OCR¥

RECOGNISING ACHIEVEMENT

Exemplar Work for SAMs

Units A452 and A453

- GCSE Computing Controlled Assessment
OCRY M L R R e S S

Unit A452 Practical Investigation
RECOGNISING ACHIEVEMENT Unit Recording Sheet

‘ Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate. ‘

Unit A452 Year
Centre Name Centre Number
Candidate Name Candidate Number
Guidance Teacher Comment Mark
. . . Decent attempt to investigate LMC. Some
There may be little or no There is evidence of a practical There is evidence of a well examples used and explained well. Attempts
evidence of any practical investigation structured practical ate the subsequent taskss OK. Overall lacking
. in detail and explanation of the process.
investigation. The evidence supplied is investigation
The evidence supplied is documented clearly and is The evidence supplied is well
minimal and poorly relevant to the set task organised and clearly relevant
documented with little There is evidence of individual to the set task
c relevance to the set task. research beyond the group There is extensive evidence of
= The practical evidence may all | activity and any teacher led individual practical
2 be the result of group or activity. investigation beyond the group
@ | teacher led activity with little The practical investigations show | activity and any teacher led 8
g input from the student. signs of planning but there may activity
= be omissions made in assessing | The practical investigation
2 the consequences. shows clear signs of planning
§ and a structured approach to
o evidence gathering to provide
a complete investigation
of the set topic area and
beyond.
Practical investigation has
been carried out with skill and
due regard to safety issues. Max
[0 - 5] [6 - 10] [11 - 15] 15
URSG665 Devised September 2010 A452/URS

Oxford Cambridge and RSA Examinations 2

Oxford Cambridge and RSA Examinations

The techniques are largely used adequately but
« | The techniques used may not | The techniques will be used The techniques are used not always effeiciently. most of the solutions
. : . - . - : k but there is a lack of explanati
8 ¢l be entirely appropriate to the | appropriately giving working appropriately in all cases throughout he development. The solctons arel
& g Problem and will only produce | solutions to most of the parts of giving an efficient, working not always efficient.
o "g| partially working solutions to the problem. solution for all parts of the 6
2 5| a small part of the problem. Some parts of the solution may problem.
©2 be executed in a partial or
O o« P
2 0 inefficient manner.
R
23
L Max
[0 - 3] [4-7] [8 -10] 10
. . The candidate demonstrates a The use of technical terms is reasonable but
The candidate demonstrates a | The candidate demonstrates thorough and secure not always accurate and the report lacks deatil
limited understanding of a reasonable understanding of understanding of the technical |2nd analysis.
g‘ the technical issues related to | the technical issues related to the | issues related to the scenario.
T | the scenario. scenario. A wide range of relevant and
& | Little detail is presented. The amount of detail presented is | detailed information is
® | There will be limited indication | adequate to support the presented.
o : : , : S
< | of any evidence provided arguments. The evidence which has been
S being analysed. There is some analysis carried collected is fully analysed.
® | There is little correct use of out on the evidence collected. Technical terminology is used
g technical terminology. The use of technical terminology | correctly.
S is largely correct but it may be At the top end of the band, this
2 limited. will be extensive and
confidently used.
y Max
[0-3] [4-7] [8 - 10] 10
URS665 Devised September 2010 A452/URS

Conclusions are weak or
missing with little or no
justification.

The solution is presented with
little if any evidence of testing.
The evidence of written
communication is limited with
little or no use of specialist
terms.

There are many errors in
spelling, punctuation and
grammar.

Information may be ambiguous

The material has structure and
coherence with justifiable
conclusions being reached
although there may be some
omissions.

There is evidence that the
solutions have been tested for
basic functionality.

Candidates will have produced a
sound evaluation which

reviews some aspects of the task.

Evidence of good written
communication using some

Thorough and convincing
conclusions have been
reached, which are borne out
by the research carried out by
the candidate.

The solutions are fully tested
and there is little doubt that the
solutions presented are fully
functional.

This material has been
presented in a clear and
relevant way which is simple to
navigate.

There is evidence of some testing for function
throughout the report but this lacks organisation
and is not complete. The evaluation is minimal
and adds little.

Oxford Cambridge and RSA Examinations

S
E
©
S
° or disorganised. specialist terms. A high level of written 4
© There is limited if any There are few errors in spelling, communication is obvious
4 reference to evidence. grammar and punctuation. throughout the task and
9 The evaluation may be Information for the most part will specialist terms/technology
3 simplistic with little or no be presented in a structured with accurate use of spelling is
2 | relevance. format. used.
8 Specialist terms will be used Grammar and punctuation is
appropriately and for the most consistently correct.
part correctly. Information is presented in a
coherent and structured
format.
The evaluation will be relevant,
clear, organised and presented
in a structured and coherent
format. Max
[0 - 3] [4-7] [8-10] 10
Total/45 23
URS665 Devised September 2010 A452/URS

GCSE Computing
Unit A452: Practical investigation

Exemplar Material for A452 SAM

INSIDE THE MACHINE

Most computers are built to the same basic architecture — the Von Neumann
architecture. They have memory where program instructions and other data are
stored and they have a processor that decodes and carries out the program
instructions.

The processor has special memory locations called registers. This is where the
program instructions are acted on. There is a working demonstration of how the
processor and memory interact called the Little Man Computer (LMC). Some
versions run as an embedded applet in a browser. The details are
here:http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html

The applet itself is here:
http://www.atkinson.yorku.ca/~sychen/research/LMC/LittleMan.html

Alternatively you can access another version from:
http://www.cs.ru.nl/~erikpoll/Teaching/Ill/Imc/

1 Investigate the instruction set provided with one implementation of the LMC.

2 Load and run at least two of the demonstration programs supplied with the
implementation.

3 Explain in your own words what happens as each of the instructions is executed.
4 Write programs to run in LMC:
(i) Take in two numbers and output the smaller first, then the larger
(i) Produce a multiplication table from 1 to 10 for any number input by the user
(iii) Input five numbers and output them in reverse order.
Produce evidence to show that you have planned, written and tested your code.
5 Produce an evaluation of your solutions.

6 Write a conclusion about the possibility of writing effective and complex programs
with only a limited instruction set.

http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LMCHome.html
http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LittleMan.html
http://www.cs.ru.nl/%7Eerikpoll/Teaching/III/lmc/

The Little Man Computer

Task 1 Investigate the instruction set provided with one implementation of the LMC.

The Little Man Computer is like a real computer but not as powerful. It can only do some of the
things that a real computer can do. The instruction set is a list of the commands you can use with
it. It has ten of these and they let you move data, add, subtract and check what is happening after
you do something.

LDA: load the accumulator with something.

STA: store what is in the accumulator in memory.

ADD: add data from memory into the accumulator.

SUB: subtract data in memory from the accumulator.

INP: input a number — it goes into the accumulator.

OUT: output what is in the accumulator.

BRZ: branch to the place indicated if there is a zero in the accumulator.

BRP: branch to the place indicated if the number if the accumulator has a zero or a positive

number in it.

BRA: branch anyway

HLT: halt the program

DAT: this shows you where data is kept.
These instructions can be given either as machine code numbers or as assembly language
mnemonics.

| tried some of the instructions in the LMC.

INP
STANUM
INP
SUB NUM
ouT
HLT
NUM DAT

This program takes two inputs and subtracts the second one from the first. Here is the LMC when
the program has been compiled.

Little Man Computer Memaory: Message Box
0 1 2 3 4 5 6 T 8 g [INP
STAMUM
901 306 801 206 902 0 3]] 0 INP
SUB MUM
10 11 12 13 14 15 16 17 18 19 |ouT
HLT
0 0]]] 0]]] 0 NUM DAT

20 29 22 23 24 25 26 27 28 29

You can see that INP has been changed to 901 and stored in cell O.

STA has become 3 and the 06 means that the data is to be stored in location 6. Location 6 is the
place where the compiler has decided that NUM must go.

Cell 2 has another INP or 901 in it. Cell 3 has 2 for subtract and 06 for where it must look to get
the number to subtract.

902 in cell 4 outputs the result from the accumulator.

0 in 5 is the halt instruction.

Task 2. Load and run at least two of the demonstration programs supplied with the
implementation.

| first tried this example from the web site.

Program 1

INP
ouT
HLT

Here it is in the LMC.

Little Man Computer Memaory: Message

0o 1 2 3 4 5 & 71 8 g |INF
ouT
o o0 0 0 0 0 0 0 0 0 |WT

All this program does is to take a number from the user and output it. Here is evidence that | did
that.

Running the program
When the run button is clicked, the program counter is set to 1 and you can see that input is
required.

Inputis required by instruction 1

Clear Messages | Compile Program

Accumulator: 0 Program Counter: 1
MEM Address: 1 MEM Data: 901
In-Box: Out-Box:

Enter

| entered the number 4.

Accumulator: 0
MEM Address: 1
In-Box: 4

Enter

Here the number 4 is shown in the outbox.

Accumulator: 4 Program Counter; 2
MEM Address: 2 MEM Data: 0
In-Box, 4 Out-Box. 4

Enter

The third instruction is HLT so the program ends.

| then tried another program from the web site. It is supposed to add then subtract numbers.

Program 2

INP
STAFIRST
INP

ADD FIRST
ouT

INP

SUB FIRST
ouT

HLT

FIRST DAT

Here it is compiled.

Little Man Computer Memary:
] 1 2 3 4 5
901 309 901 109 @902 901

10 11 12 13 14 15
] 0 0 0 0 0

20 21 22 23 24 25
] 0 0 0 0 0

30 31 32 33 34 35
] 0 0 0 0 0

40 41 42 43 44 45
o 0 0 0 0 O

KO 51 B2 53 54 5b
] 0 0 0 0 0

60 61 62 63 64 65
] 0 0 0 0 0

0 71 F2 73 T4 75

| then ran it. Here is my first input which is 8.

Input is required by instruction 1

Clear Messages

Message Box

Accumulator; O
MEM Address: 1

In-Box: 8

Enter

9:FIRST DAT

—— Resaolving Labels —
FIRST is a label for Address : 9

——Translating Mnemanics —
Line 0 IMP

Opcode =901
Line 1: STA

Cpcode =3 Address =09
Line 2 IMP

Cpcode =901
Line 3: ADD

Cpcode =1 Address =09
Line 4. 0UT

Opcode = 802
Line 5 IMP

Cpcode =901
Line 6: 3SUB

Cpcode =2 Address =09
Line 7. OUT

Cpcode =902
Line & :HLT

Opcode =10
Line 9: DAT
—— Program Successfully Compiled —

| then entered 7. | expected the answer 15 to be output.

Input is required by instruction 6

Clear Messages | Compile Program

Accurmnulator: 15 Program Counter; 6
MEM Address: 1 MEM Diata: 901
In-Box: Out-Box: 15
Enter

Here you can see 15 in the out-box.

| will now enter 10. | expect 2 to be output.

Accumulator: 2 Program Counter: 8
MEM Address: & MEM Data: 0
In-Box: 10 Out-Box: 2

Task 3. Explain in your own words what happens as each of the instructions is executed.

Program 1

INP
This takes a number from the user and puts it in the accumulator.

ouT
This outputs the value in the accumulator.

HLT
This stops the program.

Program 2

INP
This takes a number from the user and puts it in the accumulator. In my test, this is 8.

STAFIRST
This stores that number in the memory cell labelled FIRST.

INP
This takes a number from the user and puts it in the accumulator. In this case, | used 7.

ADD FIRST
This adds the number in FIRST to whatever is in the accumulator, which is the number last
entered. 8+7=15 so that goes into the accumulator.

ouT
This outputs what is in the accumulator, which is the result of the addition. In this case, it is 15.

INP
This takes a number from the user and puts it in the accumulator. | used 10 in this case.

SUB FIRST
This takes away the number in FIRST from whatever is now in the accumulator. 10-8=2 so 2 is now
in the accumulator.

ouT
This outputs the result, which in my test was 2.

HLT
This halts the program.

FIRST DAT
This assigns a label FIRST to a memory location which is used to store the first value input in this
program.

Task 4. Write programs to run in LMC:
i. Take in two numbers and output the smaller first, then the larger.

Produce evidence to show that you have planned, written and tested your code.

Here is the pseudocode to solve this problem.

Get the first number

Store it as FIRST

Get the second number

Store it as SECOND

Subtract the first number (the second is still in the accumulator)
If the result is positive output the second number then the first
Otherwise output the first number followed by the second.

If we store both numbers, then we can bring them back to output them.

Here is the LMC code that achieves this.

INP

STAFIRST

INP

STA SECOND
SUB FIRST

BRP SECONDBIG
LDA SECOND
ouT

LDA FIRST

ouT

BRA PROGEND
SECONDBIG LDA FIRST
ouT

LDA SECOND
ouT

PROGEND HLT
FIRST DAT
SECOND DAT

Here | run it with 50 followed by 60. | expect the numbers to come out in the same order.

10

Accurmulator: O Program Counter: 1
MEM Address: 1 MEM Diata: 901

In-Box: 50 Out-Box:

Here is the output box after | ran this.

Accumulator: 60 Program Counter: 15
MEM Address: 15 MEM Data: 0
In-Box: 60 Out-Box: 60

It worked correctly, although you cannot see the 50 because it happened very quickly.

I will now test it the other way round. | will enter 100 then 20. | expect the 20 to come out first then
the 100.

This worked too. Here is the 100 showing at the end.

Accumulator; 100 Program Counter; 15
MEM Address: 15 MEW Data: 0
In-Box: 20 Qut-Box: 100

The output happens quickly so it is best to run it using the slow button.
Here is the output when tested with 3 then 4. The number 4 is the last output.

Clear Messages | Compile Program

Accumulator: 4 Program Counter: 15
MEM Address: 15 MEM Data: 0
In-Box, 4 Out-Box. 4

Here we test it with 4 then 3. Again 4 is the last output with 3 being visible as the last input into the
in-box.

Accumulator: 4 Program Counter: 15
MEM Address: 15 MEM Data: 0
In-Box: 3 Out-Box: 4

ii. Produce a multiplication table from 1 to 10 for any number input by the user

Produce evidence to show that you have planned, written and tested your code.

This is hard to do with LMC because it can’t do multiplication. | have found out that to get round
that, you have to add the numbers together as many times as you need

So, to make this happen, what we need to do first is to get the number from the user, then add it to
itself as many times as needed. | will first test this by writing a program to multiply a number by 3. |
will put the 3 in a memory location and then add the input number together 3 times.

I will set up a counter to count how many times this has happened.

11

Pseudocode

Get number

Store number

Add number

Get counter

Add 1

Get THREE

Take away counter

If positive go back and do another addition
Output result

INP
STANUMBER
LOOP LDA TOTAL
ADD NUMBER
STATOTAL
LDA COUNTER
ADD ONE

STA COUNTER
LDA THREE
SUB COUNTER
BRP LOOP
LDATOTAL
ouT

HLT

THREE DAT 003
COUNTER DAT 001
ONE DAT 001
NUMBER DAT
TOTAL DAT

| tested this by entering the number 4. | expected this to be multiplied by 3 and give the answer 12.

Accumulator: 12 Program Counter: 13
MEM Address: 13 MEM Data: 0
In-Box: 4 Out-Box: 12

You can see that it worked. Just to be sure, | will test it with 5. | expect the answer 15.

Accumulator, 15 Program Counter; 13
MEM Address: 13 MEM Data: 0
In-Box:. 5 Out-Box. 15

That worked too.

12

iii. Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

This is quite easy to do. You take the five numbers, store them in separate locations, then output
them in whatever order you want. In this case it will be in reverse order.

Here is the LMC code.

INP

STA ONE
INP
STATWO
INP
STATHREE
INP
STAFOUR
INP
STAFIVE

LDA FIVE
ouT

LDA FOUR
ouT

LDA THREE
ouT
LDATWO
ouT

LDA ONE
ouT

ONE DAT
TWO DAT
THREE DAT
FOUR DAT
FIVE DAT

| tested this by inputting 10, 20, 30, 40, 50. | expected the output to be 50, 40, 30, 20, 10.
Here is the final output:

Accumulator; 10 Program Counter: 25
MEM Address: 25 MEM Data: 0
In-Box; 50 Qut-Box: 10

You can see that the in-box still has the 50 in it but the out-box has finished on 10, which is correct.

5. Produce an evaluation of your solutions.

| am pleased with what | did and most of the solutions work well. | didn’t manage to finish the
multiplication because | ran out of time.

6. Write a conclusion about the possibility of writing effective and complex programs with
only a limited instruction set.

It would be hard to write something big in LMC. Even comparing two numbers took ages to do. It
would be better if it had more instructions and a proper if.. then. So, | think that if you wanted to do
something complex like write a word processor, it would take too long.

13

- GCSE Computing Controlled Assessment
OCRY M L R R e S S

Unit A452 Practical Investigation
RECOGNISING ACHIEVEMENT Unit Recording Sheet

‘ Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate. ‘

Unit A452 Year
Centre Name sample Centre Number
Candidate Name sample A Candidate Number
Guidance Teacher Comment Mark
. . . Some good evidence of investigation beyond
There may be little or no There is evidence of a practical There is evidence of a well the initial starting point but, while gquite good, it
evidence of any practical investigation structured practical does lack Jome ‘.’tehpth of "ﬁatm?”t:Thle;?‘S"s
investigation. The evidence supplied is investigation evidence of flow charts and Some detailof the
The evidence supplied is documented clearly and is The evidence supplied is well approach taken. Not all the choices made are
minimal and poorly relevant to the set task organised and clearly relevant | ¢leany explained.
documented with little There is evidence of individual to the set task
c relevance to the set task. research beyond the group There is extensive evidence of
= The practical evidence may all | activity and any teacher led individual practical
2 be the result of group or activity. investigation beyond the group
@ | teacher led activity with little The practical investigations show | activity and any teacher led 12
g input from the student. signs of planning but there may activity
= be omissions made in assessing | The practical investigation
2 the consequences. shows clear signs of planning
§ and a structured approach to
o evidence gathering to provide
a complete investigation
of the set topic area and
beyond.
Practical investigation has
been carried out with skill and
due regard to safety issues. Max
[0 - 5] [6 - 10] [11 - 15] 15
URSG665 Devised September 2010 A452/URS

Oxford Cambridge and RSA Examinations 14

) Effective solutions and quite efficient but lacks
+ | The techniques used may not | The techniques will be used The techniques are used explanation in some places.
2 & be entirely appropriate to the appropriately giving working appropriately in all cases
é’ 3| problem and will only produce | solutions to most of the parts of giving an efficient, working
o "g| partially working solutions to the problem. solution for all parts of the 8
2 5| a small part of the problem. Some parts of the solution may problem.
- be executed in a partial or
O« P
2 0 inefficient manner.
R
23
w Max
[0 - 3] [4-7] [8 -10] 10
. . The candidate demonstrates a There is evidence of good understanding of the
The candidate demonstrates a | The candidate demonstrates thorough and secure technical aspects and basic features are used
limited understanding of a reasonable understanding of understanding of the technical | effectively to demonstrate a good .
o : - understanding, but explanations lack the deatil
£ | the technical issues related to | the technical issues related to the | issues related to the scenario. | hat would demonstrate a full understanding.
T | the scenario. scenario. A wide range of relevant and
& | Little detail is presented. The amount of detail presented is | detailed information is
® | There will be limited indication | adequate to support the presented.
o ;) . : 9
© | of any evidence provided arguments. The evidence which has been
S being analysed. There is some analysis carried collected is fully analysed.
® | There is little correct use of out on the evidence collected. Technical terminology is used
g technical terminology. The use of technical terminology | correctly.
S is largely correct but it may be At the top end of the band, this
2 limited. will be extensive and
confidently used.
y Max
[0-3] [4-7] [8 - 10] 10
URS665 Devised September 2010 A452/URS

Oxford Cambridge and RSA Examinations 15

A decent attempt to provide evidence but the
Conclusions are weak or The material has structure and Thorough and convincing testing is limited in some cases, otherwise well
missing with little or no coherence with justifiable conclusions have been organised with a good evaluation of the topic.
justification. conclusions being reached reached, which are borne out
The solution is presented with | although there may be some by the research carried out by
little if any evidence of testing. | omissions. the candidate.
The evidence of written There is evidence that the The solutions are fully tested
communication is limited with solutions have been tested for and there is little doubt that the
little or no use of specialist basic functionality. solutions presented are fully
- terms. Candidates will have produced a | functional.
o There are many errors in sound evaluation which This material has been
'§ spelling, punctuation and reviews some aspects of the task. | presented in a clear and
© grammar. Evidence of good written relevant way which is simple to
2 Information may be ambiguous | communication using some navigate.
° or disorganised. specialist terms. A high level of written 8
© There is limited if any There are few errors in spelling, communication is obvious
4 reference to evidence. grammar and punctuation. throughout the task and
9 The evaluation may be Information for the most part will specialist terms/technology
3 simplistic with little or no be presented in a structured with accurate use of spelling is
2 | relevance. format. used.
8 Specialist terms will be used Grammar and punctuation is
appropriately and for the most consistently correct.
part correctly. Information is presented in a
coherent and structured
format.
The evaluation will be relevant,
clear, organised and presented
in a structured and coherent
format. Max
[0 - 3] [4-7] [8-10] 10
Total/45 37
URS665 Devised September 2010 A452/URS

Oxford Cambridge and RSA Examinations 16

GCSE Computing
Unit A452: Practical investigation
Exemplar Material for A452 SAM

INSIDE THE MACHINE

Most computers are built to the same basic architecture — the Von Neumann
architecture. They have memory where program instructions and other data are
stored and they have a processor that decodes and carries out the program
instructions.

The processor has special memory locations called registers. This is where the
program instructions are acted on. There is a working demonstration of how the
processor and memory interact called the Little Man Computer (LMC). Some
versions run as an embedded applet in a browser. The details are
here:http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html

The applet itself is here:
http://www.atkinson.yorku.ca/~sychen/research/LMC/LittleMan.html

Alternatively you can access another version from:
http://www.cs.ru.nl/~erikpoll/Teaching/Ill/Imc/

1 Investigate the instruction set provided with one implementation of the LMC.

2 Load and run at least two of the demonstration programs supplied with the
implementation.

3 Explain in your own words what happens as each of the instructions is executed.
4 Write programs to run in LMC:
(i) Take in two numbers and output the smaller first, then the larger
(i) Produce a multiplication table from 1 to 10 for any number input by the user
(ii) Input five numbers and output them in reverse order.
Produce evidence to show that you have planned, written and tested your code.
5 Produce an evaluation of your solutions.

6 Write a conclusion about the possibility of writing effective and complex programs
with only a limited instruction set.

17

http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LMCHome.html
http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LittleMan.html
http://www.cs.ru.nl/%7Eerikpoll/Teaching/III/lmc/

The Little Man Computer

Task 1. Investigate the instruction set provided with one implementation of the LMC.

The Little Man Computer is a simulation of what happens in a real computer. It is a much reduced
version because it only has ten instructions in its instruction set instead of over a hundred in a
typical PC. Also, it only has four registers against over twenty in modern PCs. The registers are the
accumulator, the program counter, the memory address register and the memory data register.

Little Man Computer Memory:

0
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90

1
]

1
0

21
]

31
]

41
0

51
]

61
]

71
0

81
]

91

2
0

12
0

22
0

32
0

42
0

52
0

62
0

72
0

82
0

92

3
0

13
0

23
0

33
0

43
0

53
0

4

14

24

34

44

54

64

74

84

94

15

25

35

45

55

65

75

85

95

16

26

36

46

56

66

76

86

96

17

27

37

47

57

67

77

87

a7

18

28

38

48

58

68

78

88

98

19
0

29
0

39
0

49
0

59
0

69
0

79
0

89
0

99
0

Message Box

Accumpufator:

MEM Addre

In-Bioac

the registers

ompile Frogram]I

Enter

Clear| Reset| Run | Slow| Step | Halt|

Program Counter. 0

MEM Data:

Out-Box:

This shot shows the start up screen before a program has been entered. A program can be typed
or pasted into the message box in assembly language mnemonics and then compiled to produce

the machine code by clicking the button.

18

The instruction set

Here are the ten instructions together with their assembly language and machine code equivalents.
Although there are only ten, they can be combined in a program to do many useful tasks.

Instruction Mnemonic Code What it means

LOAD LDA 5 Copy a humber into the accumulator.
STORE STA 3 Store a number at a stated address
ADD ADD 1 Add a number from a stated address to

whatever is in the accumulator.

SUBTRACT SuUB 2 Subtract the number at a stated address
from the accumulator.

INPUT INP 901 Take an input from the in-box and put
it in the accumulator.

OUTPUT ouT 902 Output what is in the accumulator to
the out-box.

BRANCH IF BRZ 7 Branch to the stated address if zero is

ZERO in the accumulator.

BRANCH IF BRP 8 Branch to the stated address if zero or

ZERO OR a positive number is in the

POSITIVE accumulator.

BRANCH BRA 6 Branch to the stated address without

ALWAYS checking the accumulator.

END HLT 000 End the program.

DATA DAT (the data) | This marks where a particular item of

LOCATION data is to be found. It allows you to

label it.

These instructions can be given either as machine code numbers or as assembly language
mnemonics.

Example instructions in use
Here are some examples of how the instruction mnemonics can be used.

LDA 12: load the accumulator with whatever is in location 12.

STA 20: store whatever is in the accumulator in location 20.

ADD 20: add whatever is in location 20 to whatever is in the accumulator.

SUB 20: subtract whatever is in location 20 from the accumulator.

INP: this just waits for an input then copies it into the accumulator, replacing whatever is already in
there.

OUT: this copies whatever is in the accumulator to the out-box.

BRZ 20: branch to the instruction in location 20 if the accumulator contains zero.

BRP 20: branch to the instruction in location 20 if the accumulator contains zero or any positive
number.

BRA 20: unconditionally branch to the instruction in location 20.

HLT: stop the program.

19

Task 2. Load and run at least two of the demonstration programs supplied with the
implementation.

AND
Task 3. Explain in your own words what happens as each of the instructions is executed.

Here is the simplest one that is on the website.
INP

ouT

HLT

Here it is in the message box.

Little Man Computer Memory: Message Box
o 1 2 3 4 5 & 7 & 19 [N
ouT

0 0 0 0 0 0 0 0 0 0 |HT

0 11 12 13 14 15 16 17 18 19
0 0 0 0 0 0 0 0 0 0

20 21 22 23 24 25 26 27y 28 29
0] 0 0 0 0 0 0 0 0

a0 31 32 33 34 35 3/ 3I¥ 38 39
0 0 0 0 0 0 0 0 0 0

40 41 42 43 44 45 46 47 48 49
0 0 0 0 0 0 0 0 0 0

50 51 52 53 54 55 56 57 58 59
0] 0 0 0 0 0 0 0 0

60 61 62 63 64 65 66 67 68 69
0 0 0 0 0 0 0 0 0 0

Mm 71 F2 73 T4 75 76 Y7 78 79

0 0 0 0 0 0 0 0 0 0 Clear Messages | Compile Program

B0 81 82 B3 84 85 B6 87 88 &0 Accumulator: 0 Program Counter: 0
¢ o 0 0 0 0 0 0 0 0 MEM Address: 0 MEM Data: 0
90 91 92 93 94 95 96 97 98 99 - .

0 0 0 0 0 0 0 0 0 0
Enter

Clear| Reset| Run | Slow| Step | Halt|

When the compile button is clicked, the program is converted into machine code and placed in
memory.

20

Little Man Computer Memory: Message Box

0 1 2 3 4 5 6 7 8 g9

0:IMP
0 11 12 13 14 15 16 17 18 19 |4-ouT

o o 0 ©0 ©0 ©0 ©0 0 0 o AT

20 21 22 23 24 25 25 27 28 29 [Resohinglabels—

] 0 0 0 0 0]]] 0 —— Translating Mnemonics —
Line 0:IMP
an 31 32 33 34 35 36 3F 38 38 Opcode =801
Line 1:0UT
] 0 0 0] 0]]] 0 Opcode = 902
Line 2 :HLT
40 41 42 43 44 45 46 47 48 48 Opcode = 0
0 0 Q0 Q0 Q0 Q 0 0 0 0 —— Program Successfully Compiled —

You can see that memory location 0 now contains 901 which is the instruction (opcode) for INP.
Location 1 contains 902 which is OUT. Location 2 contains 0 which is HLT.

Running the program
When the run button is clicked, the program counter is set to 1 and you can see that input is
required.

Inputis required by instruction 1

Clear Messages | Compile Program

Accumulator: 0 Program Counter: 1
MEM Address: 1 MEM Data: 901
In-Box: Out-Box:

Enter

We shall enter the number 4.

Accumulator; O
MEM Address: 1
In-Box: 4

Enter

The number 4 is copied into the accumulator and instruction 2 copies it into the out-box.

Accumulator: 4 Program Counter: 2
MEM Address: 2 MEM Data: 0
In-Box. 4 Out-Box: 4

Enter

The third instruction is HLT so the program ends.

21

PC =2 Instructionin Memory 2 is 0
—= [represents: HALT

—= Execution Stopped

Processor Stopped

Program 2

INP
STAFIRST
INP

ADD FIRST
ouT

INP

SUB FIRST
ouT

HLT

FIRST DAT

This program adds and subtracts numbers. Here it is in the message box.

Little Man Computer Memary:
0 1 2 3 4 5 B [
] 0]]] 0 0 0

0 11 12 13 14 15 16 17
]] 0 0 0 0 0 0

20 29 22 23 24 25 26 2V
0] 0 0 0 0 0 0

18

28

19

29

Message Box:

IMP
STAFIRST
IMP
ADD FIRST
ouT
NP
SUB FIRST
ouT
HLT

FIRST DAT

When it is compiled, you can see the machine code in the memory locations.

Little Man Computer Memary:
0 1 2 3 4 5 G ¥
901 309 8901 109 902 901 209 402

M0 11 12 13 14 15 16 17
] 0 0 0 0 0 0 0

20 21 22 23 24 25 26 2V
0 0 0 0 0 o o o

0 31 32 33 3 35 36 37
] 0 0 0 0 0 0 0

40 41 42 43 44 45 46 47
] 0 0 0 0 0 0]

5 51 52 53 5H4 55 HE 5F
] 0 0 0 0 0 0 0

60 61 62 63 64 65 66 67
0 0 0 0 0 o o o

0 71 V2 73 V4 75 76 77

a
]

18
]

28
0

38
]

48
]

58
]

68
0

FL:

19

29

39

49

59

69

79

Message Box

9 FIRST DAT

— Resolving Labels —
FIRST is a label for Address - 9

——- Translating Mnemanics —
Line 0:IMP

Cpcode =901
Line 1:5TA

Opcode =3 Address =08
Line 2 : IMP

Opcode =901
Line 3: ADD

Cpcode =1 Address =09
Line 4 QUT

Cpcode =902
Line 5 IMP

Opcode =901
Line 6:35UB

Opcode =2 Address =08
Line 7. OUT

Cpcode =902
Line 8 . HLT

Cpcode =0
Line 9: DAT
— Program Successfully Compiled —

22

Address 0 contains 901 which means INP. It is asking for a number to be input, which is then
stored in the accumulator.

Address 1 contains 309. This means store what is in the accumulator in address labelled FIRST,
which is in fact address 9. Memory address 9 has been chosen by the assembler as being where
the data labelled FIRST is to be stored.

Address 2 contains 901, asking for another input. This will go into the accumulator.

Address 3 contains 109. 1 is for ADD and 09 is address 9, so it means add to the accumulator
whatever is in address 9, which is of course where the data labelled FIRST is found.

Address 4 contains 902 which is OUT. So the result of the addition, the number now in the
accumulator is output.

Address 5 contains 901, asking for another input.

Address 6 contains 209 which means 2 for SUB and 09 means subtract from the accumulator
whatever is in FIRST, i.e. address 9.

Address 7 contains another 902 which means output the contents of the accumulator.

Address 8 contains 0 which is HLT or halt the program.

We will now run the program with the values 5, 10 and 12. We expect the first output to be 15
because of the addition of 5 and 10. The second output will be 7 because 5 will be subtracted from
the number 12 that we input.

Here is 5 as the first input.

Input is required by instruction 1

Clear Messages

Accumulator; O
MEM Address: 1
In-Box: 5

Enter |

We can see that it has been stored in location 9 which is labelled FIRST.

We enter 10.

Accumulator; B
MEM Address: 1
In-Box; 10

Enter

We can see that the accumulator has taken the value 15 and also it has been output. You can see
in the MEM data register that the computer is currently holding the OUT instruction, 901. The next
instruction will be 6, which is in the program counter.

Accumulator: 15 Program Counter: 6
MEM Address: 1 MEM Data: 901
In-Box: Out-Box: 15

23

The instruction in 6 is again INP. We now enter 12 and click Enter. This puts 12 into the
accumulator. Instruction 7 is immediately followed which is SUB FIRST. This subtracts 5, which is
stored in the location labelled FIRST from the accumulator. We now have 7 in the accumulator.
Instruction 7 is OUT, so the 7 is copied into the outbox. The next and final instruction in the
program counter is 8, which halts the program.

Accumulator: 7 Program Counter: 8
MEM Address: 8 MEM Data: 0
In-Box: 12 Out-Box: ¥

Task 4. Write programs to run in LMC:
i. Take in two numbers and output the smaller first, then the larger.

Produce evidence to show that you have planned, written and tested your code.

/inputﬁrst number/

/input second number/

subtract first number

result positive? output second then first /

/Outputﬁrst. then SEcmnd/

Here is the LMC code that achieves this.

INP
STAFIRST
INP

STA SECOND

24

SUB FIRST

BRP SECONDBIG
LDA SECOND
ouT

LDA FIRST

ouT

BRA PROGEND
SECONDBIG LDA FIRST
ouT

LDA SECOND
ouT

PROGEND HLT
FIRST DAT
SECOND DAT

The output happens quickly so it is best to run it using the slow button.
Here is the output when tested with 3 then 4. The number 4 is the last output.

Clear Messages | Compile Program

Accumulator; 4 Program Counter; 15
MEM Address: 15 MEW Data: 0
In-Box: 4 Out-Box: 4

Here we test it with 4 then 3. Again 4 is the last output with 3 being visible as the last input into the
in-box.

Accumulator; 4 Program Counter: 15
MEM Address: 15 MEM Data: 0
In-Box:. 3 Out-Box: 4

ii. Produce a multiplication table from 1 to 10 for any number input by the user.

Produce evidence to show that you have planned, written and tested your code.

This requires multiplication to be done using multiple addition. The program asks for a number and
then adds it to itself, the it adds it to itself again, outputting each result as it goes and so on until it
has done this for each number up to ten. This is controlled by a loop, which terminates when the
result of the countdown is negative. To make this happen ten times, the initial number is first output
and then the addition process is made to happen ten times by having an outer loop controlled by
another counter which increments each time a number has been output. When the counter
produces a negative number when subtracted from 9, the loop terminates because all ten products
have been output.

25

/ output immediately /

A
———p| set outer counter

|

set inner counter to start

v

Ioad result |

v

add number

v

store result

v

decrement counter

is inner counter negative?

output result

v

clear result

v

restart inner counter

v

increment outer counter

is outer counter = 107

26

Here is the LMC code that makes this work.

INP
STANUMBER1
ouT

OUTERLOOP LDA COUNTER
STA NUMBER2

INNERLOOP LDA RESULT
ADD NUMBER1

STA RESULT

LDA NUMBER2

SUB ONE

STA NUMBER2

BRP INNERLOOP

LDA RESULT
ouT

LDA ZERO

STA RESULT

LDA ONE
STANUMBER2
LDA COUNTER
ADD ONE

STA COUNTER
LDA NINE

SUB COUNTER
BRP OUTERLOOP

HLT

ONE DAT 001
NUMBER1 DAT 000
NUMBER?2 DAT 001
COUNTER DAT 001
RESULT DAT 000
NINE DAT 009
ZERO DAT 000

Here is the LMC with this code successfully compiled.

27

Little Man Computer Memary: Message Box

0 1 2 3 4 5 6 7 g g |Line 16:LDA
Cpcode =5 Address =25
a01 326 902 528 327 529 126 329 527 225 |Line 17 STA

Cpcode =3 Address =27
M0 11 12 13 14 15 16 17 18 19 |Line 18 : LDA

Opcode =5 Address =28
327 805 529 902 531 329 K25 327 B23 125
Line 19 : ADD
Cpcode =1 Address =25
20 219 22 23 24 25 26 27 28 28
Line 20 : STA
328 530 228 803 0 1 0 1 1] Opcode =3 Address = 28
Line 21 LDA&
. 31 32 33 34 35 36 37T 38 39 Opcode =5 Address = 30
Line 22 . 2B
g 0 0 0 0 0 0 0 0 0 Opcode =2 Address =28

Line 23: BRP
40 41 42 43 44 45 46 47 48 489 Opcode = 8 Address = 03

oo 0 0 O 0 0 0 0 o0 |Line2dHLT

Cpcode=10

50 51 52 53 54 55 58 57 58 59 |Line23:DAT

Line 26 : DAT

6o 0 0 0 0 0 0 0 0 0 |Lne27:DAT

Line 28 : DAT

60 61 62 63 64 65 66 67 B8 69 |Line20-DAT

Line 30 : DAT

0 0 0 0 0 0 0 0 0 0 Line 31: DAT
“n T4 79 TFa T4 TE TR 77 Ta 7o |[— FProgram Successfully Compiled —

We shall test this with 4 as an input. We expect to get the 4 times table, 4,8,12,16 etc up to 40.
The correct values appeared one after the other in the out-box. Here is the end condition showing
the 4 we originally input and the 40 as the final product. You can see that the accumulator is set to

-1. This is the control that was used to terminate the outer loop.
Little Man Computer Memory: Message Box

0 1 2 3 4 5 B 7 8] -
PC =20 Instruction in Memaory 20 is 328

901 326 902 523 327 529 126 329 527 225 | - 3represents: STORE

—= 28 represents: target memory location

0 11 12 13 14 15 16 17 18 19 |- yajue - 10 from the Accumulator storedto memory location 28

327 805 529 902 531 329 H25 327 H28 125
PC =21 Instruction in Memaory 21 is 530

20 21 22 23 24 25 26 27 28 29 [~ Orepresents:LOAD _
—= 30 represents: source memaory location
328 530 228 803 0 1 4 1 10 0 —=Value : 9 from memory location 30 transfered to the Accumulator

30 31 32 33 34 35 36 37 38 39 |PC=22:Instructionin Memory 22 is 228
—= 2 represents: SUBTRACT
9 0 0 o o 0 o o 0 0 —= 28 represents: source memaory location
40 41 49 43 44 45 45 47 43 49 —=Value : 10 from memory location 28 subtracted from the Accumulator
0 0 0 0 0 0 0 0 0 0 PC =23 Instruction in Memory 23 is 803
—= 8 represents: BRANCH ON POSITIVE
50 51 52 53 54 55 &§F &7 58 &g |—=03represents: target memory location
—= BRANCH on POSITIVE to 03 Testing Accumulatar...
00 0 0 0 0 0 0 0 0 |- Accumulator-1 <0, BRANCH not performed.

60 61 62 63 64 65 66 67 B8 B3 |pC=24:Instructionin Memory 24is 0
—= (0 represents: HALT
0 0 0 0 0 0 0 0 0 0 —= Execution Stopped

70 71 72 73 74 75 76 77 78 7o |FrocessorsStopped -
o0 0 0 0o 0 0 0O 0 0 Clear Messages | Compile Program

80 81 82 83 84 85 86 87 83 89 Accumulator: -1 Program Counter: 24

o 0o 0o 0 0 0 0 0 0 0 MEM Address: 24 MEM Data: 0

90 91 92 93 94 95 95 97 93 99 n B [B OutBox |40

28

iii. Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

This can be done quite simply, by setting up five storage locations to accept the five numbers. The
numbers can then be called back in any order the programmer wants. The use of labels makes this
easy.

This is straightforward so it does not need a flow chart to illustrate it.
Here is the LMC code.

INP

STA ONE
INP
STATWO
INP
STATHREE
INP
STAFOUR
INP
STAFIVE

LDA FIVE
ouT

LDA FOUR
ouT

LDA THREE
ouT
LDATWO
ouT

LDA ONE
ouT

ONE DAT
TWO DAT
THREE DAT
FOUR DAT
FIVE DAT

Here is the final output from running this code. The inputs were 1,2,3,4,5. The LMC shows, at the
end, the final output of 1 and the final input of 5. The outputs were 5,4,3,2,1 as expected.

29

Little Man Computer Memaory: Message Box

0 1 2 3 4 5 [7 a g |—=Value: 1from memary location 20 fransfered to the Accumulator -

901 320 901 321 901 322 8071 323 901 324 |pc =19:Instruction in Memory 19 is 902

—= 8 represents: INPUT or QUTPUT
0 11 12 13 14 15 18 17 18 19 |- 02 represents: 110 channel (04 = input, 02 = output)

574 902 523 002 522 902 531 902 520 002 —=Value 1 copied from Accumulator to outbox

30 21 22 93 924 95 2§ 27 28 29 PC = 20: Instrpc’[ion in Memory 2015 1
Invalid Instruction
1 2 3 4 5 0 0 0 0 0
PC =21 Instruction in Memory 21is 2
30 31 32 33 34 35 36 37 38 39 |Invalid Instruction
0 0 0o 0 0 0 0 0 0 0 lpc=52:nstuctionin Memory 22 is 3
40 41 42 43 44 45 46 47 48 49 Invalid Instruction
0 0 0 0 0 0 0 0 0 0 PC =23 Instruction in Memary 23 is 4
Invalid Instruction
50 51 52 53 B4 55 56 57 H8 5HY
PC =24 : Instruction in Memory 24 is 5
o0 0 0 0 0 0 0 0 0 |invalidinstruction

60 61 62 63 64 65 B8 67 68 69 |pC=25:Instructionin Memory25is 0
—= 0 represents: HALT

o 0 0O 0 0 0 O 0O 0 0 =

—= Execution Stopped

79 Processor Stopped

m

0 71 ¥2 73 T4 75 76 77 78

0 0 0 0 0 0 0 0 0 0 Clear Messages | Compile Program

80 81 82 83 84 B85 BE 87 88 B89 Accumulator: 1 Program Counter; 25
0 (0o [0 fo [0 fo [0 jO O O MEM Address: 25 MEM Data: 0
90 91 92 93 94 085 86 97 98 99 In-Box:. 5 Out-Box 1

~ - ~ - ~ - ~ - ~ -

Task 5. Produce an evaluation of your solutions.

The solutions all work perfectly and the code is mostly efficient. The multiplication uses a nested
loop to produce the output with minimal code. The reversing of the numbers could have been
made more elegant with loops, but with so few operations, the savings would have been minimal if
at all.

30

Task 6. Write a conclusion about the possibility of writing effective and complex programs
with only a limited instruction set.

This depends on how limited the set is. A rich instruction set makes programming easier because
there is an instruction to do most of the things that you require. With a smaller set, you have to
group instructions together in order to carry out the most simple task. In the case of the LMC, it is
not possible to multiply or divide using a direct instruction, so multiplication has to be achieved by
adding numbers together multiple times and division by multiple subtractions. So, a lot is possible
with a small instruction set, but it leads to much harder work and the likelihood of errors. Also,
solutions that are produced by long sections of code are likely to be slower when executed than
solutions implemented in hardware.

The hard work involved in writing a program in LMC can be shown by looking at a simple program
written in VB. This one

Sub Main(Q

Dim totalnum As Integer
Dim multiplier As Integer

multiplier = 3
For num = 1 To 10
Console _WriteLine(multiplier * num)
Next num
Console.ReadKey()

End Sub

In just a few lines, we have something that would take many lines in LMC.

The LMC has further big limitations in that it cannot handle characters. So it can do a lot of quite
sophisticated mathematical operations but it cannot do anything with text, which makes it useless
for many important computing applications.

The LMC has no features for acting directly on the hardware like most larger instruction sets. It

also doesn’t have bitwise operations which reduces the variety of processes that can be carried out
on data.

31

A453 Tasks

32

Candidates should complete all tasks.

The tasks are set so as to enable all the techniques identified in the specification to
be demonstrated in their solution. The tasks provide opportunities to demonstrate a
range of skills and all three tasks contribute to the overall mark awarded for this
assessment. Marks are awarded for using the appropriate skills and techniques
effectively and efficiently to produce a solution to these three tasks. Not all techniques
will be required for each of the subtasks. You are required to identify the
requirements for each task, design a solution using appropriate techniques, code the
solution and test/evaluate this solution against the identified design criteria.

Task 1 Animal ages.

Design code and test a program to convert dog or cat years into their human equivalents. The
program needs to ask the user for their choice of animal and should allow them to enter the age.
The output should be the equivalent human age for the animal.

The formulae for converting these animal ages to human equivalents are:
DOG:

11 dog years per human year for the first 2 years, then 4 dog years per human year for each
year after.

CAT:

15 years for the first year of life, 10 for the second year and 4 for each year after.

33

Task 2 System password.

Design, code test and evaluate a system to accept and test a password for certain
characteristics.

It should be at least 6, and no more than 12 characters long

The system must indicate that the password has failed and why, asking the user to re-enter
their choice until a successful password is entered.

A message to indicate that the password is acceptable must be displayed.

Password strength can be assessed against simple criteria to assess its suitability; for
example a password system using only upper and lower case alphabetical characters and
numeric characters could assess the password strength as:

WEAK if only one type used, e.g. all lower case or all numeric
MEDIUM if two types are used

STRONG if all three types are used.

For example

hilltop, 123471324, HAHGFD are all WEAK,
catman3 and 123456t are MEDIUM and
RTH34gd is STRONG

A message to indicate the password strength should be displayed after an acceptable
password is chosen.

Task 3 High scores database. 15 marks
Design, code and test a system to store and manage user names and their highest score.

The system must be able to

create a file

add data to a file

locate data in the file by name and their highest score
delete an item and its associated data from the file

locate and update a high score for a user

34

GCSE Computing Controlled Assessment

Unit A453 Coding a solution
Unit Recording Sheet

Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate. ‘

Unit A453 Year S
Centre Name Centre Number
Candidate Name Candidate Number
Guidance Teacher Comment Mark
] There | " ¢ at t part . All three tasks have been attempted
> There is an attempt ’Fo solve ere is an attempt at most parts | There is an att_empt to solve all though not all of task 3 was
£ parts of the tasks using few of | of the tasks using several of the tasks using most of the
£ .) o techniques. . . completed.
» | the techniques identified. echniq techniques listed. . .
g e Whilst not all techniques have been 5
§:.g used a good number have.
5
8
[}
(2]
> Max
[0-2] [3-4] [5 - 6] 6
2 | The techniques used may not | The techniques will be used The techniques are used The techniques are g_enerally used
E be entirely appropriate to the | appropriately giving working appropriately in all cases appropriately but coding does often
& | problem and will only produce | solutions to most of the parts of giving an efficient, working lack efficiency.
D 4| partially working solutions to the problem. Some sections of solution for all parts of the Most parts of the problems have
& 3| a small part of the problem. the solution will be inefficiently problem. been completed but not all (e.g. .
o £ coded. task 3 delete).
29
=
t
2
§ Max
w
[0-4] [5 - 8] [9-12] 12
URSG666 Revised November 2010 A453/URS

Oxford Cambridge and RSA Examinations

38

_ _ _ _ There will be a detailed Brief outline of what task involves.
There will be vague comments | There will be a brief analysis of analysis of what is required for | The aigorithms vary in terms of
on what the task involves the tasks indicating what is these tasks justifying their detail
and a vague outline describing | required for each of the tasks. approach to the solution. . . :
the intended approach to some | There will be a set of basic There will be a full set of The're S vgry lttle ewdenpe of
parts of the problem. algorithms outlining a solution to | detailed algorithms testing being planned aside from a 4
< | There will be brief comments | most parts of the problem. representing a solution to each [Cursory attempt in Ex1.
2 | on how this might be tested There will be some discussion of | part of the problem.
@ | but with no mention of success | how this will be tested and how There will be detailed
Q | criteria. this compares to the identified discussion of testing and
outcomes in the tasks. success criteria.
There will be discussion of the The variables and structures
variables to be used and some will be identified together with
general discussion of validation any validation required. Max
[0-3] [4 - 6] [7-9] 9
There will be some evidence to | There will be evidence to show There will be detailed evidence Coqle Is lacking comments'.
show a solution to part of the | how the solutions were showing development of the Variable names are sometimes
problem with some evidence to | developed. solution with evidence of cryptic or ambiguous (e.g. the
show that it works. There will be some evidence systematic testing during use of both pwd$ and pass$ in
- Code will be presented with of testing during development development to show that all Exercise 2) 4
S little or no annotation, the showing that many parts of the parts work as required.
g_ variable names not reflecting solution work. The code will be well
o their purpose and with little The code will be organised with organised with meaningful
4 organisation or structure. sensible variable names and with | variable names and detailed
8 some annotation indicating what annotation indicating the
sections of the code does. function of each section.
Max
[0-3] [4 - 6] [7-9] 9
URSG666 Revised November 2010 A453/URS

Oxford Cambridge and RSA Examinations
36

There will be evidence to show | There will be a test plan covering | The test plan will cover all
that the system has been many parts of the problem with major success criteria for the))
tested for function but the test | some suggested test data. original problem with evidence | 1€Sting has taken place but is far
plan will be limited in scope There will be evidence that the to show how each of these from exhaustive.
with little structure. system has been tested using this | criteria have been met, or if There is some evidence of
There will be little or no data. they have not been met, how testing and programs working.
evidence to show how the There will be some evidence to the issue might be resolved. There are a few SPaG errors and
result matches the original show how the results of testing There will be a full evaluation these are not intrusive
_cI:_rri]teria:d it ha!vg bleer_wthmpared to the of the final _f.ollution againstthe | gyajuation states whether tasks
e evidence of written original criteria. success criteria.
communication is limited with There will be a brief discussion of | A high level of written Wer? s.uccessful but lacks any 4
2 | little or no use of specialist how successful or otherwise the communication will be obvious | 2"2Ys!S:
v | terms. solutions are. throughout the task and
2 Errors in spelling, punctuation | Produces evidence of good specialist terms/technology
and grammar may be intrusive. | written communication using with accurate use of spelling
Information may be ambiguous | some specialist terms. will have been used.
or disorganised. There will be few errors in Grammar and punctuation will
There will be some comments | spelling, grammar and be used correctly and
on others’ and their own input | punctuation. information will be presented
into group work. Information for the most part will in a coherent and structured
be presented in a structured format.
format. They will provide an evaluation
They will have commented on on theirs and others’
their own and others’ contribution | contribution to any group
to any group work and activities. Max
[0-3] [4 - 6] [7-9] 9
Total/45 94
Guidance on Completion of this Form
1 One sheet should be used for each candidate.
2 Please ensure that the appropriate boxes at the top of the form are completed.
3 Using the guidance identify the most appropriate mark range for the work and enter the mark awarded for each element in the mark column.
4 Add appropriate comments to assist the moderator in the ‘Teacher Comment’ column.
5 Add the marks for the strands together to give a total out of 45. Enter this total in the relevant box.
URSG666 Revised November 2010 A453/URS

Oxford Cambridge and RSA Examinations
38

A453

Task 1: Animal Age

38

Analysis

A system to convert cat or dog ages into
human equivalents

Rules

DOG:

11 years per year for 2 years then 4 per extra year
CAT

15 years for first year, 10 for second then 4 per year

39

Analysis

* Need to get choice of cat or dog
* Need to get animal age in whole years

* Need to convert animal age to human
equivalent using rules and print result.

40

Design

Ca

Get age

DOG Get age

YES

Animal age = age * 11 e

Animal age = 15

NO

Animal age = 22 + (age-2)*4

Animal age = 25 +(age-2)*4

Animal age = 25

41

DEVEIOpment and teStIng PRINT "Cat and Dog age to human equivalent”

REPEAT
The code ask the user to input either INPUT "Choose Cat or Dog, type cat or dog", a$
dog or cat INPUT "enter the age in years"; a
IF aS="dog" THEN
If dog checks for age <=2 IF 2<=2 THEN
If <=2 then age*2 animalage = e*11
If not then 22+ (age-2)*4 ELSE
animalage = 22+(a-2)*4
ENDIF
If cat checks ENDIE
if 1 year then age 15 .
If 2 years the age 25 'FlFazi_caltTJ'E"NEN
If not then 25+(age-2)*4 animalage =a* 15
ELSE
IF a <= 2 THEN
animalage =15 +(a-1)*10
ELSE
animalage= 25+(a-2)*4
ENDIF
ENDIF
ENDIF

PRINT "Your animal's age in human years is", animalage

42

Development and testing

2 dog ages 1

3 2 22
5 Cat ages 1 15
6 2 25
7 3 29

43

. =l dogD b B
Evidence —
Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? dog
enter the age in years? 1

Your animal's age in human years is 11
>RUN

Cat and Dog age to human equivalent

Choose Cat or Dog, type cat or dog? dog

enter the age in years? 2

Your animal‘'s age in human years is 22
>RUH

Cat and Dog age to human equivalent

Choose Cat or Dog, type cat or dog? cat

enter the age in years? 1

Your animal's age in human years is 15
>RUN

Cat and Dog age to human equivalent

Choose Cat or Dog, type cat or dog? cat

enter the age in years? 2

Your animal's age in human years is 25
>RUN

Cat and Dog age to human equivalent

Choose Cat or Dog, type cat or dog? cat

enter the age in years? 3

Your animal's age in human years is 29
>

Evaluation:

| enjoyed doing this task. It was quite easy and it works as | expected.

44

A453

Task 2: Password strength sample task

45

[l

Lh

Analysis

Input a password
Is the password between 6 and 12 characters long?
No:reject and retum to stage 1
YES; output message and carrv on
Check each character of the password in turn
Is this character upper case? If ves flag that upper case is included
Isthis character lower case? If ves flag that lower case is includedl
Is this character a number? If ves flag that number is included
[fthree flags set then the password is STRONG
Iftwo flags set then the passwordsis MEDIUM
If one flag set then the password is WEAK

46

Design

Check password length less than 6 error go back
Check password length greater than 12 error go back
Password OK
Check each character
between a and z, set low to 1
between A and Zset uppto 1
between 0 and 9 set numto 1
Add upp, low and num to get password strength
1 weak
2 medium
3 strong

a7

Development & Testing

=} Dpassword

| B S |

Password12345
too short

too long
Password123456
0K

Weak

>RUH
Passwordi123abc
0K

medium

>*RUN
"lPassword12ABcd
0K

strong

>

Password12345678012345

pwdS="NOTOK"
REPEAT
INPUT "Password" passS
IF LEN(passS)< 6 THEN
PRINT "too short"
ELSE
IF LEN(pass$)>12 THEN
PRINT"too long"
ELSE
PRINT"OK"
pwd$="0K"
ENDIF
ENDIF
UNTIL pwd$="0OK"

Check 6 to 12 characters in password. It works.

48

Development upp=0

low=0

& TeSting num=0

FOR x=1 TO LEN(passS)

'5 e P IFIOI\CVHEf(paSSS,x,l) >="a3" AND MID$(pass$,x,1)<="z" THEN
Password123456 ENDIF
E.'Eak IF MIDS(passS,x,1) >="A" AND MIDS$(pass$,x,1)<="Z" THEN
*RUN upp=1
Passwordabcdefgh ENDIF
Elgak IF MIDS(passS,x,1) >="0" AND MIDS(passS,x,1)<="9" THEN
“RUH num=1
PasswordABCDEFG ENDIF
OK NEXT
;’Eﬂ:{l str=upp+low+num
PasswordABC123 IF str=1 THEN
DK PRINT "Weak"
medium ELSE
AR IR IF str=2 THEN
[Mistake PRINT "medium"
*RUH ELSE
E:SSWDI"dahEHBE | IF str=3 THEN
medium PRINT "strong"
>RUN ENDIF
E:SSWDI"U12FIBE[| ENDIF
strong ENDIF
>
Checking mix of upper, lower and number gives right

result. It works

49

Development
& Testing

Completed code

Checks each character in the
password in turn to see if it
is between a and z then A
and Z then 0 and 9. It sets
low, upp and num to one if
it finds one of them and
adds them up to get the
overall strength.

pud$=""HOTOK"

"Password" pass$
{pass$)< 6
"too short™

{pass$)>12
“too long*

p—
pud$="0K"

pud$="0K"

upp=8
low=8
num=8a
®=1 {pass$)
{pass$,x,1) >="a"
low=1

(pass$,x,1) >="A"
upp=1

{pass$,x,1) »>="@"
num="1

str=upp+low+num
str=1
“Weak™

str=2
"medium'

str=3
“strong*

Checking
length OK

(pass$,x,1)<=""2"
{pass$,x,1)<="2"

(pass$,x,1)¢="9"

m

: F1 for Help

50

550 3143

MNUM '

Evaluation of the solution

The program was tested with passwords with less than 6, more
than 12 and it asked for the password again

The program was tested with mixed passwords using numbers.
Upper case and lower case, it correctly got the right strength
each time.

51

A453

Task 3: High scores table sample task

52

Analysis

* A system to manage high scores
— Create a file and be able to
— Find a score for a user
— Update a score for a user
— Add a new user and score
— Delete a user and score

53

Analysis

Need to check if the file exists, if not create
one

Need to load data from the file into an array

Need to check if username exists to update
score, if not error message

Need an option system for edit, new and
delete, otherwise error message

Need to write changed data back to file

54

Design

Use routine to check if file exists and if not create it, otherwise open it.
Read data into arrays for names and scores
Get option edit, new or delete

If edit search for name

Get new score in array

Write data back to file

If new

Get data for next array items

Write data to file

Delete

Find data

Delete from array

Write data to file

55

Check file exists: if | try to open a file it returns O if the file doesn’t exist so |
can use this to decide if | need to create a file. | will use this code | found

DESign / on a website and changed.
development

If openin file = 0 the create file else open file

IF OPENIN "c:\users\george\scores.txt" =0 THEN
chanl = OPENOUT "c:\users\george\scores.txt"
CLOSE#chan1

ENDIF

56

Design /
development

| need to create an array for the names and scores so that |
can read in the data from a file.

| have created a simple text file with some names and scores

to test this section of code.

DIM nameS(10)
DIM score(10)

x=1

IF OPENIN "c:\users\george\scores.txtt" =0 THEN
chanl = OPENOUT "c:\users\george\scores.txt"
CLOSE#chan1l

ENDIF

chan1=0PENIN "c:\users\george\scores.txt"
REPEAT
INPUT#chan1,nameS(x)
INPUT#chan1,score(x)
ix=x+1
UNTIL EOF#chanl
CLOSE#chan1l
x=x-1

57

The edit routine should search for the user name in
. the array, edit the score and write the new score to
DES|gn / the array. If not found it should print and error

dEVElopment message.

L=l E.meam| PRINT "To edita score press e"

=} HighscoreD | |
PRINT "To add a new name and score press n

Current High Scores
8 INPUT selectS
s o8 IF select$="e" THEN
To edit a score press e INPUT "your user name" userS
To add a new name and Score press n c=1
7 e

WHILE c<=x
IF userS= nameS(c) THEN
INPUT "new score" newscore

your user namefrank
new score9s
user name not found

>RUH
lICurrent High Scores score(c) = newscore
a
e 08 ENDIF
$1lld't 77 IF c>=x THEN
o0 edit a score press e
To add a new name and Score press n PRINT "user name not found"
? _ ENDIF
c=c+1
ENDWHILE

Works: frank has been chan2=0PENOUT "c:\users\george\scores.txt"
! FOR c=1TO x

updated from 66 to 98 PRINT#chan2,name$(c),score(c)

NEXT c
CLOSE#tchan2

58

Design /
development

rg‘ HighscoreD l = | (=] |£H

Current High Scores
5}
frank o8
bill 77
To edit a score press e

To add a new name and Score press n
IT n
new user namesam
your high score59
»RUN
Current High Scores
a

fFrank o8
bill ¥¥
sdam Lg

To edit a score press e

To add a new name and score press n
>

The data for sam has been added
at the end of the array as
expected.

To add the new data feature If n is pressed it starts
this section of code:
IF selectS="n" THEN

INPUT "new user name" newname$S
INPUT "your high score" highscore
x=x+1

nameS(x)= newnameS

score(x)= highscore

chan2=0PENOUT "c:\users\george\scores.txt"
FOR c=1TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF

59

Testing and evaluation

| tested the program as | wrote it and the evidence is in the development.
This was not as easy as the first tasks and | was not able to complete the delete

option.

The error message user not found keeps printing on screen and | think | can fix this
by using an IF to check if a change has been made before printing this message.

DIM name$(10)
DIM score(10)

x=1

IF OPENIN "c:\users\george\scores.txt" =0 THEN
chanl = OPENOUT "c:\users\george\scores.txt"
CLOSE#chanl

ENDIF

chan1=0PENIN "c:\users\george\scores.txt"
REPEAT
INPUT#chan1,nameS(x)
INPUT#chan1,score(x)
x=x+1
UNTIL EOF#tchanl
CLOSE#chan1
x=x-1

PRINT "Current High Scores"
FORi=1TO x

PRINT nameS$(i),score(i)
NEXT i

PRINT "To edit a score press e"

PRINT "To add a new name and score press n"
INPUT selectS
IF select$="e" THEN
INPUT "your user name" userS
c=1
WHILE c<=x
IF userS= name$(c) THEN

INPUT "new score" newscore
score(c) = newscore

ENDIF

IF c>=x THEN

PRINT "user name not found"
ENDIF
c=c+1
ENDWHILE

chan2=0PENOUT "c:\users\george\scores.txt"
FOR c=1TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF

IF select$="n" THEN

INPUT "new user name" newname$
INPUT "your high score" highscore
x=x+1

nameS(x)= newnames$

score(x)= highscore

chan2=0PENOUT "c:\users\george\scores.txt"
FORc=1TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF

1258292505

GCSE Computing Controlled Assessment

O C Rﬁ Unit A453 Coding a solution

RECOGNISING ACHIEVEMENT Unit Recording Sheet

Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate. ‘

Unit A453 Year 2| 0
Centre Name Centre Number
Candidate Name Candidate Number
Guidance Teacher Comment Mark
, . , An attempt has been made at all
o There is an attempt to solve There is an attempt at most parts | There is an attempt to solve all three tasks
£ parts of the tasks using few of | of the tasks using several of the tasks using most of the ' 5
€ , | the techniques identified. techniques. techniques listed. _
g e A good range of techniques has
o8 been sensibly used.
=
S5
%8
O
(72}
> Max
[0 -2] [3-4] [5- 6] 6
URS666 Revised August 2011 A453/URS

Oxford Cambridge and RSA Examinations
61

.E’ The techniques used may not | The techniques will be used The techniques are used '(I;ec;hn!ques are”usef(: qpp:op_)rr;]ately.
€ | be entirely appropriate to the appropriately giving working appropriately in all cases ode s generaly eflicient. there
S . : o - ; me inefficiencies. For example
& | problem and will only produce | solutions to most of the parts of giving an efficient, working S0 _ P 9
@ @ | partially working solutions to the problem. Some sections of solution for all parts of the the candidate has used 3 FOR
& 2| a small part of the problem. the solution will be inefficiently problem. loops in task 2 where one would
S E coded. suffice.
§ § Program 3, particularly, would
= benefit from some modularity.
(7]
:% Max
w [0-4] [5 - 8] [9-12] 12
There will be a detailed
There will be vague comments | There will be a brief analysis of analysis of what is required for Probl_ems have been ar?alysed.
on what the task involves the tasks indicating what is these tasks justifying their Algorithms are well designed
and a vague outline describing | required for each of the tasks. approach to the solution. using flow diagrams.
the intended approach to some | There will be a set of basic There will be a full set of Test Strategy/success criteria
parts of the problem. algorithms outlining a solution to | detailed algorithms discussed for Ex 1+2 but not 3 8
c | There will be brief comments most parts of the problem. representing a solution to each |No explicit discussion of variables
D | on how this might be tested There will be some discussion of | part of the problem. or structures but validation is
@ | but with no mention of success | how this will be tested and how There will be detailed looked at.
O | criteria. this compares to the identified discussion of testing and
outcomes in the tasks. success criteria.
There will be discussion of the The variables and structures
variables to be used and some will be identified together with
general discussion of validation any validation required. Max
[0-3) [4-6] [7-9] 9
URS666 Revised August 2011 A453/URS

Oxford Cambridge and RSA Examinations
62

1258292505

There is evidence of solution
There will be some evidence to | There will be evidence to show There will be detailed evidence .
. . ; development and some testing
show a solution to part of the how the solutions were showing development of the during devel N
problem with some evidence to | developed. solution with evidence of “””9 eve opmen ' 7
show that it works. There will be some evidence systematic testing during Meaningful variable names have
- Code will be presented with of testing during development development to show that all been used.
$ | little or no annotation, the showing that many parts of the parts work as required. Occasionally code lacks structure
g_ variable names not reflecting solution work. The code will be well (e.g. in the Delete section of Task
o their purpose and with little The code will be organised with organised with meaningful 3 a FOR loop is overlapped by an
% organisation or structure. sensible variaple names and with variablg names ar)d detailed IF rather than using nesting.)
a some ann?tr;tlon |Sd|gat|ng what 1?nno.’catlor]l |nd|ﬁat|ng_the Commenting, when used is
sections of the code does. unction of each section. effective, but is too often missing.
Max
[0 - 3] [4 - 6] [7-9] 9
URS666 Revised August 2011 A453/URS

Oxford Cambridge and RSA Examinations

63

There will be evidence to show | There will be a test plan covgring Thg test plan wiII_coyer all Tests for Ex2+3 cover most
that the system has been many parts of the problem with major success criteria for the -
tested for function but the test | some suggested test data. original problem with evidence eyentuglltles and ar_e ba_lcked u_p
plan will be limited in scope There will be evidence that the to show how each of these with evidence. Testing in Ex3 is
with little structure. system has been tested using this | criteria have been met, or if lacking the same amount of rigour.
There will be little or no data. they have not been met, how |Where issues have been 8
evidence to show how the There will be some evidence to the issue might be resolved. encountered these have been
result matches the original show how the results of testing There will be a full evaluation |discussed along with their
criteria. have been compared to the of the final solution against the |resolution.
The evid_enc_e of_ Writt_en _ original (_:riteria. o _ success criteria. _ Spelling punctuation and grammar
communication is limited with There will be a brief discussion of | A high level of written .
o X -) A : . are all of a good quality.
c little or no use of specialist how successful or otherwise the communication will be obvious N f the task ired
v | terms. solutions are. throughout the task and one ot the tasks required group
2 Errors in spelling, punctuation | Produces evidence of good specialist terms/technology work .
and grammar may be intrusive. | written communication using with accurate use of spelling
Information may be ambiguous | some specialist terms. will have been used.
or disorganised. There will be few errors in Grammar and punctuation will
There will be some comments | spelling, grammar and be used correctly and
on others’ and their own input | punctuation. information will be presented
into group work. Information for the most part will in a coherent and structured
be presented in a structured format.
format. They will provide an evaluation
They will have commented on on theirs and others’
their own and others’ contribution | contribution to any group
to any group work and activities. Max
[0-3] [4 - 6] [7-9] 9
38
Total/45
Guidance on Completion of this Form
1 One sheet should be used for each candidate.
2 Please ensure that the appropriate boxes at the top of the form are completed.
3 Using the guidance identify the most appropriate mark range for the work and enter the mark awarded for each element in the mark column.
4 Add appropriate comments to assist the moderator in the ‘Teacher Comment’ column.
5 Add the marks for the strands together to give a total out of 45. Enter this total in the relevant box.
URS666 Revised August 2011 A453/URS

Oxford Cambridge and RSA Examinations

64

A453

Task 1: Animal Age

65

Analysis

A system to convert cat or dog ages into
human equivalents

Rules

DOG:

11 years per year for 2 years then 4 per extra year
CAT

15 years for first year, 10 for second then 4 per year

66

Analysis

* Need to get choice of cat or dog
* Need to get animal age in whole years

* Need to convert animal age to human
equivalent using rules and print result.

67

Design

DOG
Cat or
dog? Get age
Ca
t Animal age = age *
Get age 11
Animal age = 15

Animal age = 25
+(age-2)*4

Animal age = 25

68

YES

Age <=2

NO

Animal age = 22
+ (age-2)*4

DEVEIOpment and teStIng PRINT "Cat and Dog age to human equivalent"

REPEAT
The code loops to make sure user INPUT "Choose Cat or Dog, type cat or dog", animal$

inputs either dog or cat UNTIL?nlmaIS = Sat .OR anlllrlnaI$='dog)
PRINT "enter the ";animalS;"'s age in years";

If dog checks for age <=2 INPUTage
If <=2 then age™*2
If not then 22+ (age-2)*4 IF animal5="dog" THEN

IF age<=2 THEN
animalage = age*11

If cat checks ELSE
if 1 year then age 15 animalage = 22+(age-2)*4
If 2 years the age 25 EE'EEI)F'F

If not then 25+(age-2)*4
IF animalS="cat" THEN

Using print formatting to output IF age =1 THEN
. . animalage =15
answer as sentence with variables to ELSE
complete the sentence. IF age = 2 THEN
animalage =25
ELSE
animalage= 25+(age-2)*4
ENDIF
ENDIF
ENDIF

PRINT "Your ";animalS;" is ";animalage;" years in human
terms"

Development and testing

1 Check if dog or cat cat, dog, rat, Dog, cat, dog accepted, rat, Dog and

CAT CAT clears and ask question
again

2 dog ages 1,2 Expect 11 or 22

3 3,4 Expect 26, 30

4 3.5 Expect 28

5 Cat ages 1,2 Expect 15, 25

6 3,4 Expect 29, 33

7 3.5 Expect 27

8 Cat and dog ages Hat Expect error program stops

70

Evidence for 1 and 2

-

= (untitled) =)

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? CAT
Choose Cat or Dog, type cat or dog? Dog
Choose Cat ovr Dog, type cat or dog? rat
Choose Cat or Dog, type cat or dog? dog
enter the dog's age in years? 1

Your dog is 11 years in human terms

>

rgl (untitled) | B) |

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
enter the cat's age in years? 1

Your cat is 15 years in human terms
>RUH

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
enter the cat's age in years? 2

Your cat is 25 years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
enter the cat's age in years? 3

Your cat is 29 years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
lenter the cat's age in years? 4

Your cat is 33 years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
lenter the cat's age in years? 3.5

Your cat is 31 years in human terms

>

Evidence for 2, 3,4

[=) (untitied) L e

Sl

Cat and Dog age to human equivalent
Choose Cat ov Dog, type cat or dog?
enter the dog's age in years? 2
Your dog is 22 years in human terms
>RUN

ICat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog?
enter the dog's age in years? 3
Your dog is 26 years in human terms
»RUH

Cat and Dog age to human equivalent
Choose Cat ov Dog, type cat or dog?
enter the dog's age in years? 4
Your dog is 38 years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog?
enter the dog's age in years? 3.5
Your dog is 28 years in human terms
>

dog

dog

dog

dog

Evidence for 1,5,6,7

71

[= (untitled)

||:|||E||i&ﬂ‘I

Cat and Dog age to human equivalent
Choose Cat ov Dog, type cat or dog?
enter the cat's age in years? Hat]
Your cat is 17 years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog?
enter the dog's age in years? Hat
Your dog is B years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat ovr Dog, type cat or dog?
enter the cat®s age in years? HAT
Your cat is 17 years in human terms
>

cat

dog

cat

N - c— o

Test 7 NOT as expected. Why?

Cat makes sense, Hat taken as zero, therefore
25+ (0-2)*4 = 25-8 =17

Dog also makes sense hat taken as zero, so 0
is <=2, therefore age = 0*11

Fix:

Need to reject non numeric inputs though
decimal ones appear to give a decent result.

Check 0.5 and 1.5 years for cat and dog but
change age =1 and age = 2 for cat to <=

Also only accept age >0

72

-__

10
11

Non numeric

data

Decimal
values

Decimals

Negative
values

hat

Cat age 0.5

Cat and dog 1.5
Cat and dog -2, -3.98

73

Reject and ask for age
again

Expect 7.5

Expect 20 and 16.5

Expect rejected

Evidence 8 and 9

[= (untitied) [EEEEETS

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
enter the cat's age in years? hat

= b

Your cat is 7.5 years in human terms

>

Evidence 10

[&) (untitied) EE)

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? cat
enter the cat's age in years? 1.5

Your cat is 28 years in human terms
>RUH

Cat and Dog age to human equivalent
\[Choose Cat or Dog, type cat or dog? dog
enter the dog's age in years? 1.5

Your dog is 16.% years in human terms

>

Evidence 11

-

=} (untitled) - E=EETT)

Cat and Dog age to human equivalent
Choose Cat ov Dog, type cat or dog? cat
enter the cat's age in years? -2

T 1.7

Your cat is 22 years in human terms
>RUN

Cat and Dog age to human equivalent
Choose Cat or Dog, type cat or dog? dog
enter the dog's age in years? -3.98

T 6.78

Your dog is ¥1.12 years in human terms
>

74

PRINT "Cat and Dog age to human equivalent"

Evaluation: REPEAT

INPUT "Choose Cat or Dog, type cat or dog", animalS
UNTIL animal$ ="cat" OR animalS$="dog"

Tested with numeric data, PRINT "enter the ";animal$;"'s age in years";
results as expected, seems
_ . REPEAT
to work just as well with INPUTage
decimal values so these UNTIL age >0
have been included. IF animal$="dog" THEN

IF age<=2 THEN
animalage = age*11

Fixed issue with non- ELSE

numeric and zero or animalage = 22+(age-2)*4
ENDIF

negative values with ENDIF

Slmple repeat |oop to IF animal$="cat" THEN

reject these values. IF age <= 1 THEN
animalage =age* 15
ELSE

IF age <=2 THEN
animalage =15 +(age-1)*10
ELSE
animalage= 25+(age-2)*4
ENDIF
ENDIF
ENDIF

PRINT "Your ";animalS;" is ";animalage;" years in human terms"

75

A453

Task 2: Password strength sample task

76

[l

Lh

Analysis

Input a password
Is the password between 6 and 12 characters long?
No:reject and retum to stage 1
YES; output message and carrv on
Check each character of the password in turn
Is this character upper case? If ves flag that upper case is included
Isthis character lower case? If ves flag that lower case is includedl
Is this character a number? If ves flag that number is included
[fthree flags set then the password is STRONG
Iftwo flags set then the passwordsis MEDIUM
If one flag set then the password is WEAK

77

Design / Flowchart

k.

IRPUT
| SE R LR L E ek] o e

e ipn®
ACEST AR A

1=

(SRS ERTELT T [T
|:|:
| =
1=
(S AL ERTELT T M

Lr=

¥ F

A J

FAITEIT
| EIL Ry ol RS

78

L
[T

Pual™ 12 -1

T

L R TN

BN TN T
MR TEY]

LS

I
[M HHEE | O WAL
LA TLTFL TR T B R Y ey

Tl [AHH I

1

T2

T

r.|-

l-a
TP NI TR B T [|
AT T T R

Pl -

T

Mz

(LI

L
A

[NV EULHEEY
1 HH P 0 O PP T P LU

Macle wilth & 1irdal
Copy of Smartbrawy

Buy SmartDraw!- purchased copies print this
document without a watermark .
Visit www.smartdraw.com or call 1-800-768-3729.

Design /
Pseudocode

REPEAT

INPUT the password

len=length of password

IF len <6 OR len >12 THEN

PRINT suitable error message

UNTIL len >=6 and <=12

PRINT password OK

Initialise upper, lower and number to 0

FORi=1TO len

IF MIDS(password, i, 1) is upper AND upper =0 THEN upper
=1

ELSE

IF MIDS(password, i, 1) is lower AND lower =0 THEN lower
=1

ELSE

IF MIDS(password, i, 1) is number AND number =0 THEN
number =1

NEXT i

strength = upper+lower+number

CASE

strength = 1 then PRINT “WEAK”

strength = 2 then PRINT “MEDIUM”

strength = 3 then PRINT “STRONG”

79

Design / Test strategy

We need a test strategy to use during development to show that the solution works
at each stage.
Requirement: 6- 12 characters

gwert gwerty gwertyui gwertyuiopas gwertyuiopasd

5 characters should 6 characters, 8 characters, valid 12 characters, 13 characters

be rejected boundary, should input should be OK boundary, should should be rejected
be OK be OK

Weak, Medium and Strong identified:

gwerty Qwerty 3werty qwe456 QW34ty
QWERTY Awerty 3WERTY 1w3r5y 12erTY
123456 Zwerty Q23456 QW345Y

All lower / upper 1 upper case, rest All medium strength ~ With differing Both cases and
case/ numeric: lower, also test A combinations guantities of numeric used,
weak reported and Z accepted numbers and letters Strong reported

Medium reported

80

Development & Testing

i,
=} BEC BASIC for Windows 5.91a EEREER

File Edit Utilities Options Run Help

NS E&| o~ Lo x| 8% > = oo

REPEAT
IHPUT "Enter password 6-12 chars " password$
lenp355=LEH(p355wurd$}
IF lenpass < 6 OR lenpass > 12 THEH
PRINT “Password HUST be between & and 12 characters"
EHDIF

UHMTIL lenpass »>=6 0OR lenpass <=12
PRINT"Password OK"|

Press F1 for Help A7 247

Bower T

Enter password 6-12 chars quert

Password MUST be between 6 and 12 characters
}

The code is being tested as it
is developed, here the length
is checked with 5, 6,12 and
13 char passwords.

The evidence shows that this
section of the code works.

e —

Password OK
i - ¥ T "
= (untitled) (C="08C >
— e
Enter password 6-12 chars quertyuiopas
Password OK

EI I

5 Enter password 6-12 chars quertyu

>

e

>

r password 6-12 chars gquertyuiopasd
Password HUST be between & and 12 characters

Design / Approach to testing for password strength

In my solution | am going to use the fact that all characters have a unique ASCII value
A is 65, Bis 66 ... up toY which is 90

ais97,bis98 ...uptoy whichis 122

0is48,1is49 ...Up to 9 whichis57

So if the ASCII value of each character in the password is checked then we can identify
if it is upper, lower or numeric.

Using LEN to check the length of the password and a simple loop from 1 to
LEN(password) with the MIDS command | can check each character individually

If I identify an upper case | will set a flag once
Similarly with lower case and numeric.

If only 1 flag is set it will be WEAK, 2 it will be MEDIUM, 3 it will be STRONG

82

Development File Edit Utilities Options Run Help

=] |

& Testing

IR T Y R TR

REPEAT

1enp355=LEH{p355wurd$}
IF lenpass < 6 OR lenpass > 12 THEH

EHDIF
UHMTIL lenpass >=6 0OR lenpass <=12
| PRIHNT"Password OK"
upper=8
lower=8
number=8
FOR i =1 TO lenpass
IF Asc{nIpS(password$,i,1))>=65 AHD
IF upper=8 THEH
upper = 1
EHDIF
EHDIF
HEXT i
FREIHT upper

IHPUT “Enter password 6-12 chars ™ password$

PRIHT "Password HUST be between 6 and 12 characters™

ASCEMIDS(password$,i,1))<=98 THEH

=} password code

Enter password 6-12 chars querty

Press F1 for Help

Add the next section of code to check for upper case and test it
with suitable test data: for example

qgwerty, should return O

Awerty should return 1 and checks that A is included in the range
Zwerty should return 1 and checks that Z is included etc.

Similarly for lower case and numeric data in the test strategy

Passuword 0K
a

T B
=} password code E@lﬁ
Enter password 6-12 chars Awerty
Password OK |
1
>
=} password code LEE:LEEJ!!EQ!ﬂ

[Enter password 6-12 EHEFS Zuerty
Password 0K
|

e] s

"Enter passuword 6-12 chars " password$

lenpass= {passwurd$}
lenpass < 6 lenpass > 12

Development
. lenpass *>=6 lenpass <=12
& TeStlng “"Password OK*
upper=a
lower=4a
number=8a
i=1 lenpass
{ {password$,i,1))>=97
lower=8
The code that was lower = 1
used and tested for
upper case is simply i
copied and pasted i =1 lenpass ¢
orE { {password},i,1))>=65
then modified upper=8
accordingly and upper = 1
checked at each
stage. i
1 =1 lenpass
{ {password$,i,1))>=48
number=48

number = 1

{

{

1
strength=upper+lowver+number
strength
1: “password strength WEAK™
2 : “password strength MEDIUM“
3 : “password strength 5TROMG™

84

"Password MUST be between & and 12 characters"

{password$,i,1))<=122

{password$,i,1))<=90@

{password$,i,1))<{=57

Testing

All lower / upper
case/ numeric:
weak reported

gwerty
v

QWERTY
v

123456
v

1 upper case, rest
lower, also test A
and Z accepted

Medium reported

All medium strength
combinations

=} password code

= E)

Enter password 6-12 chars querty
Password OK
]

-

=} password code

J«::| E]|-Eilﬂ

=

Enter password 6-12 chars QUERTY
Password OK

passuword strength WERK

t

Enter password 6-12 chars 123456
Password OK

password strength WEAK

>

85

With differing
quantities of
numbers and letters

qwe456

1w3r5y

QW345Y

Both cases and
numeric used,
Strong reported

QW34ty

12erTY

All lower / upper
case/ numeric:
weak reported

gwerty
v

QWERTY
v

123456
v

1 upper case, rest
lower, also test A

and Z accepted

Medium reported

Qwerty
v

Awerty
v

Zwerty
v

All medium strength With differing
combinations guantities of
numbers and letters

~

E=NEE)

Enter password 6-12 chars Querty
Password OK

password strength HEDIUM

>RUN

Enter passuword 6-12 chars Awerty
Fassword OK

password strength HEDIUM

»RUH

Enter password 6-12 chars Zuerty
Passuword OK

password strength HMEDIUM

>

El password code

86

Both cases and
numeric used,
Strong reported

QW34ty

12erTY

All lower / upper 1 upper case, rest All medium strength With differing Both cases and

case/ numeric: lower, also test A combinations guantities of numeric used,

weak reported and Z accepted numbers and letters Strong reported
Medium reported

>RUN
qwerty Qwerty 3werty Enter password 6-12 chars 3werty

v v v Password OK
password strength HMEDIUM
|[>*RUHN
Enter password 6-12 chars 3UWERTY
QWERTY Awerty 3SWERTY Paccword DK
v v v \password strength MEDIUM
>RUHN
Enter password 6-12 chars Q23456
Password OK

123456 Zwerty Q23456 password strength MEDIUM
v v v >

87

All lower / upper
case/ numeric:
weak reported

gwerty
v

QWERTY
v

123456
v

1 upper case, rest
lower, also test A
and Z accepted

All medium strength With differing

combinations guantities of

numbers and letters

Medium reported
=

e

Q)} password code

Password OK
password strength MEDIUM
*RUN

Password 0K
password strength MEDIUM
*RUN

4 Password OK
password strength MEDIUH

88

Enter password 6-12 chars quelSh

J Enter password 6-12 chars 1uwdrsy

Enter password 6-12 chars QU3uSY

qwed56
v

1w3r5y
v

QW345Y
v

Both cases and
numeric used,
Strong reported

QW34ty

12erTY

All lower / upper 1 upper case, rest All medium strength With differing Both cases and

case/ numeric: lower, also test A combinations guantities of numeric used,
weak reported and Z accepted numbers and letters Strong reported
I B &} password code I. =g |-E:h]
qwerty Qwerty ([Enter password 6-12 chars QW3uty QW34ty
v v Password 0K v
password strength STROHG
>*RUH
Enter password 6-12 chars 12erTV
QWERTY Awerty |Password OK 12erTY
v v password strength STRONG v
>_
123456 Zwerty Q23456 QW345Y
v v v v

Testing complete all tests worked as expected.

89

Code explained

REPEAT
IHPUT "Enter password 6-12 chars ' password}
lenpass=LEH{p355wurd$}
IF lenpass < 6 OR lenpass > 12 THEH
PRINT "Password MUST be between & and 12 characters™
EHDIF
UHTIL lenpass >=6 OR lenpass <=12
PRIHNT"Password OK"

upper=8a — .
1559,_:“ | Initialise variables I
number=4

FOR i =1 TO lenpass
IF Asc{rIDS{password$,i,1))>=97 AHD
IF lower=8 THEH
lower = 1
EHDIF
EHDIF
HEXT i
FOR i =1 TO lenpass
IF Asc{HIDS{password$,i,1))>=65 AHD
IF upper=8 THEH
upper = 1
EHDIF
EHDIF
MEXT i
FOR i =1 TO lenpass
IF Asc{HIDS{password$,i,1))>=48 AHD
IF number=8 THEH
number = 1
EHDIF

ASC{MID: (password$,i,1)3<=122 THEH

ASC{MID: (password$,i,1))<=98 THEH

ASC{MID: (password$,i,1))<=57 THEH

Get password

Find length of password
Check length >=6, <=12

If not print error message

If error return to get password otherwise
Print OK

By checking each character in the
string for ASCII values

97-122 for a-z,

Identify if the character is lower,

If one of these has not already been
found flag by setting the variable to
1, otherwise ignore.

Repeat process for upper and
number using

65-90 for A-Z and

48-57 for 0-9

EHDIF
HEXT 1
strength=upper+lower+number
CASE strength OF

WHEH 1 = PRINT "password strength WEAK"™

WHEH 2 = PRIHT ““password strength MEDIUN"

WHEH 3 = PRIHT ““password strength STROHG"
EHDCASE

90

Add together the values for lower, upper and
number to get a strength value.

Use the CASE command to respond
according to the numeric value

Evaluation of the solution

We now have basic functionality but we need to complete some final product testing
with a range of data and typical end users.

Further testing is completed with a range of valid and invalid data:

b

To see what happens ASde/> Since /> are not checked they Medium, as expected:
with special characters will not set any flag hence Code should be modified to reject
MEDIUM special characters
To see what happens if AS de23 Since space has an ASCII Strong as expected:
spaces are used value it will be accepted and Code should not accept space and
rated as STRONG should be modified
Typical strong password 17Weebles Strong, valid data Strong.
r5 password code.bbc - E@ﬁ " -
Enter password 6-12 chars ASde/> = _mde —
Password OK Enter password 6-12 chars 17Weebles
password strength HEDIUM Password DK
»_ 'gt o o = | B | i EaSEI.uurd strength STROHG

Enter password 6-12 chars AS de23
Password OK

password strength STROHG

>

L e —— | ——c— -

Feedback from user testing

The whole point of a password is for security, the password is displayed when
typed in, this is a problem.

The code should be modified to display * characters instead of the input values.

92

Evaluation of the solution

Using ASCII values to check the case etc works well and this could be extended to reject
non alphanumeric characters by examining the password after input for characters out of
range returning the user to the input screen with a suitable error message.

From the test data provided it is clear that the code segment meets the basic
requirements:

6-12 characters

Upper, lower and numeric cases through the use of flags can identify weak, medium or

strong passwords.

Also from the testing it can be seen that the system also accepts spaces and special
characters since, though does not flag any value to these. The code should be modified
accordingly to reject these.

The testing also suggests that the password input should be masked if it is to be of any
real value, such a modification can easily be completed by overwriting the input area with
* characters.

This code is functional and could be used as a module in a larger program if suitably
modified as identified in the test section.

93

Evaluation of the solution

e Possible improvements:
* Check data on entry for character types.
 Check data on entry for invalid characters.

e blanking the password on entry by replacing the characters with *’s
e providing a more interesting or ‘friendly’ interface

94

A453

Task 3: High scores table sample task

95

Analysis

* A system to manage high scores
— Create a file and be able to
— Find a score for a user
— Update a score for a user
— Add a new user and score
— Delete a user and score

96

Analysis

Need to check if the file exists, if not create
one

Need to load data from the file into an array

Need to check if username exists to update
score, if not error message

Need an option system for edit, new and
delete, otherwise error message

Need to write modified data back to file

97

Design / File exists — choose option

Check if NO

file exists

Create file

Open file

Input data from file
into array

Edit data routine

New data routine

98

Delete data
routine

Design / Edit data option

Initialise found flag
and count array

Get user name
to find

Error message

Get new score and
update array

Write file

99

Design / New data option and delete option

Get user name and Get user name to
score to add delete
Increase array index Find user name as in
by 1 edit data
Copy data into new Delete data

array positions

Move remaining
data forward in

Write file array

Decrease array
count by 1

Write file

100

Check file exists: if | try to open a file it returns O if the file doesn’t exist so |
can use this to decide if | need to create a file.

Design /

If openin file = 0 the create file else open file
development
IF OPENIN "c:\users\george\data.dat" =0 THEN
chanl = OPENOUT "c:\users\george\data.dat"
CLOSE#chan1l
ENDIF
NS - - B M U %> non o W2
P b b sy i it s '
s @-:‘.'_ » Computer » ACER(C) v Users » GEORGE » —
Coganize = imclude i library = Shase with = Burn Hew holdder
Code before being run < el ,'pp,m.m,
Note the tesdata file does not exist i s

4. Hecent Plages I3 Cordacts
Iy Dot

= M}" Pictures m Dektop
B Dévmlonds
E M}f Videos i Bnbpho
Saved Games [r Favorkes
£ Searches i Links
= g My Documents
= = E B By Bl
= My Fachores
After running code it exists B My Videos

gL AcER (Cy)
s LISE D15 (E:)

Ll LA

o Swved Games

PRl TR

| need to create an array for the names and scores so that |
. can read in the data from a file.
Design /
development | have created a simple text file with three names and scores

to test this section of code.
DIM nameS(10)
DIM score$(10)

rgﬁ datatask index=1
Current High Scores IF OPENIN "c:\users\george\data.dat" =0 THEN
e o chanl = OPENOUT "c:\users\george\data.dat"
bill 67 CLOSE#chan1l
e %3 ENDIF
STOP

ie chan1=0PENIN "c:\users\george\data.dat"

REPEAT

INPUT#chan1,name$(index)
INPUT#chan1,scoreS(index)
index=index+1

UNTIL EOF#chanl

CLOSE#chan1l

index=index-1

PRINT "Current High Scores”
FORi=1TO index
PRINT nameS(i),scoreS(i)
NEXT i

102

Design /

development

| need the user to be able to select one of the options. | will do
edit and new first.

PRINT "To edit a score press e"
PRINT "To add a new name and score press n"

Sl dataren

Current High Scores

Frod a2
hill nd
{fim L

To edil & scure press
To add a4 ned nane and
T e

siur
>RUH

current Wigh Scores

_irFﬂ b
i1l 67
[fjim 53

o edit a score press
_Tﬂ add 3 new nameE amd
Mn

STOF

>RUH

Lurrent High Soores
Fred H ¥

ninn S

jim 53

To edit a score press
To add 3 new nam and
Input met recognised
T h
Hlnput not Fecoqgnised
" H

A 1112
b

e

L4
SCOEE PSS 0

(]
SCOE presE n

]
OEFE prEs: n

inputvalid=0
REPEAT
INPUT select$
IF select$ = "e" OR select$ = "E" OR select$ = "n" OR select$ = "N" THEN
inputvalid=1
ELSE
PRINT "Input not recognised"
inputvalid=0

ENDIF
UNTIL inputvalid=1

The flag inputvalid is used to end the loop if a valid input is entered but repeat
the process until a valid input is entered. | used the OR to allow for e, E, n OR N

inputs.

lused e, n, g, h,N. e,nand N were accepted but g and h made the loop request
input again

- 103

The edit routine should search for the user name in
the array, set a flag if found, edit the score and

DES|gn / write the new score to the array. If not found it
development should print and error message.

It checks not found by checking the found flag and
£) datatask M=l B eS| the count through the array compared to how
Current High Scores .

many were read in.
fred 3z
q%ll 67
jim 53 IF selectS$="e" OR selectS ="E" THEN
To edit a score press e " "

To add a new name and sScore press n INPUT "your user name" user$
T e

your user namefred

new score58 flag=0

>RUN count=1

Current High Scores

WHILE flag=0 AND count<=index

Ered =4 IF user$= name$(count) THEN

bill 67

jim 53 flag=1

To edit a score press e INPUT "new score" newscoreS

To add a new name and score press n

2 scoreS(count) = newscore$
ENDIF

— IF flag=0 AND count>=index THEN
PRINT "user name not found"

ENDIF

The data for fred has been count=count+1

updated as expected from 32 to ENDWHILE

58 ENDIF

104

Design /

development

=} datatask

e B e |

Current High Scores

fred e
bill 67
jim L3

To edit a score press
To add a new name and
?n

new user namesam

e
score press n

To add the new data feature | will replace the endif
with an else that allows new data to be added.

IF selectS="e" OR selectS ="E" THEN

INPUT "your user name" userS

flag=0
count=1
WHILE flag=0 AND count<=index
IF userS= nameS$(count) THEN
flag=1
INPUT "new score" newscore$
scoreS(count) = newscore$

your high score189
<o ENDIF |
Current High Scores IF flag=0 AND count>=index THEN
n n
tred cg PRINT "user name not found
bill 67 ENDIF
jim 53 _
S 180 count=count+1
iTo edit a score press e ENDWHILE
To add a new name and score press n ELSE

7

INPUT "new user name" newname$
INPUT "your high score" highscore$
index=index+1
nameS(index)= newnameS
scoreS(index)= highscore$

ENDIF

The data for sam has been added
at the end of the array as
expected.

105

To delete an item is more complicated, but if | just
. rewrite the list back to file skipping the deleted
DES|gn / name then will effectively delete the user

development

IF selectS="d" OR selectS ="D" THEN

£} datataskwithdelete.bbc (= [E ot INPUT "Name to delete" delete$

Current High Scores newcount=0

L. 109 FOR i=1 TO index

fred 97 IF deleteS=name$(i) THEN

charlie 33 .

bill 27 NEXT |

To edit a score press e ELSE

To add a new name and Score press n _

To delete data press D newcount=newcount+1

? d newlistnameS$(newcount)=name$(i)

Hame to deletefred . _ .

Sl newlistscoreS(newcount)=scoreS(i)

Current High Scores NEXT i

cam 169 ENDIF

fcharlie 33

bill 27 " n

;T; Sdit 4 Soore press chan2=0PENOUT "c:\users\george\data.dat

To add a new name and SCOre press n FOR j=1 TO newcount

?T" delete data press D PRINT#chan2,newlistname$(j),newlistscoreS(j)
NEXT j
CLOSE#chan2

The data for fred has been deleted ENDIF

from the file as expected.
| needed two new arrays and a new counting variable to do this.

106

Design /
development

To make the final changes
to include the delete
option | created three IF
THEN sections with each
writing the modified data
to the file.

| added two new arrays
This section shows
initialising arrays
checking if file exists

And printing high score
table

REM Initiaalise arrays

DIM name$(10)
DIM score$S(10)
DIM newlistname$(10)
DIM newlistscore$(10)

REM check if file exists, if not create one

index=1

IF OPENIN "c:\users\george\data.dat" =0 THEN
chanl = OPENOUT "c:\users\george\data.dat"
CLOSE#chanl

ENDIF

REM read in data from file and display

chan1=0PENIN "c:\users\george\data.dat"

REPEAT
INPUT#chan1,nameS(index)
INPUT#chan1,scoreS(index)
index=index+1

UNTIL EOF#chanl

CLOSE#chanl

index=index-1

PRINT "Current High Scores"
FORi=1TO index

PRINT name$S(i),scoreS(i)
NEXT i

107

Design /
development
This section shows

getting user input and
validating user input

REM get user input and validate
PRINT "To edit a score press e"
PRINT "To add a new name and score press n"
PRINT " To delete data press D"

inputvalid=0
REPEAT
INPUT select$
IF selectS ="e" OR select$ = "E" OR select$S = "n" OR selectS = "N" OR
selectS="D" OR select$="d" THEN
inputvalid=1
ELSE
PRINT "Input not recognised"
inputvalid=0

ENDIF
UNTIL inputvalid=1

108

Design /
development

This section is the delete
option

|t get the name to delete
Compares the data in the
array to this value

*|f the values match it skips
to the next item

*|f they don’t match it
writes the old data into a
new array and

ecounts entries into this
new array

REM delete option write to new array skipping name and score to delete

IF selectS="d" OR selectS ="D" THEN
INPUT "Name to delete" delete$
newcount=0
FOR i=1 TO index
IF deleteS=nameS(i) THEN
NEXT i
ELSE
newcount=newcount+1
newlistnameS(newcount)=names(i)
newlistscoreS(newcount)=scoreS(i)
NEXT i
ENDIF
REM write modified file back to disk
chan2=0PENOUT "c:\users\george\data.dat"
FOR j=1 TO newcount
PRINT#chan2,newlistnameS(j),newlistscoreS(j)
NEXT j
CLOSE#chan2

ENDIF

109

Design /
development

This is the edit section

It compares name to edit
with data in the array and
allows the user to retype

the values for that entry.

REM edit option
IF selectS="e" OR select$ ="E" THEN
INPUT "your user name" userS

flag=0
count=1
WHILE flag=0 AND count<=index
IF userS= nameS(count) THEN
flag=1
INPUT "new score" newscore$
scoreS(count) = newscore$
ENDIF
IF flag=0 AND count>=index THEN
PRINT "user name not found"
ENDIF
count=count+1
ENDWHILE

chan2=0PENOUT "c:\users\george\data.dat"

FOR count=1 TO index
PRINT#chan2,nameS$(count),scoreS(count)

NEXT count

CLOSE#chan2

ENDIF

110

Design /
development

This is the new data
section

It asks for new name and
score then appends these
to the end of the array and
writes the data to file.

REM new name and score option

IF selectS="n" OR selectS="N" THEN

INPUT "new user name" newname$
INPUT "your high score" highscore$
index=index+1

nameS(index)= newnameS
scoreS(index)= highscore$S

chan2=0PENOUT "c:\users\george\data.dat"

FOR count=1 TO index
PRINT#chan2,nameS(count),scoreS(count)

NEXT count

CLOSE#chan?2

ENDIF

111

Testing and evaluation

The testing was completed as the system was developed, see evidence of each
section being tested during development.

The system does what was required:

Create a file: Checks to see if file exists then creates or opens the file

Add data to file: Data added by writing new item to array and writing data back to
file

Locate data by name and high score: Incomplete, it can locate data by name to
modify or delete, but not by high score, sort routine not implemented for this.
Delete an item and score, completed data to delete simply skipped when data
written to new array and new array data written back to file.

Locate and update a a high score: Can update a score by user name

Most elements completed successfully but the interface is not clear and there are
very limited user instructions or validation apart from choice of options and
existence of data file.

Scores stored as string variables for convenience so no arithmetic possible but so
sorting for highest score would require data to be converted to numeric values.

112

	A452_SAM_Exemplar_23.pdf
	GCSE Computing
	Unit A452: Practical investigation
	Exemplar Material for A452 SAM
	Task 1 Investigate the instruction set provided with one implementation of the LMC.
	Program 1
	Running the program
	Program 2
	Task 3. Explain in your own words what happens as each of the instructions is executed.
	Program 1
	Program 2
	Task 4. Write programs to run in LMC:
	i. Take in two numbers and output the smaller first, then the larger.
	Produce evidence to show that you have planned, written and tested your code.
	ii. Produce a multiplication table from 1 to 10 for any number input by the user
	Produce evidence to show that you have planned, written and tested your code.
	Pseudocode
	iii. Input five numbers and output them in reverse order.
	Produce evidence to show that you have planned, written and tested your code.
	5. Produce an evaluation of your solutions.
	6. Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

	A452_SAM_Exemplar_37.pdf
	GCSE Computing
	Unit A452: Practical investigation
	Exemplar Material for A452 SAM
	Task 1. Investigate the instruction set provided with one implementation of the LMC.
	The instruction set
	Example instructions in use
	Task 2. Load and run at least two of the demonstration programs supplied with the implementation.
	AND
	Task 3. Explain in your own words what happens as each of the instructions is executed.
	Running the program
	Program 2
	Task 4. Write programs to run in LMC:
	i. Take in two numbers and output the smaller first, then the larger.
	Produce evidence to show that you have planned, written and tested your code.
	ii. Produce a multiplication table from 1 to 10 for any number input by the user.
	Produce evidence to show that you have planned, written and tested your code.
	iii. Input five numbers and output them in reverse order.
	Produce evidence to show that you have planned, written and tested your code.
	Task 5. Produce an evaluation of your solutions.
	Task 6. Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

	A453_SAM_Exemplar_material_24.pdf
	A453
	Analysis
	Analysis
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	A453
	Analysis
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	A453
	Analysis
	Analysis
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

	A453_SAM_Exemplar_material_38.pdf
	A453
	Analysis
	Analysis
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	A453
	Analysis
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	A453
	Analysis
	Analysis
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

