

Level 3 Alternative Academic Qualification Cambridge Advanced Nationals in Applied Science

H051/H151 Unit F180: Fundamentals of science

Sample Assessment Material (SAM)

Data, Formulae and Relationships Booklet

The Periodic Table of the Elements

(0)	18	2 He	4.0	9	Ne	neon 20.2	18	Ar	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon			
()	·		17	6	ш	fluorine 19.0	17	CI	chlorine 35.5	35	ā	bromine 79.9	53	П	iodine 126.9	85	Αţ	astatine			
(9)			16	8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Тe	tellurium 127.6	84	Po	polonium	116	^	livermorium
(2)			15	7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	S	silicon 28.1	32	g	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	F1	flerovium
(3)			13	2	ω	boron 10.8	13	Ν	aluminium 27.0	31	Ga	gallium 69.7	49	п	indium 114.8	81	11	thallium 204.4			
									12	30	Zu	zinc 65.4	48	ខ	cadmium 112.4	80	Нg	mercury 200.6	112		copernicium
									1	59	J.	copper 63.5	47	Ag	silver 107.9	6/	Ρn	gold 197.0	111	Rg	roentgenium
									10	28	Ż	nickel 58.7	46	Pd	palladium 106.4	78	₹	platinum 195.1	110	Ds	darmstadtium
									6	27	ပိ	cobalt 58.9	45	몺	rhodium 102.9	22	ŀ	iridium 192.2	109	¥	meitnerium
									80	56	Pe	iron 55.8	44	Ru	ruthenium 101.1	9/	os	08mium 190.2	108	Ŧ	hassium
									7	25	M	manganese 54.9	43	ည	technetium	22	Re	rhenium 186.2	107	뮵	bohrium
		oer.	mass						9	24	င်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
	Key	atomic number Symbol	ve atomic						2	23	>	vanadium 50.9	41	윋	niobium 92.9	73	Ξ	tantalum 180.9	105	음	
		atc	relativ						4									hafnium 178.5	104	¥	rutherfordium
									3	21	Sc	scandium 45.0	39	>	yttrium 88.9		57-71	lanthanoids		89-103	actinoids
(2)	-		2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	S	calcium 40.1	38	Š	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
(1)	7	- I	hydrogen 1.0	က	ت	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Sp.	rubidium 85.5	22	S	caesium 132.9	87	ŗ	francium

71 Lu lutetium 175.0	103 Lr Iawrencium
70 Yb ytterbium 173.0	102 No nobelium
69 Tm thulium 168.9	101 Md mendelevium
68 Er erbium 167.3	100 Fm fermium
67 Ho holmium 164.9	99 Es einsteinium
66 Dy dysprosium 162.5	98 Cf californium
65 Tb terbium 158.9	97 BK berkelium
64 Gd gadolinium 157.2	96 Cm curium
63 Eu europium 152.0	95 Am americium
62 Sm samarium 150.4	94 Pu plutonium
61 Pm promethium 144.9	93 Np neptunium
60 Nd neodymium 144.2	92 U uranium 238.1
59 Pr praseodymium 140.9	91 Pa protactinium
58 Ce cerium 140.1	90 Th thorium 232.0
57 La lanthanum 138.9	89 Ac actinium

General information

Physical constant	Symbol	Value and units
Acceleration of free fall	g	9.81 m s ⁻²
Avogadro constant	N _A	$6.02 \times 10^{23} \text{mol}^{-1}$
Elementary charge	е	1.60 × 10 ⁻¹⁹ C
Electron rest mass	m _e	$9.11 \times 10^{-31} \text{kg}$
Neutron rest mass	<i>m</i> _n	1.675 × 10 ⁻²⁷ kg
Planck constant	h	$6.63 \times 10^{-34} \mathrm{J} \mathrm{s}$
Proton rest mass	$m_{\rm p}$	1.673 × 10 ⁻²⁷ kg
Specific heat capacity of water	С	4180 J kg ⁻¹ °C ⁻¹
Speed of light in a vacuum	С	$3.00 \times 10^8 \text{m s}^{-1}$
Molar gas volume (at room temperature and pressure, RTP)	V _m	24.0 dm ³ mol ⁻¹
Euler's number	е	2.718

Conversion factors: $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Mathematical Equations

Circumference of circle = $2\pi r$

Area of circle = πr^2

Curved surface area of cylinder = $2\pi rh$

Surface area of sphere = $4\pi r^2$

Area of trapezium = $\frac{1}{2}(a + b)h$

Volume of cylinder = $\pi r^2 h$

Volume of sphere = $\frac{4}{3}\pi r^3$

Formulae and relationships for Unit F180

B1 Cell structure and microscopy	
Total magnification = magnification of objective lens × magnification of eyepiece lens	$M_{\rm T} = M_{\rm O} \times M_{\rm E}$
Magnification = $\frac{\text{observed size}}{\text{actual size}}$	

B4 Biodiversity and ecosystems	
Percentage efficiency = $\frac{\text{useful energy transferred}}{\text{total energy transferred}} \times 100\%$	

C1 Atomic Structure and the Periodic Table	
Relative atomic mass = $\sum \frac{\text{(isotope mass} \times \text{isotope abundance)}}{\text{(isotope mass}}$	
100	

C2 Amount of substance	
Amount of substance = $\frac{\text{mass of substance}}{\text{molar mass}}$	$n=\frac{m}{M}$
$Concentration = \frac{amount of solute}{volume}$	$c=\frac{n}{V}$
$Concentration = \frac{mass \text{ of solute}}{volume}$	$c = \frac{m}{V}$
Amount of gas = $\frac{\text{volume of gas}}{24}$	$n = \frac{V}{24}$

C4 Rates of Reaction and Enthalpy Changes	
Thermal energy = mass \times specific heat capacity \times change in temperature	$Q = mc\Delta\theta$

P1 Electricity	
Charge = current × time	Q = It
Potential difference = current × resistance	V = IR
Power = current × potential difference	P = IV
Power = (current) ² × resistance	$P = I^2R$
$Power = \frac{(potential difference)^2}{resistance}$	$P = \frac{V^2}{R}$
Work done = potential difference × current × time	W = VIt
Work done = potential difference × charge	W = VQ
Total resistance in series = resistance of resistor 1 + resistance of resistor 2 +	$R_{T} = \\ R_1 + R_2 + \cdots$
$\frac{1}{\text{Total resistance in parallel}} = \frac{1}{\text{Resistance of resistor 1}} + \frac{1}{\text{Resistance of resistor 2}} + \dots$	$\frac{1}{R_{T}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$

P2 Forces & Motion	
Work done = force × displacement	W = Fs
Work done = force \times displacement $\times \cos \theta$	$W = Fs \cos\theta$
Kinetic energy = $\frac{1}{2} \times \text{mass} \times (\text{velocity})^2$	$E = \frac{1}{2}mv^2$
Gravitational potential energy = mass \times acceleration of free fall \times height	$E = mg\Delta h$
	$E = \frac{1}{2}Fx$
Elastic potential energy = $\frac{1}{2}$ × force × extension = $\frac{1}{2}$ × spring constant × (extension) ²	$=\frac{1}{2}kx^2$
Power = \frac{\text{work done}}{\text{time}}	$P = \frac{W}{t}$
Efficiency = useful energy transferred total energy transferred	
Net force = mass × acceleration	F = ma
Average velocity = $\frac{\text{displacement}}{\text{time taken}}$	$v=\frac{s}{t}$
Acceleration = $\frac{\text{final velocity} - \text{initial velocity}}{\text{time taken}}$	$a=\frac{v-u}{t}$
Final velocity = initial velocity + (acceleration × time taken)	v = u + at
Displacement = ½ (initial velocity + final velocity) × time taken	$s = \frac{1}{2}(u+v)t$
Displacement = (initial velocity \times time taken) + ($\frac{1}{2}$ × acceleration \times time taken ²)	$s = ut + \frac{1}{2}at^2$
Final velocity ² = initial velocity ² + 2 \times acceleration \times displacement	$v^2 = u^2 + 2as$

P3.1 Medical Physics	
Energy of a photon = Planck constant × frequency	E = hf
Energy of a photon = $\frac{\text{Planck constant} \times \text{speed of light in a vacuum}}{\text{wavelength}}$	$E = \frac{hc}{\lambda}$
Intensity of emergent beam = intensity of incident beam \times e ^{-linear attenuation coefficient \times distance travelled through the medium}	$I=I_0e^{-\mux}$
Mass attenuation coefficient = $\frac{\text{linear attenuation coefficient}}{\text{density of medium}}$	$\mu_{m} = \frac{\mu}{\rho}$
Density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$

Frequency = $\frac{1}{\text{time period}}$	$f = \frac{1}{T}$
Wave speed = frequency × wavelength	$v = f\lambda$
Intensity = $\frac{power}{area}$	$I = \frac{P}{A}$
Acoustic impedance = density of medium × speed of sound in the medium	$Z = \rho c$
Intensity reflection coefficient = $\frac{\text{intensity of reflected wave}}{\text{intensity of incident wave}}$	$\alpha = \frac{I_{\rm r}}{I_0}$
Intensity reflection coefficient = (acoustic impedance of second medium - acoustic impedance of initial medium + acoustic impedance of initial medium) ² acoustic impedance of second medium + acoustic impedance of initial medium) ²	$\alpha = \frac{1}{I_0}$ $\alpha = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$

P3.2 Radioactivity	
Physical half-life = $\frac{0.693}{\text{radioactive decay constant}}$	$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$
1/effective half-life = 1/physical half-life + 1/biological half-life	$\frac{1}{t_{\rm E}} = \frac{1}{t_{1}} + \frac{1}{t_{\rm B}}$
Activity = radioactive decay constant × number of undecayed nuclei	$A = \lambda N$
Number of undecayed nuclei = initial number of undecayed nuclei × e ^{-radioactive decay constant × time}	$N = N_0 e^{-\lambda t}$
Activity = initial activity \times e ^{- radioactive decay constant \times time}	$A = A_0 e^{-\lambda t}$