

Exemplar Work for SAMs

 Units A452 and A453

© OCR 2012

URS665 Devised September 2010 A452/URS
Oxford Cambridge and RSA Examinations

Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate.

Unit A452 Year

Centre Name Centre Number

Candidate Name Candidate Number

 Guidance Teacher Comment Mark

Pr

ac
tic

al
 In

ve
st

ig
at

io
n

There may be little or no
evidence of any practical
investigation.
The evidence supplied is
minimal and poorly
documented with little
relevance to the set task.
The practical evidence may all
be the result of group or
teacher led activity with little
input from the student.

[0 - 5]

There is evidence of a practical
investigation
The evidence supplied is
documented clearly and is
relevant to the set task
There is evidence of individual
research beyond the group
activity and any teacher led
activity.
The practical investigations show
signs of planning but there may
be omissions made in assessing
the consequences.

[6 - 10]

There is evidence of a well
structured practical
investigation
The evidence supplied is well
organised and clearly relevant
to the set task
There is extensive evidence of
individual practical
investigation beyond the group
activity and any teacher led
activity
The practical investigation
shows clear signs of planning
and a structured approach to
evidence gathering to provide
a complete investigation
of the set topic area and
beyond.
Practical investigation has
been carried out with skill and
due regard to safety issues.
[11 - 15]

Max
15

GCSE Computing Controlled Assessment
 Unit A452 Practical Investigation

 Unit Recording Sheet

There is evidence of a practical
investigationg
The evidence supplied is
documented

There is evidence of individual
research beyond the groupy g p
activity and any teacher ledy
activity.
The practical investigations show

y
p g

signs of planning but there mayg p g y
be omissions made in assessing
the consequences.

Decent attempt to investigate LMC. Some
examples used and explained well. Attempts
ate the subsequent taskss OK. Overall lacking
in detail and explanation of the process.

8

2

URS665 Devised September 2010 A452/URS
Oxford Cambridge and RSA Examinations

Ef

fe
ct

iv
e

an
d

ef
fic

ie
nt

us

e
of

 te
ch

ni
qu

es

The techniques used may not
be entirely appropriate to the
problem and will only produce
partially working solutions to
a small part of the problem.

 [0 - 3]

The techniques will be used
appropriately giving working
solutions to most of the parts of
the problem.
Some parts of the solution may
be executed in a partial or
inefficient manner.

[4 - 7]

The techniques are used
appropriately in all cases
giving an efficient, working
solution for all parts of the
problem.

[8 - 10]

Max
10

Te

ch
ni

ca
l u

nd
er

st
an

di
ng

The candidate demonstrates a
limited understanding of
the technical issues related to
the scenario.
Little detail is presented.
There will be limited indication
of any evidence provided
being analysed.
There is little correct use of
technical terminology.

[0 - 3]

The candidate demonstrates
a reasonable understanding of
the technical issues related to the
scenario.
The amount of detail presented is
adequate to support the
arguments.
There is some analysis carried
out on the evidence collected.
The use of technical terminology
is largely correct but it may be
limited.

[4 - 7]

The candidate demonstrates a
thorough and secure
understanding of the technical
issues related to the scenario.
A wide range of relevant and
detailed information is
presented.
The evidence which has been
collected is fully analysed.
Technical terminology is used
correctly.
At the top end of the band, this
will be extensive and
confidently used.

[8 - 10]

Max
10

The candidate demonstrates
a reasonable understanding of g
the technical issues related to the
scenario.
The amount of detail presented isp
adequate to support theq
arguments.

The use of technical terminology
is largely correct but it may beg
limited.

p
There will be limited indication
of any evidence provided y
being analysed.

The techniques will be used q
appropriately giving working pp p y g g g
solutions to most of the parts of
the problem. p
Some parts of the solution may p
be executed in a partial or p
inefficient manner.

The techniques are largely used adequately but
not always effeiciently. most of the solutions
work but there is a lack of explanation
throughout the development. The solutions are
not always efficient.

6

The use of technical terms is reasonable but
not always accurate and the report lacks deatil
and analysis.

5

3

URS665 Devised September 2010 A452/URS
Oxford Cambridge and RSA Examinations

C

on
cl

us
io

ns
 a

nd
 e

va
lu

at
io

n

Conclusions are weak or
missing with little or no
justification.
The solution is presented with
little if any evidence of testing.
The evidence of written
communication is limited with
little or no use of specialist
terms.
There are many errors in
spelling, punctuation and
grammar.
Information may be ambiguous
or disorganised.
There is limited if any
reference to evidence.
The evaluation may be
simplistic with little or no
relevance.

[0 - 3]

The material has structure and
coherence with justifiable
conclusions being reached
although there may be some
omissions.
There is evidence that the
solutions have been tested for
basic functionality.
Candidates will have produced a
sound evaluation which
reviews some aspects of the task.
Evidence of good written
communication using some
specialist terms.
There are few errors in spelling,
grammar and punctuation.
Information for the most part will
be presented in a structured
format.
Specialist terms will be used
appropriately and for the most
part correctly.

[4 – 7]

Thorough and convincing
conclusions have been
reached, which are borne out
by the research carried out by
the candidate.
The solutions are fully tested
and there is little doubt that the
solutions presented are fully
functional.
This material has been
presented in a clear and
relevant way which is simple to
navigate.
A high level of written
communication is obvious
throughout the task and
specialist terms/technology
with accurate use of spelling is
used.
Grammar and punctuation is
consistently correct.
Information is presented in a
coherent and structured
format.
The evaluation will be relevant,
clear, organised and presented
in a structured and coherent
format.

[8- 10]

Max
10

Total/45

Conclusions are weak or
missing with little or nog
justification.

g
Information may be ambiguousy
or disorganised.g
There is limited if anyy
reference to evidence.
The evaluation may bey
simplistic with little or nop
relevance.

There is evidence that the
solutions have been tested for
basic functionality.

Specialist terms will be usedp
appropriately

p
There are few errors in spelling,p
grammar and punctuation.g p
Information for the most part will p
be presented in a structuredp
format.

There is evidence of some testing for function
throughout the report but this lacks organisation
and is not complete. The evaluation is minimal
and adds little.

4

23

4

GCSE Computing

Unit A452: Practical investigation

Exemplar Material for A452 SAM

INSIDE THE MACHINE

Most computers are built to the same basic architecture – the Von Neumann
architecture. They have memory where program instructions and other data are
stored and they have a processor that decodes and carries out the program
instructions.

The processor has special memory locations called registers. This is where the
program instructions are acted on. There is a working demonstration of how the
processor and memory interact called the Little Man Computer (LMC). Some
versions run as an embedded applet in a browser. The details are
here:http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html

The applet itself is here:
http://www.atkinson.yorku.ca/~sychen/research/LMC/LittleMan.html

Alternatively you can access another version from:
http://www.cs.ru.nl/~erikpoll/Teaching/III/lmc/

1 Investigate the instruction set provided with one implementation of the LMC.

2 Load and run at least two of the demonstration programs supplied with the
implementation.

3 Explain in your own words what happens as each of the instructions is executed.

4 Write programs to run in LMC:

(i) Take in two numbers and output the smaller first, then the larger

(ii) Produce a multiplication table from 1 to 10 for any number input by the user

(iii) Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

5 Produce an evaluation of your solutions.

6 Write a conclusion about the possibility of writing effective and complex programs
with only a limited instruction set.

5

http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LMCHome.html
http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LittleMan.html
http://www.cs.ru.nl/%7Eerikpoll/Teaching/III/lmc/

The Little Man Computer

Task 1 Investigate the instruction set provided with one implementation of the LMC.

The Little Man Computer is like a real computer but not as powerful. It can only do some of the
things that a real computer can do. The instruction set is a list of the commands you can use with
it. It has ten of these and they let you move data, add, subtract and check what is happening after
you do something.

LDA: load the accumulator with something.
STA: store what is in the accumulator in memory.
ADD: add data from memory into the accumulator.
SUB: subtract data in memory from the accumulator.
INP: input a number – it goes into the accumulator.
OUT: output what is in the accumulator.
BRZ: branch to the place indicated if there is a zero in the accumulator.
BRP: branch to the place indicated if the number if the accumulator has a zero or a positive
number in it.
BRA: branch anyway
HLT: halt the program
DAT: this shows you where data is kept.

These instructions can be given either as machine code numbers or as assembly language
mnemonics.

I tried some of the instructions in the LMC.

INP
STA NUM
INP
SUB NUM
OUT
HLT
NUM DAT

This program takes two inputs and subtracts the second one from the first. Here is the LMC when
the program has been compiled.

You can see that INP has been changed to 901 and stored in cell 0.
STA has become 3 and the 06 means that the data is to be stored in location 6. Location 6 is the
place where the compiler has decided that NUM must go.
Cell 2 has another INP or 901 in it. Cell 3 has 2 for subtract and 06 for where it must look to get
the number to subtract.
902 in cell 4 outputs the result from the accumulator.
0 in 5 is the halt instruction.

6

Task 2. Load and run at least two of the demonstration programs supplied with the
implementation.

I first tried this example from the web site.

Program 1

INP
OUT
HLT

Here it is in the LMC.

All this program does is to take a number from the user and output it. Here is evidence that I did
that.

Running the program

When the run button is clicked, the program counter is set to 1 and you can see that input is
required.

I entered the number 4.

Here the number 4 is shown in the outbox.

The third instruction is HLT so the program ends.

I then tried another program from the web site. It is supposed to add then subtract numbers.

7

Program 2

INP
STA FIRST
INP
ADD FIRST
OUT
INP
SUB FIRST
OUT
HLT
FIRST DAT

Here it is compiled.

I then ran it. Here is my first input which is 8.

I then entered 7. I expected the answer 15 to be output.

8

Here you can see 15 in the out-box.

I will now enter 10. I expect 2 to be output.

Task 3. Explain in your own words what happens as each of the instructions is executed.

Program 1

INP
This takes a number from the user and puts it in the accumulator.

OUT
This outputs the value in the accumulator.

HLT
This stops the program.

Program 2

INP
This takes a number from the user and puts it in the accumulator. In my test, this is 8.

STA FIRST
This stores that number in the memory cell labelled FIRST.

INP
This takes a number from the user and puts it in the accumulator. In this case, I used 7.

ADD FIRST
This adds the number in FIRST to whatever is in the accumulator, which is the number last
entered. 8+7=15 so that goes into the accumulator.

OUT
This outputs what is in the accumulator, which is the result of the addition. In this case, it is 15.

INP
This takes a number from the user and puts it in the accumulator. I used 10 in this case.

SUB FIRST
This takes away the number in FIRST from whatever is now in the accumulator. 10-8=2 so 2 is now
in the accumulator.

9

OUT
This outputs the result, which in my test was 2.

HLT
This halts the program.

FIRST DAT
This assigns a label FIRST to a memory location which is used to store the first value input in this
program.

Task 4. Write programs to run in LMC:

i. Take in two numbers and output the smaller first, then the larger.

Produce evidence to show that you have planned, written and tested your code.

Here is the pseudocode to solve this problem.

Get the first number
Store it as FIRST
Get the second number
Store it as SECOND
Subtract the first number (the second is still in the accumulator)
If the result is positive output the second number then the first
Otherwise output the first number followed by the second.

If we store both numbers, then we can bring them back to output them.

Here is the LMC code that achieves this.

INP
STA FIRST
INP
STA SECOND
SUB FIRST
BRP SECONDBIG
LDA SECOND
OUT
LDA FIRST
OUT
BRA PROGEND
SECONDBIG LDA FIRST
OUT
LDA SECOND
OUT
PROGEND HLT
FIRST DAT
SECOND DAT

Here I run it with 50 followed by 60. I expect the numbers to come out in the same order.

10

Here is the output box after I ran this.

It worked correctly, although you cannot see the 50 because it happened very quickly.

I will now test it the other way round. I will enter 100 then 20. I expect the 20 to come out first then
the 100.

This worked too. Here is the 100 showing at the end.

The output happens quickly so it is best to run it using the slow button.
Here is the output when tested with 3 then 4. The number 4 is the last output.

Here we test it with 4 then 3. Again 4 is the last output with 3 being visible as the last input into the
in-box.

ii. Produce a multiplication table from 1 to 10 for any number input by the user

Produce evidence to show that you have planned, written and tested your code.

This is hard to do with LMC because it can’t do multiplication. I have found out that to get round
that, you have to add the numbers together as many times as you need

So, to make this happen, what we need to do first is to get the number from the user, then add it to
itself as many times as needed. I will first test this by writing a program to multiply a number by 3. I
will put the 3 in a memory location and then add the input number together 3 times.

I will set up a counter to count how many times this has happened.

11

Pseudocode

Get number
Store number
Add number
Get counter
Add 1
Get THREE
Take away counter
If positive go back and do another addition
Output result

INP
STA NUMBER
LOOP LDA TOTAL
ADD NUMBER
STA TOTAL
LDA COUNTER
ADD ONE
STA COUNTER
LDA THREE
SUB COUNTER
BRP LOOP
LDA TOTAL
OUT
HLT

THREE DAT 003
COUNTER DAT 001
ONE DAT 001
NUMBER DAT
TOTAL DAT

I tested this by entering the number 4. I expected this to be multiplied by 3 and give the answer 12.

You can see that it worked. Just to be sure, I will test it with 5. I expect the answer 15.

That worked too.

12

iii. Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

This is quite easy to do. You take the five numbers, store them in separate locations, then output
them in whatever order you want. In this case it will be in reverse order.

Here is the LMC code.

INP
STA ONE
INP
STA TWO
INP
STA THREE
INP
STA FOUR
INP
STA FIVE

LDA FIVE
OUT
LDA FOUR
OUT
LDA THREE
OUT
LDA TWO
OUT
LDA ONE
OUT

ONE DAT
TWO DAT
THREE DAT
FOUR DAT
FIVE DAT

I tested this by inputting 10, 20, 30, 40, 50. I expected the output to be 50, 40, 30, 20, 10.
Here is the final output:

You can see that the in-box still has the 50 in it but the out-box has finished on 10, which is correct.

5. Produce an evaluation of your solutions.

I am pleased with what I did and most of the solutions work well. I didn’t manage to finish the
multiplication because I ran out of time.

6. Write a conclusion about the possibility of writing effective and complex programs with
only a limited instruction set.

It would be hard to write something big in LMC. Even comparing two numbers took ages to do. It
would be better if it had more instructions and a proper if.. then. So, I think that if you wanted to do
something complex like write a word processor, it would take too long.

13

URS665 Devised September 2010 A452/URS
Oxford Cambridge and RSA Examinations

Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate.

Unit A452 Year

Centre Name Centre Number

Candidate Name Candidate Number

 Guidance Teacher Comment Mark

Pr

ac
tic

al
 In

ve
st

ig
at

io
n

There may be little or no
evidence of any practical
investigation.
The evidence supplied is
minimal and poorly
documented with little
relevance to the set task.
The practical evidence may all
be the result of group or
teacher led activity with little
input from the student.

[0 - 5]

There is evidence of a practical
investigation
The evidence supplied is
documented clearly and is
relevant to the set task
There is evidence of individual
research beyond the group
activity and any teacher led
activity.
The practical investigations show
signs of planning but there may
be omissions made in assessing
the consequences.

[6 - 10]

There is evidence of a well
structured practical
investigation
The evidence supplied is well
organised and clearly relevant
to the set task
There is extensive evidence of
individual practical
investigation beyond the group
activity and any teacher led
activity
The practical investigation
shows clear signs of planning
and a structured approach to
evidence gathering to provide
a complete investigation
of the set topic area and
beyond.
Practical investigation has
been carried out with skill and
due regard to safety issues.
[11 - 15]

Max
15

GCSE Computing Controlled Assessment
 Unit A452 Practical Investigation

 Unit Recording Sheet

There is evidence of a well
structured practicalp
investigation g
The evidence supplied is wellpp
organised and clearly relevantg
to the set taskThere is evidence of individual

research beyond the groupy g p
activity and any teacher ledy
activity.
The practical investigations show

y
p

signs of planning b

y
Practical investigation hasg
been carried out with skill and
due regard to safety issues.

g p g
a structured approach top

evidence gathering

sample

sample A

Some good evidence of investigation beyond
the initial starting point but, while qquite good, it
does lack some depth of treatment. The tasks
are carried out with some planning including
evidence of flow charts and some detail of the
approach taken. Not all the choices made are
clearly explained.

12

14

URS665 Devised September 2010 A452/URS
Oxford Cambridge and RSA Examinations

Ef

fe
ct

iv
e

an
d

ef
fic

ie
nt

us

e
of

 te
ch

ni
qu

es

The techniques used may not
be entirely appropriate to the
problem and will only produce
partially working solutions to
a small part of the problem.

 [0 - 3]

The techniques will be used
appropriately giving working
solutions to most of the parts of
the problem.
Some parts of the solution may
be executed in a partial or
inefficient manner.

[4 - 7]

The techniques are used
appropriately in all cases
giving an efficient, working
solution for all parts of the
problem.

[8 - 10]

Max
10

Te

ch
ni

ca
l u

nd
er

st
an

di
ng

The candidate demonstrates a
limited understanding of
the technical issues related to
the scenario.
Little detail is presented.
There will be limited indication
of any evidence provided
being analysed.
There is little correct use of
technical terminology.

[0 - 3]

The candidate demonstrates
a reasonable understanding of
the technical issues related to the
scenario.
The amount of detail presented is
adequate to support the
arguments.
There is some analysis carried
out on the evidence collected.
The use of technical terminology
is largely correct but it may be
limited.

[4 - 7]

The candidate demonstrates a
thorough and secure
understanding of the technical
issues related to the scenario.
A wide range of relevant and
detailed information is
presented.
The evidence which has been
collected is fully analysed.
Technical terminology is used
correctly.
At the top end of the band, this
will be extensive and
confidently used.

[8 - 10]

Max
10

The candidate demonstrates a
thorough
understanding of the technical

g
g

issues related to the scenario.
A wide range of relevant a

information is
g

presented.

y y
Technical terminology is used
correctly.

The amount of detail presented isp
adequate to support theq
arguments.
There is some analysis carried

g
y

out on the evidence collected.

this
will be
confidently used.

The use of technical terminology
is largely correct

Effective solutions and quite efficient but lacks
explanation in some places.

8

There is evidence of good understanding of the
technical aspects and basic features are used
effectively to demonstrate a good
understanding, but explanations lack the deatil
that would demonstrate a full understanding.

9

15

URS665 Devised September 2010 A452/URS
Oxford Cambridge and RSA Examinations

C

on
cl

us
io

ns
 a

nd
 e

va
lu

at
io

n

Conclusions are weak or
missing with little or no
justification.
The solution is presented with
little if any evidence of testing.
The evidence of written
communication is limited with
little or no use of specialist
terms.
There are many errors in
spelling, punctuation and
grammar.
Information may be ambiguous
or disorganised.
There is limited if any
reference to evidence.
The evaluation may be
simplistic with little or no
relevance.

[0 - 3]

The material has structure and
coherence with justifiable
conclusions being reached
although there may be some
omissions.
There is evidence that the
solutions have been tested for
basic functionality.
Candidates will have produced a
sound evaluation which
reviews some aspects of the task.
Evidence of good written
communication using some
specialist terms.
There are few errors in spelling,
grammar and punctuation.
Information for the most part will
be presented in a structured
format.
Specialist terms will be used
appropriately and for the most
part correctly.

[4 – 7]

Thorough and convincing
conclusions have been
reached, which are borne out
by the research carried out by
the candidate.
The solutions are fully tested
and there is little doubt that the
solutions presented are fully
functional.
This material has been
presented in a clear and
relevant way which is simple to
navigate.
A high level of written
communication is obvious
throughout the task and
specialist terms/technology
with accurate use of spelling is
used.
Grammar and punctuation is
consistently correct.
Information is presented in a
coherent and structured
format.
The evaluation will be relevant,
clear, organised and presented
in a structured and coherent
format.

[8- 10]

Max
10

Total/45

Thorough and convincingg
conclusions have been
reached,

The solutions are tested
and the
solutions presented are
functional.

p

This material has been
presented in a clear andp
relevant way which is simple to
navigate.g
A high level of writteng
communication is obvious
throughout the task andg
specialist terms/technologyp gy
with accurate use of spelling is
used.
Grammar and punctuation isp
consistently correct.y
Information is presented in ap
coherent and structured
format.
The evaluation

There is evidence that the
solutions have been tested for
basic functionality.

A decent attempt to provide evidence but the
testing is limited in some cases, otherwise well
organised with a good evaluation of the topic.

8

37

16

GCSE Computing

Unit A452: Practical investigation

Exemplar Material for A452 SAM

INSIDE THE MACHINE

Most computers are built to the same basic architecture – the Von Neumann
architecture. They have memory where program instructions and other data are
stored and they have a processor that decodes and carries out the program
instructions.

The processor has special memory locations called registers. This is where the
program instructions are acted on. There is a working demonstration of how the
processor and memory interact called the Little Man Computer (LMC). Some
versions run as an embedded applet in a browser. The details are
here:http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html

The applet itself is here:
http://www.atkinson.yorku.ca/~sychen/research/LMC/LittleMan.html

Alternatively you can access another version from:
http://www.cs.ru.nl/~erikpoll/Teaching/III/lmc/

1 Investigate the instruction set provided with one implementation of the LMC.

2 Load and run at least two of the demonstration programs supplied with the
implementation.

3 Explain in your own words what happens as each of the instructions is executed.

4 Write programs to run in LMC:

(i) Take in two numbers and output the smaller first, then the larger

(ii) Produce a multiplication table from 1 to 10 for any number input by the user

(iii) Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

5 Produce an evaluation of your solutions.

6 Write a conclusion about the possibility of writing effective and complex programs
with only a limited instruction set.

17

http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LMCHome.html
http://www.atkinson.yorku.ca/%7Esychen/research/LMC/LittleMan.html
http://www.cs.ru.nl/%7Eerikpoll/Teaching/III/lmc/

The Little Man Computer

Task 1. Investigate the instruction set provided with one implementation of the LMC.

The Little Man Computer is a simulation of what happens in a real computer. It is a much reduced
version because it only has ten instructions in its instruction set instead of over a hundred in a
typical PC. Also, it only has four registers against over twenty in modern PCs. The registers are the
accumulator, the program counter, the memory address register and the memory data register.

the registers

This shot shows the start up screen before a program has been entered. A program can be typed
or pasted into the message box in assembly language mnemonics and then compiled to produce
the machine code by clicking the button.

18

The instruction set

Here are the ten instructions together with their assembly language and machine code equivalents.
Although there are only ten, they can be combined in a program to do many useful tasks.

Instruction Mnemonic Code What it means

LOAD LDA 5 Copy a number into the accumulator.

STORE STA 3 Store a number at a stated address

ADD ADD 1 Add a number from a stated address to
whatever is in the accumulator.

SUBTRACT SUB 2 Subtract the number at a stated address
from the accumulator.

INPUT INP 901 Take an input from the in-box and put
it in the accumulator.

OUTPUT OUT 902 Output what is in the accumulator to
the out-box.

BRANCH IF
ZERO

BRZ 7 Branch to the stated address if zero is
in the accumulator.

BRANCH IF
ZERO OR
POSITIVE

BRP 8 Branch to the stated address if zero or
a positive number is in the

accumulator.

BRANCH
ALWAYS

BRA 6 Branch to the stated address without
checking the accumulator.

END HLT 000 End the program.

DATA
LOCATION

DAT (the data) This marks where a particular item of
data is to be found. It allows you to

label it.

These instructions can be given either as machine code numbers or as assembly language
mnemonics.

Example instructions in use

Here are some examples of how the instruction mnemonics can be used.

LDA 12: load the accumulator with whatever is in location 12.
STA 20: store whatever is in the accumulator in location 20.
ADD 20: add whatever is in location 20 to whatever is in the accumulator.
SUB 20: subtract whatever is in location 20 from the accumulator.
INP: this just waits for an input then copies it into the accumulator, replacing whatever is already in
there.
OUT: this copies whatever is in the accumulator to the out-box.
BRZ 20: branch to the instruction in location 20 if the accumulator contains zero.
BRP 20: branch to the instruction in location 20 if the accumulator contains zero or any positive
number.
BRA 20: unconditionally branch to the instruction in location 20.
HLT: stop the program.

19

Task 2. Load and run at least two of the demonstration programs supplied with the
implementation.

AND

Task 3. Explain in your own words what happens as each of the instructions is executed.

Here is the simplest one that is on the website.

INP
OUT
HLT

Here it is in the message box.

When the compile button is clicked, the program is converted into machine code and placed in
memory.

20

You can see that memory location 0 now contains 901 which is the instruction (opcode) for INP.
Location 1 contains 902 which is OUT. Location 2 contains 0 which is HLT.

Running the program

When the run button is clicked, the program counter is set to 1 and you can see that input is
required.

We shall enter the number 4.

The number 4 is copied into the accumulator and instruction 2 copies it into the out-box.

The third instruction is HLT so the program ends.

21

Program 2

INP
STA FIRST
INP
ADD FIRST
OUT
INP
SUB FIRST
OUT
HLT
FIRST DAT

This program adds and subtracts numbers. Here it is in the message box.

When it is compiled, you can see the machine code in the memory locations.

22

Address 0 contains 901 which means INP. It is asking for a number to be input, which is then
stored in the accumulator.
Address 1 contains 309. This means store what is in the accumulator in address labelled FIRST,
which is in fact address 9. Memory address 9 has been chosen by the assembler as being where
the data labelled FIRST is to be stored.
Address 2 contains 901, asking for another input. This will go into the accumulator.
Address 3 contains 109. 1 is for ADD and 09 is address 9, so it means add to the accumulator
whatever is in address 9, which is of course where the data labelled FIRST is found.
Address 4 contains 902 which is OUT. So the result of the addition, the number now in the
accumulator is output.
Address 5 contains 901, asking for another input.
Address 6 contains 209 which means 2 for SUB and 09 means subtract from the accumulator
whatever is in FIRST, i.e. address 9.
Address 7 contains another 902 which means output the contents of the accumulator.
Address 8 contains 0 which is HLT or halt the program.

We will now run the program with the values 5, 10 and 12. We expect the first output to be 15
because of the addition of 5 and 10. The second output will be 7 because 5 will be subtracted from
the number 12 that we input.

Here is 5 as the first input.

We can see that it has been stored in location 9 which is labelled FIRST.

We enter 10.

We can see that the accumulator has taken the value 15 and also it has been output. You can see
in the MEM data register that the computer is currently holding the OUT instruction, 901. The next
instruction will be 6, which is in the program counter.

23

The instruction in 6 is again INP. We now enter 12 and click Enter. This puts 12 into the
accumulator. Instruction 7 is immediately followed which is SUB FIRST. This subtracts 5, which is
stored in the location labelled FIRST from the accumulator. We now have 7 in the accumulator.
Instruction 7 is OUT, so the 7 is copied into the outbox. The next and final instruction in the
program counter is 8, which halts the program.

Task 4. Write programs to run in LMC:

i. Take in two numbers and output the smaller first, then the larger.

Produce evidence to show that you have planned, written and tested your code.

Y

N

Here is the LMC code that achieves this.

INP
STA FIRST
INP
STA SECOND

24

SUB FIRST
BRP SECONDBIG
LDA SECOND
OUT
LDA FIRST
OUT
BRA PROGEND
SECONDBIG LDA FIRST
OUT
LDA SECOND
OUT
PROGEND HLT
FIRST DAT
SECOND DAT

The output happens quickly so it is best to run it using the slow button.
Here is the output when tested with 3 then 4. The number 4 is the last output.

Here we test it with 4 then 3. Again 4 is the last output with 3 being visible as the last input into the
in-box.

ii. Produce a multiplication table from 1 to 10 for any number input by the user.

Produce evidence to show that you have planned, written and tested your code.

This requires multiplication to be done using multiple addition. The program asks for a number and
then adds it to itself, the it adds it to itself again, outputting each result as it goes and so on until it
has done this for each number up to ten. This is controlled by a loop, which terminates when the
result of the countdown is negative. To make this happen ten times, the initial number is first output
and then the addition process is made to happen ten times by having an outer loop controlled by
another counter which increments each time a number has been output. When the counter
produces a negative number when subtracted from 9, the loop terminates because all ten products
have been output.

25

N

Y

N

Y

26

Here is the LMC code that makes this work.

INP
STA NUMBER1
OUT

OUTERLOOP LDA COUNTER
STA NUMBER2

INNERLOOP LDA RESULT
ADD NUMBER1
STA RESULT
LDA NUMBER2
SUB ONE
STA NUMBER2
BRP INNERLOOP

LDA RESULT
OUT

LDA ZERO
STA RESULT
LDA ONE
STA NUMBER2
LDA COUNTER
ADD ONE
STA COUNTER
LDA NINE
SUB COUNTER
BRP OUTERLOOP

HLT
ONE DAT 001
NUMBER1 DAT 000
NUMBER2 DAT 001
COUNTER DAT 001
RESULT DAT 000
NINE DAT 009
ZERO DAT 000

Here is the LMC with this code successfully compiled.

27

We shall test this with 4 as an input. We expect to get the 4 times table, 4,8,12,16 etc up to 40.
The correct values appeared one after the other in the out-box. Here is the end condition showing
the 4 we originally input and the 40 as the final product. You can see that the accumulator is set to
-1. This is the control that was used to terminate the outer loop.

28

iii. Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

This can be done quite simply, by setting up five storage locations to accept the five numbers. The
numbers can then be called back in any order the programmer wants. The use of labels makes this
easy.

This is straightforward so it does not need a flow chart to illustrate it.

Here is the LMC code.

INP
STA ONE
INP
STA TWO
INP
STA THREE
INP
STA FOUR
INP
STA FIVE

LDA FIVE
OUT
LDA FOUR
OUT
LDA THREE
OUT
LDA TWO
OUT
LDA ONE
OUT

ONE DAT
TWO DAT
THREE DAT
FOUR DAT
FIVE DAT

Here is the final output from running this code. The inputs were 1,2,3,4,5. The LMC shows, at the
end, the final output of 1 and the final input of 5. The outputs were 5,4,3,2,1 as expected.

29

Task 5. Produce an evaluation of your solutions.

The solutions all work perfectly and the code is mostly efficient. The multiplication uses a nested
loop to produce the output with minimal code. The reversing of the numbers could have been
made more elegant with loops, but with so few operations, the savings would have been minimal if
at all.

30

Task 6. Write a conclusion about the possibility of writing effective and complex programs
with only a limited instruction set.

This depends on how limited the set is. A rich instruction set makes programming easier because
there is an instruction to do most of the things that you require. With a smaller set, you have to
group instructions together in order to carry out the most simple task. In the case of the LMC, it is
not possible to multiply or divide using a direct instruction, so multiplication has to be achieved by
adding numbers together multiple times and division by multiple subtractions. So, a lot is possible
with a small instruction set, but it leads to much harder work and the likelihood of errors. Also,
solutions that are produced by long sections of code are likely to be slower when executed than
solutions implemented in hardware.

The hard work involved in writing a program in LMC can be shown by looking at a simple program
written in VB. This one

Sub Main()

 Dim totalnum As Integer
 Dim multiplier As Integer

 multiplier = 3

 For num = 1 To 10

 Console.WriteLine(multiplier * num)

 Next num

 Console.ReadKey()

 End Sub

In just a few lines, we have something that would take many lines in LMC.

The LMC has further big limitations in that it cannot handle characters. So it can do a lot of quite
sophisticated mathematical operations but it cannot do anything with text, which makes it useless
for many important computing applications.

The LMC has no features for acting directly on the hardware like most larger instruction sets. It
also doesn’t have bitwise operations which reduces the variety of processes that can be carried out
on data.

31

A453 Tasks

32

Candidates should complete all tasks.

The tasks are set so as to enable all the techniques identified in the specification to
be demonstrated in their solution. The tasks provide opportunities to demonstrate a
range of skills and all three tasks contribute to the overall mark awarded for this
assessment. Marks are awarded for using the appropriate skills and techniques
effectively and efficiently to produce a solution to these three tasks. Not all techniques
will be required for each of the subtasks. You are required to identify the
requirements for each task, design a solution using appropriate techniques, code the
solution and test/evaluate this solution against the identified design criteria.

Task 1 Animal ages.

Design code and test a program to convert dog or cat years into their human equivalents. The

program needs to ask the user for their choice of animal and should allow them to enter the age.

The output should be the equivalent human age for the animal.

The formulae for converting these animal ages to human equivalents are:

DOG:

11 dog years per human year for the first 2 years, then 4 dog years per human year for each
year after.

CAT:

15 years for the first year of life, 10 for the second year and 4 for each year after.

33

Task 2 System password.

Design, code test and evaluate a system to accept and test a password for certain
characteristics.

It should be at least 6, and no more than 12 characters long

The system must indicate that the password has failed and why, asking the user to re-enter
their choice until a successful password is entered.

A message to indicate that the password is acceptable must be displayed.

Password strength can be assessed against simple criteria to assess its suitability; for
example a password system using only upper and lower case alphabetical characters and
numeric characters could assess the password strength as:

WEAK if only one type used, e.g. all lower case or all numeric

MEDIUM if two types are used

STRONG if all three types are used.

For example

hilltop, 123471324, HAHGFD are all WEAK,

catman3 and 123456t are MEDIUM and

RTH34gd is STRONG

A message to indicate the password strength should be displayed after an acceptable
password is chosen.

Task 3 High scores database. 15 marks

Design, code and test a system to store and manage user names and their highest score.

The system must be able to

create a file

add data to a file

locate data in the file by name and their highest score

delete an item and its associated data from the file

locate and update a high score for a user

34

URS666 Revised November 2010 A453/URS
Oxford Cambridge and RSA Examinations

Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate.

Unit A453 Year

Centre Name Centre Number

Candidate Name Candidate Number

 Guidance Teacher Comment Mark

U

se
 o

f p
ro

gr
am

m
in

g
te

ch
ni

qu
es

There is an attempt to solve
parts of the tasks using few of
the techniques identified.

[0 - 2]

There is an attempt at most parts
of the tasks using several
techniques.

[3 - 4]

There is an attempt to solve all
of the tasks using most of the
techniques listed.

[5 - 6]

Max
6

Ef

fic
ie

nt
 u

se
 o

f p
ro

gr
am

m
in

g
te

ch
ni

qu
es

The techniques used may not
be entirely appropriate to the
problem and will only produce
partially working solutions to
a small part of the problem.

[0 - 4]

The techniques will be used
appropriately giving working
solutions to most of the parts of
the problem. Some sections of
the solution will be inefficiently
coded.

[5 - 8]

The techniques are used
appropriately in all cases
giving an efficient, working
solution for all parts of the
problem.

[9 - 12]

Max
12

GCSE Computing Controlled Assessment
 Unit A453 Coding a solution

 Unit Recording Sheet

20
12

All three tasks have been attempted
though not all of task 3 was
completed.
Whilst not all techniques have been
used a good number have.

The techniques are generally used
appropriately but coding does often
lack efficiency.
Most parts of the problems have
been completed but not all (e.g.
task 3 delete). 7

44

45

3435

URS666 Revised November 2010 A453/URS
Oxford Cambridge and RSA Examinations

D

es
ig

n

There will be vague comments
on what the task involves
and a vague outline describing
the intended approach to some
parts of the problem.
There will be brief comments
on how this might be tested
but with no mention of success
criteria.

[0 - 3]

There will be a brief analysis of
the tasks indicating what is
required for each of the tasks.
There will be a set of basic
algorithms outlining a solution to
most parts of the problem.
There will be some discussion of
how this will be tested and how
this compares to the identified
outcomes in the tasks.
There will be discussion of the
variables to be used and some
general discussion of validation

[4 - 6]

There will be a detailed
analysis of what is required for
these tasks justifying their
approach to the solution.
There will be a full set of
detailed algorithms
representing a solution to each
part of the problem.
There will be detailed
discussion of testing and
success criteria.
The variables and structures
will be identified together with
any validation required.

[7 - 9]

Max
9

D

ev
el

op
m

en
t

There will be some evidence to
show a solution to part of the
problem with some evidence to
show that it works.
Code will be presented with
little or no annotation, the
variable names not reflecting
their purpose and with little
organisation or structure.

[0 - 3]

There will be evidence to show
how the solutions were
developed.
There will be some evidence
of testing during development
showing that many parts of the
solution work.
The code will be organised with
sensible variable names and with
some annotation indicating what
sections of the code does.

[4 – 6]

There will be detailed evidence
showing development of the
solution with evidence of
systematic testing during
development to show that all
parts work as required.
The code will be well
organised with meaningful
variable names and detailed
annotation indicating the
function of each section.

[7- 9]

Max
9

Code is lacking comments.
Variable names are sometimes
cryptic or ambiguous (e.g. the
use of both pwd$ and pass$ in
Exercise 2)

Brief outline of what task involves.
The algorithms vary in terms of
detail.
There is very little evidence of
testing being planned aside from a
cursory attempt in Ex1.

4

4

3536

URS666 Revised November 2010 A453/URS
Oxford Cambridge and RSA Examinations

Te

st
in

g

There will be evidence to show
that the system has been
tested for function but the test
plan will be limited in scope
with little structure.
There will be little or no
evidence to show how the
result matches the original
criteria.
The evidence of written
communication is limited with
little or no use of specialist
terms.
Errors in spelling, punctuation
and grammar may be intrusive.
Information may be ambiguous
or disorganised.
There will be some comments
on others’ and their own input
into group work.

[0 - 3]

There will be a test plan covering
many parts of the problem with
some suggested test data.
There will be evidence that the
system has been tested using this
data.
There will be some evidence to
show how the results of testing
have been compared to the
original criteria.
There will be a brief discussion of
how successful or otherwise the
solutions are.
Produces evidence of good
written communication using
some specialist terms.
There will be few errors in
spelling, grammar and
punctuation.
Information for the most part will
be presented in a structured
format.
They will have commented on
their own and others’ contribution
to any group work and
[4 - 6]

The test plan will cover all
major success criteria for the
original problem with evidence
to show how each of these
criteria have been met, or if
they have not been met, how
the issue might be resolved.
There will be a full evaluation
of the final solution against the
success criteria.
A high level of written
communication will be obvious
throughout the task and
specialist terms/technology
with accurate use of spelling
will have been used.
Grammar and punctuation will
be used correctly and
information will be presented
in a coherent and structured
format.
They will provide an evaluation
on theirs and others’
contribution to any group
activities.
 [7 - 9]

Max
9

Total/45

Guidance on Completion of this Form
1 One sheet should be used for each candidate.
2 Please ensure that the appropriate boxes at the top of the form are completed.
3 Using the guidance identify the most appropriate mark range for the work and enter the mark awarded for each element in the mark column.
4 Add appropriate comments to assist the moderator in the ‘Teacher Comment’ column.
5 Add the marks for the strands together to give a total out of 45. Enter this total in the relevant box.

Testing has taken place but is far
from exhaustive.
There is some evidence of
testing and programs working.
There are a few SPaG errors and
these are not intrusive
Evaluation states whether tasks
were successful but lacks any
analysis.

4

24
0

3637

A453

Task 1: Animal Age

38

Analysis

A system to convert cat or dog ages into
 human equivalents

Rules

DOG:

11 years per year for 2 years then 4 per extra year

CAT

15 years for first year, 10 for second then 4 per year

39

Analysis

• Need to get choice of cat or dog

• Need to get animal age in whole years

• Need to convert animal age to human
 equivalent using rules and print result.

40

Design

Get age

Get age
Animal age = age * 11

Age <= 2

Animal age = 22 + (age‐2)*4

Animal age = 15

Animal age = 25

DOG

Ca

t YES

NOAge =1

Age = 2

NO

YES

YES

Animal age = 25 +(age‐2)*4

NO

41

Development and testing

The code ask the user to input either

 dog or cat
If dog checks for age <=2
If <= 2 then age*2
If not then 22+ (age‐2)*4

If cat checks
if 1 year then age 15
If 2 years the age 25
If not then 25+(age‐2)*4

PRINT "Cat and Dog age to human equivalent"
REPEAT
INPUT "Choose Cat or Dog, type cat or dog", a$
INPUT "enter the age in years"; a
IF a$="dog" THEN
IF a<=2 THEN
animalage = e*11
ELSE
animalage = 22+(a‐2)*4
ENDIF
ENDIF

IF a$="cat" THEN
IF a <= 1 THEN
animalage =a* 15
ELSE
IF a <= 2 THEN
animalage =15 +(a‐1)*10
ELSE
animalage= 25+(a‐2)*4
ENDIF
ENDIF
ENDIF

PRINT "Your animal's age in human years is", animalage

42

Development and testing

Test Data Expected

2 dog ages 1 11

3 2 22

5 Cat ages 1 15

6 2 25

7 3 29

43

Evidence

Evaluation:

I enjoyed doing this task. It was quite easy and it works as I expected.

44

A453

Task 2: Password strength sample task

45

Analysis

46

Design

Check password length less than 6 error go back
Check password length greater than 12 error go back
Password OK
Check each character

between a and z, set low to 1
between A and Z set upp to 1
between 0 and 9 set num to 1

Add upp, low and num to get password strength
1 weak
2 medium
3 strong

47

Development & Testing

pwd$="NOTOK"
REPEAT
INPUT "Password" pass$
IF LEN(pass$)< 6 THEN
PRINT "too short"
ELSE
IF LEN(pass$)>12 THEN
PRINT"too long"
ELSE
PRINT"OK"
pwd$="OK"
ENDIF
ENDIF
UNTIL pwd$="OK"

Check 6 to 12 characters in password. It works.

48

Development
 & Testing

upp=0

low=0
num=0
FOR x=1 TO LEN(pass$)
IF MID$(pass$,x,1) >="a" AND MID$(pass$,x,1)<="z" THEN
low=1
ENDIF
IF MID$(pass$,x,1) >="A" AND MID$(pass$,x,1)<="Z" THEN
upp=1
ENDIF
IF MID$(pass$,x,1) >="0" AND MID$(pass$,x,1)<="9" THEN
num=1
ENDIF
NEXT
str=upp+low+num
IF str=1 THEN
PRINT "Weak"
ELSE
IF str=2 THEN
PRINT "medium"
ELSE
IF str=3 THEN
PRINT "strong"
ENDIF
ENDIF
ENDIF

Checking mix of upper, lower and number gives right

 result. It works

49

Completed code

Development
 & Testing Checking

 length OK

Checks each character in the

 password in turn to see if it

 is between a and z then A

 and Z then 0 and 9. It sets

 low, upp and num to one if

 it finds one of them and

 adds them up to get the

 overall strength.

50

The program was tested with passwords with less than 6, more
 than 12 and it asked for the password again

The program was tested with mixed passwords using numbers.
 Upper case and lower case, it correctly got the right strength
 each time.

Evaluation of the solution

51

A453

Task 3: High scores table sample task

52

Analysis

• A system to manage high scores

– Create a file and be able to

– Find a score for a user

– Update a score for a user

– Add a new user and score

– Delete a user and score

53

Analysis

• Need to check if the file exists, if not create
 one

• Need to load data from the file into an array

• Need to check if username exists to update
 score, if not error message

• Need an option system for edit, new and
 delete, otherwise error message

• Need to write changed data back to file

54

Design

Use routine to check if file exists and if not create it, otherwise open it.
Read data into arrays for names and scores
Get option edit, new or delete
If edit search for name
Get new score in array
Write data back to file
If new
Get data for next array items
Write data to file
Delete
Find data
Delete from array
Write data to file

55

Design /
 development

Check file exists: if I try to open a file it returns 0 if the file doesn’t exist so I

 can use this to decide if I need to create a file. I will use this code I found

 on a website and changed.

If openin file = 0 the create file else open file

IF OPENIN "c:\users\george\scores.txt" =0 THEN
chan1 = OPENOUT "c:\users\george\scores.txt"
CLOSE#chan1
ENDIF

56

Design /
 development

I need to create an array for the names and scores so that I

 can read in the data from a file.

I have created a simple text file with some names and scores

 to test this section of code.
DIM name$(10)
DIM score(10)

x=1
IF OPENIN "c:\users\george\scores.txtt" =0 THEN
chan1 = OPENOUT "c:\users\george\scores.txt"
CLOSE#chan1
ENDIF

chan1=OPENIN "c:\users\george\scores.txt"
REPEAT
INPUT#chan1,name$(x)
INPUT#chan1,score(x)
ix=x+1
UNTIL EOF#chan1
CLOSE#chan1
x=x‐1

57

Design /
 development

The edit routine should search for the user name in

 the array, edit the score and write the new score to

 the array. If not found it should print and error

 message.

PRINT "To edit a score press e"
PRINT "To add a new name and score press n"
INPUT select$
IF select$="e" THEN
INPUT "your user name" user$
c=1
WHILE c<=x
IF user$= name$(c) THEN
INPUT "new score" newscore
score(c) = newscore
ENDIF
IF c>=x THEN
PRINT "user name not found"
ENDIF
c=c+1
ENDWHILE

chan2=OPENOUT "c:\users\george\scores.txt"
FOR c=1 TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2

Works; frank has been

 updated from 66 to 98

58

Design /
 development

To add the new data feature If n is pressed it starts

 this section of code:
IF select$="n" THEN

INPUT "new user name" newname$
INPUT "your high score" highscore
x=x+1
name$(x)= newname$
score(x)= highscore

chan2=OPENOUT "c:\users\george\scores.txt"
FOR c=1 TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF

The data for sam has been added

 at the end of the array as

 expected.

59

Testing and evaluation

I tested the program as I wrote it and the evidence is in the development.
This was not as easy as the first tasks and I was not able to complete the delete

 option.

The error message user not found keeps printing on screen and I think I can fix this

 by using an IF to check if a change has been made before printing this message.

DIM name$(10)

DIM score(10)

x=1
IF OPENIN "c:\users\george\scores.txt" =0 THEN
chan1 = OPENOUT "c:\users\george\scores.txt"
CLOSE#chan1
ENDIF

chan1=OPENIN "c:\users\george\scores.txt"
REPEAT
INPUT#chan1,name$(x)
INPUT#chan1,score(x)
x=x+1
UNTIL EOF#chan1
CLOSE#chan1
x=x‐1

PRINT "Current High Scores"
FOR i = 1 TO x
PRINT name$(i),score(i)
NEXT i

PRINT "To edit a score press e"

PRINT "To add a new name and score press n"
INPUT select$
IF select$="e" THEN
INPUT "your user name" user$
c=1
WHILE c<=x
IF user$= name$(c) THEN
INPUT "new score" newscore
score(c) = newscore
ENDIF
IF c>=x THEN
PRINT "user name not found"
ENDIF
c=c+1
ENDWHILE

chan2=OPENOUT "c:\users\george\scores.txt"
FOR c=1 TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF

IF select$="n" THEN

INPUT "new user name" newname$
INPUT "your high score" highscore
x=x+1
name$(x)= newname$
score(x)= highscore

chan2=OPENOUT "c:\users\george\scores.txt"
FOR c=1 TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF

 1258292505

URS666 Revised August 2011 A453/URS
Oxford Cambridge and RSA Examinations

Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate.

Unit A453 Year 2 0

Centre Name Centre Number

Candidate Name Candidate Number

 Guidance Teacher Comment Mark

U

s
e

 o
f

p
ro

g
ra

m
m

in
g

te
c

h
n

iq
u

e
s

There is an attempt to solve
parts of the tasks using few of
the techniques identified.

[0 - 2]

There is an attempt at most parts
of the tasks using several
techniques.

[3 - 4]

There is an attempt to solve all
of the tasks using most of the
techniques listed.

[5 - 6]

Max

6

GCSE Computing Controlled Assessment
 Unit A453 Coding a solution

 Unit Recording Sheet

An attempt has been made at all
three tasks.

A good range of techniques has
been sensibly used.

 6

61

URS666 Revised August 2011 A453/URS
Oxford Cambridge and RSA Examinations

E
ff

ic
ie

n
t

u
s

e
 o

f
p

ro
g

ra
m

m
in

g

te
c

h
n

iq
u

e
s

The techniques used may not
be entirely appropriate to the
problem and will only produce
partially working solutions to
a small part of the problem.

[0 - 4]

The techniques will be used
appropriately giving working
solutions to most of the parts of
the problem. Some sections of
the solution will be inefficiently
coded.

[5 - 8]

The techniques are used
appropriately in all cases
giving an efficient, working
solution for all parts of the
problem.

[9 - 12]

Max

12

D
e

s
ig

n

There will be vague comments
on what the task involves
and a vague outline describing
the intended approach to some
parts of the problem.
There will be brief comments
on how this might be tested
but with no mention of success
criteria.

[0 - 3]

There will be a brief analysis of
the tasks indicating what is
required for each of the tasks.
There will be a set of basic
algorithms outlining a solution to
most parts of the problem.
There will be some discussion of
how this will be tested and how
this compares to the identified
outcomes in the tasks.
There will be discussion of the
variables to be used and some
general discussion of validation

[4 - 6]

There will be a detailed
analysis of what is required for
these tasks justifying their
approach to the solution.
There will be a full set of
detailed algorithms
representing a solution to each
part of the problem.
There will be detailed
discussion of testing and
success criteria.
The variables and structures
will be identified together with
any validation required.

[7 - 9]

Max

9

Techniques are used appropriately.
Code is generally efficient. There
some inefficiencies. For example
the candidate has used 3 FOR
loops in task 2 where one would
suffice.
Program 3, particularly, would
benefit from some modularity.

9

Problems have been analysed.
Algorithms are well designed
using flow diagrams.
Test Strategy/success criteria
discussed for Ex 1+2 but not 3
No explicit discussion of variables
or structures but validation is
looked at.

8

62

 1258292505

URS666 Revised August 2011 A453/URS
Oxford Cambridge and RSA Examinations

D
e

v
e

lo
p

m
e

n
t

There will be some evidence to
show a solution to part of the
problem with some evidence to
show that it works.
Code will be presented with
little or no annotation, the
variable names not reflecting
their purpose and with little
organisation or structure.

[0 - 3]

There will be evidence to show
how the solutions were
developed.
There will be some evidence
of testing during development
showing that many parts of the
solution work.
The code will be organised with
sensible variable names and with
some annotation indicating what
sections of the code does.

[4 – 6]

There will be detailed evidence
showing development of the
solution with evidence of
systematic testing during
development to show that all
parts work as required.
The code will be well
organised with meaningful
variable names and detailed
annotation indicating the
function of each section.

[7- 9]

Max

9

There is evidence of solution
development and some testing
during development.
Meaningful variable names have
been used.
Occasionally code lacks structure
(e.g. in the Delete section of Task
3 a FOR loop is overlapped by an
IF rather than using nesting.)
Commenting, when used is
effective, but is too often missing.

7

63

URS666 Revised August 2011 A453/URS
Oxford Cambridge and RSA Examinations

T
e

s
ti

n
g

There will be evidence to show
that the system has been
tested for function but the test
plan will be limited in scope
with little structure.
There will be little or no
evidence to show how the
result matches the original
criteria.
The evidence of written
communication is limited with
little or no use of specialist
terms.
Errors in spelling, punctuation
and grammar may be intrusive.
Information may be ambiguous
or disorganised.
There will be some comments
on others’ and their own input
into group work.

[0 - 3]

There will be a test plan covering
many parts of the problem with
some suggested test data.
There will be evidence that the
system has been tested using this
data.
There will be some evidence to
show how the results of testing
have been compared to the
original criteria.
There will be a brief discussion of
how successful or otherwise the
solutions are.
Produces evidence of good
written communication using
some specialist terms.
There will be few errors in
spelling, grammar and
punctuation.
Information for the most part will
be presented in a structured
format.
They will have commented on
their own and others’ contribution
to any group work and

[4 - 6]

The test plan will cover all
major success criteria for the
original problem with evidence
to show how each of these
criteria have been met, or if
they have not been met, how
the issue might be resolved.
There will be a full evaluation
of the final solution against the
success criteria.
A high level of written
communication will be obvious
throughout the task and
specialist terms/technology
with accurate use of spelling
will have been used.
Grammar and punctuation will
be used correctly and
information will be presented
in a coherent and structured
format.
They will provide an evaluation
on theirs and others’
contribution to any group
activities.
 [7 - 9]

Max

9

Total/45

Guidance on Completion of this Form

1 One sheet should be used for each candidate.
2 Please ensure that the appropriate boxes at the top of the form are completed.
3 Using the guidance identify the most appropriate mark range for the work and enter the mark awarded for each element in the mark column.
4 Add appropriate comments to assist the moderator in the ‘Teacher Comment’ column.
5 Add the marks for the strands together to give a total out of 45. Enter this total in the relevant box.

Tests for Ex2+3 cover most
eventualities and are backed up
with evidence. Testing in Ex3 is
lacking the same amount of rigour.
Where issues have been
encountered these have been
discussed along with their
resolution.
Spelling punctuation and grammar
are all of a good quality.
None of the tasks required group
work .

8

38

64

A453

Task 1: Animal Age

65

Analysis

A system to convert cat or dog ages into
 human equivalents

Rules

DOG:

11 years per year for 2 years then 4 per extra year

CAT

15 years for first year, 10 for second then 4 per year

66

Analysis

• Need to get choice of cat or dog

• Need to get animal age in whole years

• Need to convert animal age to human
 equivalent using rules and print result.

67

Design

Get age

Cat or

dog?

Get age

Animal age = age *

11

Age <= 2

Animal age = 22

+ (age‐2)*4

Animal age = 15

Animal age = 25

DOG

Ca

t

YES

NO

Age =1

Age = 2

NO

YES

YES

Animal age = 25

+(age‐2)*4

NO

68

Development and testing

The code loops to make sure user

 inputs either dog or cat
If dog checks for age <=2
If <= 2 then age*2
If not then 22+ (age‐2)*4

If cat checks
if 1 year then age 15
If 2 years the age 25
If not then 25+(age‐2)*4

Using print formatting to output

 answer as sentence with variables to

 complete the sentence.

PRINT "Cat and Dog age to human equivalent"
REPEAT
INPUT "Choose Cat or Dog, type cat or dog", animal$
UNTIL animal$ ="cat" OR animal$="dog"
PRINT "enter the ";animal$;"'s age in years";
INPUTage

IF animal$="dog" THEN
IF age<=2 THEN
animalage = age*11
ELSE
animalage = 22+(age‐2)*4
ENDIF
ENDIF

IF animal$="cat" THEN
IF age = 1 THEN
animalage =15
ELSE
IF age = 2 THEN
animalage =25
ELSE
animalage= 25+(age‐2)*4
ENDIF
ENDIF
ENDIF

PRINT "Your ";animal$;" is ";animalage;" years in human

terms"

Development and testing

Test Data Expected

1 Check if dog or cat cat, dog, rat, Dog,

 CAT
cat, dog accepted, rat, Dog and

 CAT clears and ask question

 again

2 dog ages 1,2 Expect 11 or 22

3 3,4 Expect 26, 30

4 3.5 Expect 28

5 Cat ages 1, 2 Expect 15, 25

6 3,4 Expect 29, 33

7 3.5 Expect 27

8 Cat and dog ages Hat Expect error program stops

70

Evidence for 1 and 2 Evidence for 2, 3,4

Evidence for 1,5,6,7

71

Test 7 NOT as expected. Why?

Cat makes sense, Hat taken as zero, therefore

 25+ (0‐2)*4 = 25‐8 =17

Dog also makes sense hat taken as zero, so 0

 is <=2, therefore age = 0*11

Fix:

Need to reject non numeric inputs though

 decimal ones appear to give a decent result.

Check 0.5 and 1.5 years for cat and dog but

 change age = 1 and age = 2 for cat to <=

Also only accept age >0

72

Test Data Expect

8 Non numeric

 data
hat Reject and ask for age

 again

9 Decimal

 values
Cat age 0.5 Expect 7.5

10 Decimals Cat and dog 1.5 Expect 20 and 16.5

11 Negative

 values
Cat and dog ‐2, ‐3.98 Expect rejected

73

Evidence 8 and 9

Evidence 10

Evidence 11

74

Evaluation:

Tested with numeric data,

 results as expected, seems

 to work just as well with

 decimal values so these

 have been included.

Fixed issue with non‐

 numeric and zero or

 negative values with

 simple repeat loop to

 reject these values.

PRINT "Cat and Dog age to human equivalent"

REPEAT
INPUT "Choose Cat or Dog, type cat or dog", animal$
UNTIL animal$ ="cat" OR animal$="dog"
PRINT "enter the ";animal$;"'s age in years";

REPEAT
INPUTage
UNTIL age >0

IF animal$="dog" THEN
IF age<=2 THEN
animalage = age*11
ELSE
animalage = 22+(age‐2)*4
ENDIF
ENDIF

IF animal$="cat" THEN
IF age <= 1 THEN
animalage =age* 15
ELSE
IF age <= 2 THEN
animalage =15 +(age‐1)*10
ELSE
animalage= 25+(age‐2)*4
ENDIF
ENDIF
ENDIF

PRINT "Your ";animal$;" is ";animalage;" years in human terms"

75

A453

Task 2: Password strength sample task

76

Analysis

77

Buy SmartDraw!- purchased copies print this
document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

Design / Flowchart

78

REPEAT
INPUT the password
len=length of password
IF len <6 OR len >12 THEN
PRINT suitable error message
UNTIL len >=6 and <=12
PRINT password OK
Initialise upper, lower and number to 0
FOR i = 1 TO len
IF MID$(password, i, 1) is upper AND upper =0 THEN upper

 =1
ELSE
IF MID$(password, i, 1) is lower AND lower =0 THEN lower

 =1
ELSE
IF MID$(password, i, 1) is number AND number =0 THEN

 number =1
NEXT i
strength = upper+lower+number
CASE
strength = 1 then PRINT “WEAK”
strength = 2 then PRINT “MEDIUM”
strength = 3 then PRINT “STRONG”

Design /
 Pseudocode

79

We need a test strategy to use during development to show that the solution works

 at each stage.
Requirement: 6‐

12 characters

Less than 6 6 exactly >6 and <12 12 exactly More than 12

qwert qwerty qwertyui qwertyuiopas qwertyuiopasd

5 characters should

be rejected

6 characters,

boundary, should

be OK

8 characters, valid

input should be OK

12 characters,

boundary, should

be OK

13 characters

should be rejected

Weak, Medium and Strong identified:

Weak Medium Strong

qwerty
QWERTY
123456

Qwerty
Awerty
Zwerty

3werty
3WERTY
Q23456

qwe456
1w3r5y
QW345Y

QW34ty
12erTY

All lower / upper

case/ numeric:
weak reported

1 upper case, rest

lower, also test A

and Z accepted
Medium reported

All medium strength

combinations

With differing

quantities of

numbers and letters

Both cases and

numeric used,

Strong reported

Design / Test strategy

80

The code is being tested as it

 is developed, here the length

 is checked with 5, 6,12 and

 13 char passwords.
The evidence shows that this

 section of the code works.

Development & Testing

In my solution I am going to use the fact that all characters have a unique ASCII value
A is 65, B is 66 ... up to Y which is 90
a is 97, b is 98 ... up to y which is 122
0 is 48, 1 is 49 ... Up to 9 which is 57

So if the ASCII value of each character in the password is checked then we can identify

 if it is upper, lower or numeric.

Using LEN to check the length of the password and a simple loop from 1 to

 LEN(password) with the MID$ command I can check each character individually

If I identify an upper case I will set a flag once
Similarly with lower case and numeric.

If only 1 flag is set it will be WEAK, 2 it will be MEDIUM, 3 it

will be STRONG

Design / Approach to testing for password strength

82

Development
 & Testing

The code that was

 used and tested for

 upper case is simply

 copied and pasted

 then modified

 accordingly and

 checked at each

 stage.

Development
 & Testing

84

Weak Medium Strong
All lower / upper

case/ numeric:
weak reported

1 upper case, rest

lower, also test A

and Z accepted
Medium reported

All medium strength

combinations

With differing

quantities of

numbers and letters

Both cases and

numeric used,

Strong reported

qwerty


Qwerty 3werty qwe456 QW34ty

QWERTY


Awerty


3WERTY 1w3r5y 12erTY

123456


Zwerty


Q23456 QW345Y

Testing

85

Weak Medium Strong
All lower / upper

case/ numeric:
weak reported

1 upper case, rest

lower, also test A

and Z accepted
Medium reported

All medium strength

combinations

With differing

quantities of

numbers and letters

Both cases and

numeric used,

Strong reported

qwerty


Qwerty


3werty qwe456 QW34ty

QWERTY


Awerty


3WERTY 1w3r5y 12erTY

123456


Zwerty


Q23456 QW345Y

86

Weak Medium Strong
All lower / upper

case/ numeric:
weak reported

1 upper case, rest

lower, also test A

and Z accepted
Medium reported

All medium strength

combinations

With differing

quantities of

numbers and letters

Both cases and

numeric used,

Strong reported

qwerty


Qwerty


3werty


qwe456 QW34ty

QWERTY


Awerty


3WERTY


1w3r5y 12erTY

123456


Zwerty


Q23456


QW345Y

87

Weak Medium Strong
All lower / upper

case/ numeric:
weak reported

1 upper case, rest

lower, also test A

and Z accepted
Medium reported

All medium strength

combinations

With differing

quantities of

numbers and letters

Both cases and

numeric used,

Strong reported

qwerty


Qwerty


3werty


qwe456


QW34ty

QWERTY


Awerty


3WERTY


1w3r5y


12erTY

123456


Zwerty


Q23456


QW345Y


88

Weak Medium Strong
All lower / upper

case/ numeric:
weak reported

1 upper case, rest

lower, also test A

and Z accepted
Medium reported

All medium strength

combinations

With differing

quantities of

numbers and letters

Both cases and

numeric used,

Strong reported

qwerty


Qwerty


3werty


qwe456


QW34ty


QWERTY


Awerty


3WERTY


1w3r5y


12erTY


123456


Zwerty


Q23456


QW345Y


Testing complete all tests worked as expected.

89

Get password
Find length of password
Check length >=6, <=12
If not print error message

If error return to get password otherwise

Print OK

Initialise variables

By checking each character in the

string for ASCII values
97‐122 for a‐z,
Identify if the character is lower,
If one of these has not already been

found flag by setting the variable to

1, otherwise ignore.

Add together the values for lower, upper and

number to get a strength value.
Use the CASE command to respond

according to the numeric value

Repeat process for upper and

number using
65‐90 for A‐Z and
48‐57 for 0‐9

Code explained

90

We now have basic functionality but we need to complete some final product testing

 with a range of data and typical end users.

Further testing is completed with a range of valid and invalid data:

Test Data Expected Actual / Comment
To see what happens

with special characters

ASde/> Since /> are not checked they

will not set any flag hence

MEDIUM

Medium, as expected:
Code should be modified to reject

special characters

To see what happens if

spaces are used

AS de23 Since space has an ASCII

value it will be accepted and

rated as STRONG

Strong as expected:
Code should not accept space and

should be modified

Typical strong password 17Weebles Strong, valid data Strong.

Evaluation of the solution

The whole point of a password is for security, the password is displayed when

 typed in, this is a problem.

The code should be modified to display * characters instead of the input values.

Feedback from user testing

92

Using ASCII values to check the case etc works well and this could be extended to reject

 non alphanumeric characters by examining the password after input for characters out of

 range returning the user to the input screen with a suitable error message.

From the test data provided it is clear that the code segment meets the basic

 requirements:
6‐12 characters
Upper, lower and numeric cases through the use of flags can identify weak, medium or

 strong passwords.

Also from the testing it can be seen that the system also accepts spaces and special

 characters since, though does not flag any value to these. The code should be modified

 accordingly to reject these.

The testing also suggests that the password input should be masked if it is to be of any

 real value, such a modification can easily be completed by overwriting the input area with

 * characters.
This code is functional and could be used as a module in a larger program if suitably

 modified as identified in the test section.

Evaluation of the solution

93

• Possible improvements:
• Check data on entry for character types.

• Check data on entry for invalid characters.

• blanking the password on entry by replacing the characters with *’s

• providing a more interesting or ‘friendly’

interface

Evaluation of the solution

94

A453

Task 3: High scores table sample task

95

Analysis

• A system to manage high scores

– Create a file and be able to

– Find a score for a user

– Update a score for a user

– Add a new user and score

– Delete a user and score

96

Analysis

• Need to check if the file exists, if not create
 one

• Need to load data from the file into an array

• Need to check if username exists to update
 score, if not error message

• Need an option system for edit, new and
 delete, otherwise error message

• Need to write modified data back to file

97

Design / File exists –

choose option

Create file
Check if

 file exists

Open file
Input data from file

 into array

User

 option
e, n, d

Delete data

 routine
New data routineEdit data routine

NO

YES

98

Design / Edit data option

Error message

YES

NO

Initialise found flag

and count array

Name

found?

Get user name

 to find

Get new score and

update array

End of

array ?

NO

YES

Write file

99

Design / New data option and delete option

Increase array index

by 1

Get user name and

score to add

Copy data into new

array positions

Write file

Find user name as in

edit data

Get user name to

delete

Delete data

Move remaining

data forward in

array

Decrease array

count by 1

Write file

100

Design /
 development

Check file exists: if I try to open a file it returns 0 if the file doesn’t exist so I

 can use this to decide if I need to create a file.

If openin file = 0 the create file else open file

IF OPENIN "c:\users\george\data.dat" =0 THEN
chan1 = OPENOUT "c:\users\george\data.dat"
CLOSE#chan1
ENDIF

Code before being run
Note the tesdata file does not exist

After running code it exists

Design /
 development

I need to create an array for the names and scores so that I

 can read in the data from a file.

I have created a simple text file with three names and scores

 to test this section of code.
DIM name$(10)
DIM score$(10)

index=1
IF OPENIN "c:\users\george\data.dat" =0 THEN
chan1 = OPENOUT "c:\users\george\data.dat"
CLOSE#chan1
ENDIF

chan1=OPENIN "c:\users\george\data.dat"
REPEAT
INPUT#chan1,name$(index)
INPUT#chan1,score$(index)
index=index+1
UNTIL EOF#chan1
CLOSE#chan1
index=index‐1

PRINT "Current High Scores“
FOR i = 1 TO index

PRINT name$(i),score$(i)
NEXT i

102

Design /
 development

I need the user to be able to select one of the options. I will do

 edit and new first.

PRINT "To edit a score press e"

PRINT "To add a new name and score press n"

inputvalid=0
REPEAT
INPUT select$
IF select$ = "e" OR select$ = "E" OR select$ = "n" OR select$ = "N" THEN
inputvalid=1
ELSE
PRINT "Input not recognised"
inputvalid=0

ENDIF
UNTIL inputvalid=1

The flag inputvalid is used to end the loop if a valid input is entered but repeat

the process until a valid input is entered. I used the OR to allow for e, E, n OR N

inputs.

I used e, n, g, h, N. e,n and N were accepted but g and h made the loop request

input again

103

Design /
 development

The edit routine should search for the user name in

 the array, set a flag if found, edit the score and

 write the new score to the array. If not found it

 should print and error message.
It checks not found by checking the found flag and

 the count through the array compared to how

 many were read in.

IF select$="e" OR select$ ="E" THEN
INPUT "your user name" user$

flag=0
count=1
WHILE flag=0 AND count<=index
IF user$= name$(count) THEN
flag=1
INPUT "new score" newscore$
score$(count) = newscore$
ENDIF
IF flag=0 AND count>=index THEN
PRINT "user name not found"
ENDIF
count=count+1
ENDWHILE

ENDIF

The data for fred has been

 updated as expected from 32 to

 58.

104

Design /
 development

To add the new data feature I will replace the endif

 with an else that allows new data to be added.

IF select$="e" OR select$ ="E" THEN
INPUT "your user name" user$

flag=0
count=1
WHILE flag=0 AND count<=index
IF user$= name$(count) THEN
flag=1
INPUT "new score" newscore$
score$(count) = newscore$
ENDIF
IF flag=0 AND count>=index THEN
PRINT "user name not found"
ENDIF
count=count+1
ENDWHILE

ELSE
INPUT "new user name" newname$
INPUT "your high score" highscore$
index=index+1
name$(index)= newname$
score$(index)= highscore$
ENDIF

The data for sam has been added

 at the end of the array as

 expected.

105

Design /
 development

To delete an item is more complicated, but if I just

 rewrite the list back to file skipping the deleted

 name then will effectively delete the user

IF select$="d" OR select$ ="D" THEN
INPUT "Name to delete" delete$
newcount=0
FOR i=1 TO index
IF delete$=name$(i) THEN
NEXT i
ELSE
newcount=newcount+1
newlistname$(newcount)=name$(i)
newlistscore$(newcount)=score$(i)
NEXT i
ENDIF

chan2=OPENOUT "c:\users\george\data.dat"
FOR j=1 TO newcount
PRINT#chan2,newlistname$(j),newlistscore$(j)
NEXT j
CLOSE#chan2

ENDIF

I needed two new arrays and a new counting variable to do this.

The data for fred has been deleted

 from the file as expected.

106

Design /
 development

To make the final changes

 to include the delete

 option I created three IF

 THEN sections with each

 writing the modified data

 to the file.
I added two new arrays
This section shows

 initialising arrays
checking if file exists
And printing high score

 table

REM Initiaalise

arrays
DIM name$(10)
DIM score$(10)
DIM newlistname$(10)
DIM newlistscore$(10)

REM check if file exists, if not create one
index=1
IF OPENIN "c:\users\george\data.dat" =0 THEN
chan1 = OPENOUT "c:\users\george\data.dat"
CLOSE#chan1
ENDIF

REM read in data from file and display
chan1=OPENIN "c:\users\george\data.dat"
REPEAT
INPUT#chan1,name$(index)
INPUT#chan1,score$(index)
index=index+1
UNTIL EOF#chan1
CLOSE#chan1
index=index‐1

PRINT "Current High Scores"
FOR i = 1 TO index
PRINT name$(i),score$(i)
NEXT i

107

Design /
 development

This section shows
getting user input and
validating user input

REM get user input and validate
PRINT "To edit a score press e"
PRINT "To add a new name and score press n"
PRINT " To delete data press D"

inputvalid=0
REPEAT
INPUT select$
IF select$ = "e" OR select$ = "E" OR select$ = "n" OR select$ = "N" OR

select$= "D" OR select$="d" THEN

inputvalid=1
ELSE
PRINT "Input not recognised"
inputvalid=0

ENDIF
UNTIL inputvalid=1

108

Design /
 development

This section is the delete

 option
•It get the name to delete
•Compares the data in the

 array to this value
•If the values match it skips

 to the next item
•If they don’t match it

 writes the old data into a

 new array and
•counts entries into this

 new array

REM delete option write to new array skipping name and score to

delete
IF select$="d" OR select$ ="D" THEN
INPUT "Name to delete" delete$
newcount=0
FOR i=1 TO index
IF delete$=name$(i) THEN
NEXT i
ELSE
newcount=newcount+1
newlistname$(newcount)=name$(i)
newlistscore$(newcount)=score$(i)
NEXT i
ENDIF
REM write modified file back to disk
chan2=OPENOUT "c:\users\george\data.dat"
FOR j=1 TO newcount
PRINT#chan2,newlistname$(j),newlistscore$(j)
NEXT j
CLOSE#chan2

ENDIF

109

Design /
 development

This is the edit section
It compares name to edit

 with data in the array and

 allows the user to retype

 the values for that entry.

REM edit option
IF select$="e" OR select$ ="E" THEN
INPUT "your user name" user$

flag=0
count=1
WHILE flag=0 AND count<=index
IF user$= name$(count) THEN
flag=1
INPUT "new score" newscore$
score$(count) = newscore$
ENDIF
IF flag=0 AND count>=index THEN
PRINT "user name not found"
ENDIF
count=count+1
ENDWHILE

chan2=OPENOUT "c:\users\george\data.dat"
FOR count=1 TO index
PRINT#chan2,name$(count),score$(count)
NEXT count
CLOSE#chan2
ENDIF

110

Design /
 development

This is the new data

 section
It asks for new name and

 score then appends these

 to the end of the array and

 writes the data to file.

REM new name and score option
IF select$="n" OR select$="N" THEN

INPUT "new user name" newname$
INPUT "your high score" highscore$
index=index+1
name$(index)= newname$
score$(index)= highscore$

chan2=OPENOUT "c:\users\george\data.dat"
FOR count=1 TO index
PRINT#chan2,name$(count),score$(count)
NEXT count
CLOSE#chan2
ENDIF

111

Testing and evaluation

The testing was completed as the system was developed, see evidence of each

 section being tested during development.
The system does what was required:
Create a file: Checks to see if file exists then creates or opens the file
Add data to file: Data added by writing new item to array and writing data back to

 file
Locate data by name and high score: Incomplete, it can locate data by name to

 modify or delete, but not by high score, sort routine not implemented for this.
Delete an item and score, completed data to delete simply skipped when data

 written to new array and new array data written back to file.
Locate and update a a high score: Can update a score by user name

Most elements completed successfully but the interface is not clear and there are

 very limited user instructions or validation apart from choice of options and

 existence of data file.
Scores stored as string variables for convenience so no arithmetic possible but so

 sorting for highest score would require data to be converted to numeric values.

112

	A452_SAM_Exemplar_23.pdf
	GCSE Computing
	Unit A452: Practical investigation
	Exemplar Material for A452 SAM
	Task 1 Investigate the instruction set provided with one implementation of the LMC.
	Program 1
	Running the program
	Program 2
	Task 3. Explain in your own words what happens as each of the instructions is executed.
	Program 1
	Program 2
	Task 4. Write programs to run in LMC:
	i. Take in two numbers and output the smaller first, then the larger.
	Produce evidence to show that you have planned, written and tested your code.
	ii. Produce a multiplication table from 1 to 10 for any number input by the user
	Produce evidence to show that you have planned, written and tested your code.
	Pseudocode
	iii. Input five numbers and output them in reverse order.
	Produce evidence to show that you have planned, written and tested your code.
	5. Produce an evaluation of your solutions.
	6. Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

	A452_SAM_Exemplar_37.pdf
	GCSE Computing
	Unit A452: Practical investigation
	Exemplar Material for A452 SAM
	Task 1. Investigate the instruction set provided with one implementation of the LMC.
	The instruction set
	Example instructions in use
	Task 2. Load and run at least two of the demonstration programs supplied with the implementation.
	AND
	Task 3. Explain in your own words what happens as each of the instructions is executed.
	Running the program
	Program 2
	Task 4. Write programs to run in LMC:
	i. Take in two numbers and output the smaller first, then the larger.
	Produce evidence to show that you have planned, written and tested your code.
	ii. Produce a multiplication table from 1 to 10 for any number input by the user.
	Produce evidence to show that you have planned, written and tested your code.
	iii. Input five numbers and output them in reverse order.
	Produce evidence to show that you have planned, written and tested your code.
	Task 5. Produce an evaluation of your solutions.
	Task 6. Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

	A453_SAM_Exemplar_material_24.pdf
	A453
	Analysis
	Analysis
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	A453
	Analysis
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	A453
	Analysis
	Analysis
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

	A453_SAM_Exemplar_material_38.pdf
	A453
	Analysis
	Analysis
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	A453
	Analysis
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	A453
	Analysis
	Analysis
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

