part (b)
			1200 1200 6			NB Standard error = $\sqrt{\frac{2600}{1200}} = \sqrt{\frac{13}{6}} = 1.4719 \dots \text{ scores M1}$
			By CLT distribution is approx. $N(50, \frac{13}{6})$	M1	2.2a	For distribution with correct mean but their variance
			For P(Mean < 48) use a continuity correction to find P(Mean < 47.995)	M1	3.4	For correct continuity correction
			P(Mean < 47.995) = 0.0866	A1 [5]	1.1	Allow max 4 marks for P(Mean < 48) = 0.0871 (without correct continuity correction) Allow equivalent method eg using total rather than mean

Q	Question		Answer	Marks	AO	Guidance
12	(a)		$F(20) = 0, F(30) = 1, F(25) = \frac{11}{24}$	B1	2.2a	Soi For at least 2 of the three
			a(400 + 20b + c) = 0	M1	2.2a	For $F(20) = 0$
			a(900 + 30b + c) = 1	M1	1.1	For $F(30) = 1$
			$a(625 + 25b + c) = \frac{11}{24}$	M1	1.1	For $F(25) = \frac{11}{24}$
			$a = \frac{1}{600}, b = 10, c = -600$	A1	1.1	For solving either by elimination or by calculator
			$P(X > 27) = 1 - \frac{1}{600} (27^2 + 10 \times 27 - 600)$	M1	3.1a	For calculation using their non-zero values of a , b and c . oe
			$P(X > 27) = 0.335 \text{ or } \frac{67}{200}$	A1	1.1	
			Alternative method			
			F(30) - F(20) = 1	B1	2.2a	soi
			a(900 + 30b + c) - a(400 + 20b + c) = 1	M1	2.2a	
			$F(25) - F(20) = \frac{11}{24}$	B 1	1.1	soi
			$a(625 + 25b + c) - a(400 + 20b + c) = \frac{11}{24}$	M1	1.1	
			$a = \frac{1}{600}, b = 10$	A1	1.1	For solving either by elimination or by calculator
			$P(X > 27) = \frac{1}{600} (30^2 + 10 \times 30 + c) - \frac{1}{600} (27^2 + 10 \times 27 + c)$	M1	3.1a	For calculation using their non-zero values of a , b and c
			$P(X > 27) = 0.335 \text{ or } \frac{67}{200}$	A1	1.1	
			Please annotate page 19	[7]		
12	(b)		$\frac{1}{600}(n^2 + 10n - 600) = 0.9$	M1	3.1a	For equation using their non-zero values of a, b and c
			$\operatorname{Or} \frac{1}{600} (n^2 + 10n + c) - \frac{1}{600} (20^2 + 10 \times 20 + c) = 0.9$			Or For equation using their non-zero values of a and b
			n = 29.1 (29.132)	A1	1.1	
				[2]		

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk/qualifications/resource-finder

ocr.org.uk

Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2024 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our <u>Expression of Interest form</u>.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.