General information

- 1 mol of gas molecules occupies 24.0 dm$^3$ at room temperature and pressure, RTP.
- Avogadro constant, $N_A = 6.02 \times 10^{23}$ mol$^{-1}$.
- Ionic product of water, $K_w = 1.00 \times 10^{-14}$ mol$^2$ dm$^{-6}$.
**$^1$H NMR chemical shifts relative to TMS**

Chemical shifts are typical values and can vary slightly depending on the solvent, concentration and substituents.

<table>
<thead>
<tr>
<th>type of proton</th>
<th>chemical shift, $\delta$ / ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{R-CH}_3$</td>
<td>0.7–1.6</td>
</tr>
<tr>
<td>$\text{N-H}$</td>
<td>$\text{R-OH}$</td>
</tr>
<tr>
<td>$\text{R-CH}_2$-$\text{R}$</td>
<td>1.2–1.4</td>
</tr>
<tr>
<td>$\text{R}_3$,$\text{CH}$</td>
<td>1.6–2.0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_3$</td>
<td>$\text{C-C}$</td>
<td>$\text{RCH}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3$</td>
<td>$\text{CH}_2$</td>
<td>$\text{R}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{N-CH}_3$</td>
<td>$\text{N-CH}_2$</td>
<td>$\text{N-CHR}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{O-CH}_3$</td>
<td>$\text{O-CH}_2$</td>
<td>$\text{O-CHR}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Br or Cl-CH}_3$</td>
<td>$\text{Br or Cl-CH}_2$</td>
<td>$\text{Br or Cl-CHR}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{OH}$</td>
<td>$\text{CH}=\text{CH}$</td>
<td>4.5–6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{NH}_2$</td>
<td>$\text{HN}$</td>
<td>5.0–12.0*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{H}$</td>
<td>6.5–8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{H}$</td>
<td>9.0–10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{H}$</td>
<td>11.0–12.0*</td>
</tr>
</tbody>
</table>

* OH and NH chemical shifts are very variable (sometimes outside these limits) and are often broad. Signals are not usually seen as split peaks.
$^{13}$C NMR chemical shifts relative to TMS
Chemical shifts are typical values and can vary slightly depending on the solvent, concentration and substituents.

<table>
<thead>
<tr>
<th>type of carbon</th>
<th>chemical shift, $\delta$/ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–C (alkanes)</td>
<td>10–35</td>
</tr>
<tr>
<td>( \text{C} = \text{O} )</td>
<td>20–30</td>
</tr>
<tr>
<td>C–Cl or C–Br</td>
<td>30–70</td>
</tr>
<tr>
<td>C–N (amines)</td>
<td>35–60</td>
</tr>
<tr>
<td>C–OH</td>
<td>50–65</td>
</tr>
<tr>
<td>C=C (alkenes)</td>
<td>115–140</td>
</tr>
<tr>
<td>aromatic</td>
<td>125–150</td>
</tr>
<tr>
<td>C=O (ester, carboxylic acid, amide)</td>
<td>160–185</td>
</tr>
<tr>
<td>C=O (aldehyde, ketone)</td>
<td>190–220</td>
</tr>
</tbody>
</table>

Characteristic infrared absorptions in organic molecules

<table>
<thead>
<tr>
<th>bond</th>
<th>location</th>
<th>wavenumber/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–O</td>
<td>alcohols, esters, carboxylic acids</td>
<td>1000–1300</td>
</tr>
<tr>
<td>C=O</td>
<td>aldehydes, ketones, carboxylic acids, esters, amides</td>
<td>1640–1750</td>
</tr>
<tr>
<td>C–H</td>
<td>organic compound with a C–H bond</td>
<td>2850–3100</td>
</tr>
<tr>
<td>O–H</td>
<td>carboxylic acids</td>
<td>2500–3300 (very broad)</td>
</tr>
<tr>
<td>N–H</td>
<td>amines, amides</td>
<td>3200–3500</td>
</tr>
<tr>
<td>O–H</td>
<td>alcohols, phenols</td>
<td>3200–3550 (broad)</td>
</tr>
</tbody>
</table>

Copyright Acknowledgements:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2007
**The Periodic Table of the Elements**

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  |
|----|----|----|----|----|----|----|----|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| H  | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |

**Key**

<table>
<thead>
<tr>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H hydrogen</td>
<td>1</td>
</tr>
</tbody>
</table>

**Relative Atomic Mass**

| 23.0 | 24.3 | 10.8 | 12.0 | 14.0 | 16.0 | 19.0 | 20.0 | 27.0 | 28.1 | 31.0 | 32.1 | 35.5 | 39.9 |

**Atomic Symbol**

| 6.9 | 9.0 | 23.0 | 24.3 | 39.1 | 40.1 | 55.8 | 63.5 | 69.7 | 72.6 | 74.9 | 79.9 | 79.9 | 83.8 |

**Atomic Number**

| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

---

Elements with atomic numbers 112–116 have been reported but not fully authenticated.

---

**Table Continued**

<table>
<thead>
<tr>
<th>232.0</th>
<th>233.0</th>
<th>234.0</th>
<th>235.0</th>
<th>236.0</th>
<th>237.0</th>
<th>238.0</th>
<th>239.0</th>
<th>240.0</th>
<th>241.0</th>
<th>242.0</th>
<th>243.0</th>
<th>244.0</th>
<th>245.0</th>
<th>246.0</th>
<th>247.0</th>
<th>248.0</th>
<th>249.0</th>
<th>250.0</th>
<th>251.0</th>
<th>252.0</th>
<th>253.0</th>
<th>254.0</th>
<th>255.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be boron</td>
<td>5</td>
<td>B boron</td>
<td>5</td>
<td>C carbon</td>
<td>6</td>
<td>N nitrogen</td>
<td>7</td>
<td>O oxygen</td>
<td>8</td>
<td>F fluorine</td>
<td>9</td>
<td>Ne neon</td>
<td>10</td>
<td>Na sodium</td>
<td>11</td>
<td>Mg magnesium</td>
<td>12</td>
<td>Al aluminium</td>
<td>13</td>
<td>Si silicon</td>
<td>14</td>
<td>P phosphorus</td>
<td>15</td>
</tr>
</tbody>
</table>

---

**Table Continued**

<table>
<thead>
<tr>
<th>197.0</th>
<th>200.6</th>
<th>204.4</th>
<th>207.2</th>
<th>206.4</th>
<th>207.2</th>
<th>206.4</th>
<th>204.4</th>
<th>202.4</th>
<th>200.6</th>
<th>197.0</th>
<th>192.2</th>
<th>189.2</th>
<th>186.2</th>
<th>183.8</th>
<th>180.9</th>
<th>178.5</th>
<th>176.5</th>
<th>175.0</th>
<th>173.0</th>
<th>171.0</th>
<th>169.0</th>
<th>167.0</th>
<th>165.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg mercury</td>
<td>80</td>
<td>Th thorium</td>
<td>108</td>
<td>Ho holmium</td>
<td>109</td>
<td>Er erbium</td>
<td>108</td>
<td>Tm thulium</td>
<td>109</td>
<td>Yb ytterbium</td>
<td>108</td>
<td>Lu lutetium</td>
<td>107</td>
<td>Am actinium</td>
<td>106</td>
<td>Cm curium</td>
<td>107</td>
<td>Bk berkelium</td>
<td>108</td>
<td>Cf californium</td>
<td>109</td>
<td>Es einsteinium</td>
<td>110</td>
</tr>
</tbody>
</table>

---

**Table Continued**

<table>
<thead>
<tr>
<th>140.1</th>
<th>140.9</th>
<th>144.2</th>
<th>144.9</th>
<th>150.4</th>
<th>152.0</th>
<th>157.2</th>
<th>158.9</th>
<th>162.5</th>
<th>164.9</th>
<th>167.3</th>
<th>168.9</th>
<th>173.0</th>
<th>175.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr promethium</td>
<td>59</td>
<td>Nd neodymium</td>
<td>60</td>
<td>Pm promethium</td>
<td>61</td>
<td>Sm samarium</td>
<td>62</td>
<td>Eu europium</td>
<td>63</td>
<td>Gd gadolinium</td>
<td>64</td>
<td>Tb terbium</td>
<td>65</td>
</tr>
</tbody>
</table>

---

**Table Continued**

<table>
<thead>
<tr>
<th>232.0</th>
<th>233.0</th>
<th>234.0</th>
<th>235.0</th>
<th>236.0</th>
<th>237.0</th>
<th>238.0</th>
<th>239.0</th>
<th>240.0</th>
<th>241.0</th>
<th>242.0</th>
<th>243.0</th>
<th>244.0</th>
<th>245.0</th>
<th>246.0</th>
<th>247.0</th>
<th>248.0</th>
<th>249.0</th>
<th>250.0</th>
<th>251.0</th>
<th>252.0</th>
<th>253.0</th>
<th>254.0</th>
<th>255.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th thorium</td>
<td>90</td>
<td>Pa protactinium</td>
<td>91</td>
<td>U uranium</td>
<td>92</td>
<td>Np neptunium</td>
<td>93</td>
<td>Pu plutonium</td>
<td>94</td>
<td>Am americium</td>
<td>95</td>
<td>Cm curium</td>
<td>96</td>
<td>Bk berkelium</td>
<td>97</td>
<td>Cf californium</td>
<td>98</td>
<td>Es einsteinium</td>
<td>99</td>
<td>Fm fermium</td>
<td>100</td>
<td>Md mendelevium</td>
<td>101</td>
</tr>
</tbody>
</table>