INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Answer all the questions.
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 60.
- This document consists of 16 pages. Any blank pages are indicated.
Area of trapezium = \(\frac{1}{2} (a + b)h \)

Volume of prism = (area of cross-section) \(\times \) length

In any triangle \(ABC \)

Sine rule \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Cosine rule \(a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \(\frac{1}{2} ab \sin C \)

Volume of sphere = \(\frac{4}{3} \pi r^3 \)

Surface area of sphere = \(4 \pi r^2 \)

Volume of cone = \(\frac{1}{3} \pi r^2 h \)

Curved surface area of cone = \(\pi rl \)

The Quadratic Equation

The solutions of \(ax^2 + bx + c = 0 \),
where \(a \neq 0 \), are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Mark is organising a party for his group of 17 Scouts.

(a) (i) Each Scout will need $\frac{3}{4}$ of a pizza.

How many pizzas should Mark buy?

(a)(i) ___________________________ [3]

(ii) The pizzas normally cost £2.60 each.
Mark is given a discount of 15% off this price.

How much does Mark pay for each pizza?

(ii) £ _____________________________ [3]

(b) The area of the base of a can of lemonade is 32.4 cm2.

What is this area in mm2?

(b) _____________________________ mm2 [2]
2 (a) Draw the graph of $y = 2x - 1$ for values of x from -1 to 5.

(b) Write down the gradient and y-intercept of the line $y = 5x + 3$.

(b) gradient ____________________________

y-intercept ____________________________ [2]

(c) (i) Write down the gradient of a line parallel to $y = 5x + 3$.

(c)(i) ______________________________ [1]

(ii) Write down the equation of a line perpendicular to $y = 5x + 3$.

(ii) ______________________________ [2]
The table shows the winning distances in the Olympic Men’s Triple Jump competition since 1980.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (metres)</td>
<td>17.35</td>
<td>17.26</td>
<td>17.61</td>
<td>18.17</td>
<td>19.09</td>
<td>17.71</td>
<td>17.79</td>
<td>17.67</td>
</tr>
</tbody>
</table>

(a) Complete the time-series graph to show these values. The first five points have already been plotted.

(b) Jonathan thinks that the Men's Triple Jump gold medal winner in the 2012 Olympics will jump more than 20 metres.

Does the graph support Jonathan's view?

Explain your answer.
Work out angle p.
Give a reason for each stage of your working.
5 Calculate.

(a) \(\frac{3}{4} - \frac{2}{5} \)

(b) \(\frac{3}{4} ÷ 5 \)
(a) Describe fully the **single** transformation that maps shape \(P \) onto shape \(Q \).

___ [3]

(b) Rotate shape \(P \) 180° about the point \((-2, -2)\).
Label the image \(R \). [2]
Beads can be bought in packets, each containing x beads.

Lizzie has 7 packets of beads and 2 extra beads. Grace has 5 packets of beads and 25 extra beads. Grace has more beads than Lizzie.

(a) Write an inequality in x to show this information.

(a) _____________________________ [1]

(b) Solve your inequality and hence write down the largest number of beads that could be in each packet.

(b) _____________________________ [4]
Describe fully the correlation shown in each scatter graph.
9 Solve, algebraically, these simultaneous equations.

\[20x + 3y = 1 \]
\[6x - 5y = 18 \]

\[x =
10 (a) Evaluate.

(i) 17^0

(a)(i) _________________________ [1]

(ii) 4^{-3}

(ii) __________________________ [2]

(b) The distance, d, in miles to the horizon is given by the formula

$$d = \left(\frac{3h}{2} \right)^{\frac{1}{2}}$$

where h is the height, in feet, of an observer’s eyes above sea level.

(i) How far away is the horizon from a man whose eyes are 6 feet above sea level?

(b)(i) __________________________miles [2]

(ii) From the top of a cliff, Samira can see the horizon 12 miles away.

Find the height above sea level of Samira’s eyes.

(ii) __________________________feet [3]
11 (a) Simplify.

(i) \((\sqrt{5})^4\)

\[(a)(i) \quad \underline{0000} \quad [1]\]

(ii) \(\frac{\sqrt{45}}{3}\)

\[(ii) \quad \underline{0000} \quad [1]\]

(iii) \(\sqrt{5} \times \sqrt{40}\)

\[(iii) \quad \underline{0000} \quad [3]\]

(b) Work out the value of \(a\) in this equation.

\[(6 - \sqrt{a})(6 + \sqrt{a}) = 33\]

\[(b) \quad \underline{0000} \quad [2]\]